Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2007

Open Access 01-12-2007 | Research

A biologically inspired neural network controller for ballistic arm movements

Authors: Ivan Bernabucci, Silvia Conforto, Marco Capozza, Neri Accornero, Maurizio Schmid, Tommaso D'Alessio

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2007

Login to get access

Abstract

Background

In humans, the implementation of multijoint tasks of the arm implies a highly complex integration of sensory information, sensorimotor transformations and motor planning. Computational models can be profitably used to better understand the mechanisms sub-serving motor control, thus providing useful perspectives and investigating different control hypotheses. To this purpose, the use of Artificial Neural Networks has been proposed to represent and interpret the movement of upper limb. In this paper, a neural network approach to the modelling of the motor control of a human arm during planar ballistic movements is presented.

Methods

The developed system is composed of three main computational blocks: 1) a parallel distributed learning scheme that aims at simulating the internal inverse model in the trajectory formation process; 2) a pulse generator, which is responsible for the creation of muscular synergies; and 3) a limb model based on two joints (two degrees of freedom) and six muscle-like actuators, that can accommodate for the biomechanical parameters of the arm. The learning paradigm of the neural controller is based on a pure exploration of the working space with no feedback signal. Kinematics provided by the system have been compared with those obtained in literature from experimental data of humans.

Results

The model reproduces kinematics of arm movements, with bell-shaped wrist velocity profiles and approximately straight trajectories, and gives rise to the generation of synergies for the execution of movements. The model allows achieving amplitude and direction errors of respectively 0.52 cm and 0.2 radians.
Curvature values are similar to those encountered in experimental measures with humans.
The neural controller also manages environmental modifications such as the insertion of different force fields acting on the end-effector.

Conclusion

The proposed system has been shown to properly simulate the development of internal models and to control the generation and execution of ballistic planar arm movements. Since the neural controller learns to manage movements on the basis of kinematic information and arm characteristics, it could in perspective command a neuroprosthesis instead of a biomechanical model of a human upper limb, and it could thus give rise to novel rehabilitation techniques.
Appendix
Available only for authorised users
Literature
1.
go back to reference Myers JD, Massone LL: The role of the plant properties in point-to-point arm movements: a robustness study. Biological cybernetics 1997,76(3):173-180. 10.1007/s004220050330CrossRefPubMed Myers JD, Massone LL: The role of the plant properties in point-to-point arm movements: a robustness study. Biological cybernetics 1997,76(3):173-180. 10.1007/s004220050330CrossRefPubMed
2.
go back to reference Shadmehr R, Mussa-Ivaldi FA: Adaptive representation of dynamics during learning of a motor task. J Neurosci 1994,14(5 Pt 2):3208-3224.PubMed Shadmehr R, Mussa-Ivaldi FA: Adaptive representation of dynamics during learning of a motor task. J Neurosci 1994,14(5 Pt 2):3208-3224.PubMed
3.
go back to reference Kawato M: Internal models for motor control and trajectory planning. Current opinion in neurobiology 1999,9(6):718-727. 10.1016/S0959-4388(99)00028-8CrossRefPubMed Kawato M: Internal models for motor control and trajectory planning. Current opinion in neurobiology 1999,9(6):718-727. 10.1016/S0959-4388(99)00028-8CrossRefPubMed
4.
go back to reference Wolpert DM, Miall RC: Forward Models for Physiological Motor Control. Neural Netw 1996,9(8):1265-1279. 10.1016/S0893-6080(96)00035-4CrossRefPubMed Wolpert DM, Miall RC: Forward Models for Physiological Motor Control. Neural Netw 1996,9(8):1265-1279. 10.1016/S0893-6080(96)00035-4CrossRefPubMed
5.
go back to reference Shadmehr R: Generalization as a behavioral window to the neural mechanisms of learning internal models. Human movement science 2004,23(5):543-568. 10.1016/j.humov.2004.04.003PubMedCentralCrossRefPubMed Shadmehr R: Generalization as a behavioral window to the neural mechanisms of learning internal models. Human movement science 2004,23(5):543-568. 10.1016/j.humov.2004.04.003PubMedCentralCrossRefPubMed
6.
go back to reference Tee KP, Burdet E, Chew CM, Milner TE: A model of force and impedance in human arm movements. Biological cybernetics 2004,90(5):368-375. 10.1007/s00422-004-0484-4CrossRefPubMed Tee KP, Burdet E, Chew CM, Milner TE: A model of force and impedance in human arm movements. Biological cybernetics 2004,90(5):368-375. 10.1007/s00422-004-0484-4CrossRefPubMed
7.
go back to reference Todorov E, Jordan MI: Optimal feedback control as a theory of motor coordination. Nature neuroscience 2002,5(11):1226-1235. 10.1038/nn963CrossRefPubMed Todorov E, Jordan MI: Optimal feedback control as a theory of motor coordination. Nature neuroscience 2002,5(11):1226-1235. 10.1038/nn963CrossRefPubMed
8.
go back to reference Berthier NE, Rosenstein MT, Barto AG: Approximate optimal control as a model for motor learning. Psychological review 2005,112(2):329-346. 10.1037/0033-295X.112.2.329CrossRefPubMed Berthier NE, Rosenstein MT, Barto AG: Approximate optimal control as a model for motor learning. Psychological review 2005,112(2):329-346. 10.1037/0033-295X.112.2.329CrossRefPubMed
9.
go back to reference Karniel A, Inbar GF: A model for learning human reaching movements. Biological cybernetics 1997,77(3):173-183. 10.1007/s004220050378CrossRefPubMed Karniel A, Inbar GF: A model for learning human reaching movements. Biological cybernetics 1997,77(3):173-183. 10.1007/s004220050378CrossRefPubMed
10.
go back to reference Kawato M, Uno Y, Isobe M, Suzuki R: Hierarchical neural network model for voluntary movement withapplication to robotics. Control Systems Magazine, IEEE 1988,8(2):8-15. 10.1109/37.1867CrossRef Kawato M, Uno Y, Isobe M, Suzuki R: Hierarchical neural network model for voluntary movement withapplication to robotics. Control Systems Magazine, IEEE 1988,8(2):8-15. 10.1109/37.1867CrossRef
11.
go back to reference Hollerbach MJ, Flash T: Dynamic interactions between limb segments during planar arm movement. Biological cybernetics 1982,44(1):67-77. 10.1007/BF00353957CrossRefPubMed Hollerbach MJ, Flash T: Dynamic interactions between limb segments during planar arm movement. Biological cybernetics 1982,44(1):67-77. 10.1007/BF00353957CrossRefPubMed
12.
go back to reference Lackner JR, Dizio P: Rapid adaptation to Coriolis force perturbations of arm trajectory. Journal of neurophysiology 1994,72(1):299-313.PubMed Lackner JR, Dizio P: Rapid adaptation to Coriolis force perturbations of arm trajectory. Journal of neurophysiology 1994,72(1):299-313.PubMed
13.
go back to reference Goodale MA, Pelisson D, Prablanc C: Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. Nature 1986,320(6064):748-750. 10.1038/320748a0CrossRefPubMed Goodale MA, Pelisson D, Prablanc C: Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. Nature 1986,320(6064):748-750. 10.1038/320748a0CrossRefPubMed
14.
go back to reference Morasso P: Spatial control of arm movements. Experimental brain research Experimentelle Hirnforschung 1981,42(2):223-227.CrossRefPubMed Morasso P: Spatial control of arm movements. Experimental brain research Experimentelle Hirnforschung 1981,42(2):223-227.CrossRefPubMed
15.
go back to reference Abend W, Bizzi E, Morasso P: Human arm trajectory formation. Brain 1982,105(Pt 2):331-348. 10.1093/brain/105.2.331CrossRefPubMed Abend W, Bizzi E, Morasso P: Human arm trajectory formation. Brain 1982,105(Pt 2):331-348. 10.1093/brain/105.2.331CrossRefPubMed
16.
go back to reference Harris CM, Wolpert DM: Signal-dependent noise determines motor planning. Nature 1998,394(6695):780-784. 10.1038/29528CrossRefPubMed Harris CM, Wolpert DM: Signal-dependent noise determines motor planning. Nature 1998,394(6695):780-784. 10.1038/29528CrossRefPubMed
17.
go back to reference Flash T, Hogan N: The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 1985,5(7):1688-1703.PubMed Flash T, Hogan N: The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 1985,5(7):1688-1703.PubMed
18.
go back to reference Uno Y, Kawato M, Suzuki R: Formation and control of optimal trajectory in human multijoint arm movement. Minimum torque-change model. Biological cybernetics 1989,61(2):89-101. 10.1007/BF00204593CrossRefPubMed Uno Y, Kawato M, Suzuki R: Formation and control of optimal trajectory in human multijoint arm movement. Minimum torque-change model. Biological cybernetics 1989,61(2):89-101. 10.1007/BF00204593CrossRefPubMed
19.
go back to reference Kawato M, Furukawa K, Suzuki R: A hierarchical neural-network model for control and learning of voluntary movement. Biological cybernetics 1987,57(3):169-185. 10.1007/BF00364149CrossRefPubMed Kawato M, Furukawa K, Suzuki R: A hierarchical neural-network model for control and learning of voluntary movement. Biological cybernetics 1987,57(3):169-185. 10.1007/BF00364149CrossRefPubMed
20.
go back to reference Accornero N, Capozza M: Controllo Motorio: Rete neurale autoapprendente. Riv Neurobiol 1996, 42: 206-207. Accornero N, Capozza M: Controllo Motorio: Rete neurale autoapprendente. Riv Neurobiol 1996, 42: 206-207.
21.
go back to reference Hannaford B, Stark L: Roles of the elements of the triphasic control signal. Experimental neurology 1985,90(3):619-634. 10.1016/0014-4886(85)90160-8CrossRefPubMed Hannaford B, Stark L: Roles of the elements of the triphasic control signal. Experimental neurology 1985,90(3):619-634. 10.1016/0014-4886(85)90160-8CrossRefPubMed
22.
go back to reference Drillis R, Contini R, Bluestein M: Body Segment Parameters; a Survey of Measurement Techniques. Artificial limbs 1964, 25: 44-66. Drillis R, Contini R, Bluestein M: Body Segment Parameters; a Survey of Measurement Techniques. Artificial limbs 1964, 25: 44-66.
23.
go back to reference Hill AV: The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society of London 1938, 126: 136-195.CrossRef Hill AV: The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society of London 1938, 126: 136-195.CrossRef
24.
go back to reference Caselli P, Conforto S, Schmid M, Accornero N, D'Alessio T: Difference in sensorimotor adaptation to horizontal and vertical mirror distortions during ballistic arm movements. Human movement science 2006,25(3):310-325. 10.1016/j.humov.2005.12.003CrossRefPubMed Caselli P, Conforto S, Schmid M, Accornero N, D'Alessio T: Difference in sensorimotor adaptation to horizontal and vertical mirror distortions during ballistic arm movements. Human movement science 2006,25(3):310-325. 10.1016/j.humov.2005.12.003CrossRefPubMed
25.
go back to reference Wolpert DM, Ghahramani Z, Jordan MI: Perceptual distortion contributes to the curvature of human reaching movements. Exp Brain Res 1994,98(1):153-156. 10.1007/BF00229120CrossRefPubMed Wolpert DM, Ghahramani Z, Jordan MI: Perceptual distortion contributes to the curvature of human reaching movements. Exp Brain Res 1994,98(1):153-156. 10.1007/BF00229120CrossRefPubMed
26.
go back to reference Atkeson CG, Hollerbach JM: Kinematic features of unrestrained vertical arm movements. J Neurosci 1985,5(9):2318-2330.PubMed Atkeson CG, Hollerbach JM: Kinematic features of unrestrained vertical arm movements. J Neurosci 1985,5(9):2318-2330.PubMed
27.
go back to reference Boessenkool JJ, Nijhof EJ, Erkelens CJ: A comparison of curvatures of left and right hand movements in a simple pointing task. Experimental brain research Experimentelle Hirnforschung 1998,120(3):369-376. 10.1007/s002210050410CrossRefPubMed Boessenkool JJ, Nijhof EJ, Erkelens CJ: A comparison of curvatures of left and right hand movements in a simple pointing task. Experimental brain research Experimentelle Hirnforschung 1998,120(3):369-376. 10.1007/s002210050410CrossRefPubMed
28.
go back to reference Messier J, Kalaska JF: Comparison of variability of initial kinematics and endpoints of reaching movements. Experimental brain research Experimentelle Hirnforschung 1999,125(2):139-152. 10.1007/s002210050669CrossRefPubMed Messier J, Kalaska JF: Comparison of variability of initial kinematics and endpoints of reaching movements. Experimental brain research Experimentelle Hirnforschung 1999,125(2):139-152. 10.1007/s002210050669CrossRefPubMed
29.
go back to reference Messier J, Kalaska JF: Differential effect of task conditions on errors of direction and extent of reaching movements. Experimental brain research Experimentelle Hirnforschung 1997,115(3):469-478. 10.1007/PL00005716CrossRefPubMed Messier J, Kalaska JF: Differential effect of task conditions on errors of direction and extent of reaching movements. Experimental brain research Experimentelle Hirnforschung 1997,115(3):469-478. 10.1007/PL00005716CrossRefPubMed
Metadata
Title
A biologically inspired neural network controller for ballistic arm movements
Authors
Ivan Bernabucci
Silvia Conforto
Marco Capozza
Neri Accornero
Maurizio Schmid
Tommaso D'Alessio
Publication date
01-12-2007
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2007
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-4-33

Other articles of this Issue 1/2007

Journal of NeuroEngineering and Rehabilitation 1/2007 Go to the issue