Skip to main content
Top
Published in: BMC Medical Genetics 1/2011

Open Access 01-12-2011 | Research article

A 115-bp MethyLight assay for detection of p16 (CDKN2A) methylation as a diagnostic biomarker in human tissues

Authors: Jing Zhou, Jie Cao, Zheming Lu, Hongwei Liu, Dajun Deng

Published in: BMC Medical Genetics | Issue 1/2011

Login to get access

Abstract

Background

p16 Methylation is a potential biomarker for prediction of malignant transformation of epithelial dysplasia. A probe-based, quantitative, methylation-specific PCR (MSP) called MethyLight may become an eligible method for detecting this marker clinically. We studied oral mucosa biopsies with epithelial dysplasia from 78 patients enrolled in a published 4-years' followup cohort, in which cancer risk for patients with p16 methylation-positive dysplasia was significantly higher than those without p16 methylation (by 150-bp MSP and bisulfite sequencing; +133 ~ +283, transcription starting site, +1). The p16 methylation status in samples (N = 102) containing sufficient DNA was analyzed by the 70-bp classic (+238 ~ +307) and 115-bp novel (+157 ~ +272) MethyLight assays, respectively.

Results

p16 Methylation was detectable in 75 samples using the classic MethyLight assay. The methylated-p16 positive rate and proportion of methylated-p16 by the MethyLight in MSP-positive samples were higher than those in MSP-negative samples (positive rate: 37/44 vs. 38/58, P=0.035, two-sided; proportion [median]: 0.78 vs. 0.02, P < 0.007). Using the published results of MSP as a golden standard, we found sensitivity, specificity, and accuracy for this MethyLight assay to be 70.5%, 84.5%, and 55.0%, respectively. Because amplicon of the classic MethyLight procedure only partially overlapped with the MSP amplicon, we further designed a 115-bp novel MethyLight assay in which the amplicon on the sense-strand fully overlapped with the MSP amplicon on the antisense-strand. Using the 115-bp MethyLight assay, we observed methylated-p16 in 26 of 44 MSP-positive samples and 2 of 58 MSP-negative ones (P = 0.000). These results were confirmed with clone sequencing. Sensitivity, specificity, and accuracy using the 115-bp MethyLight assay were 59.1%, 98.3%, and 57.4%, respectively. Significant differences in the oral cancer rate were observed during the followup between patients (≥60 years) with and without methylated-p16 as detected by the 115-bp MethyLight assay (6/8 vs. 6/22, P = 0.034, two-sided).

Conclusions

The 115-bp MethyLight assay is a useful and practical assay with very high specificity for the detection of p16 methylation clinically.
Appendix
Available only for authorised users
Literature
1.
go back to reference Deng D, Liu Z, Du Y: Epigenetic alterations as cancer diagnostic, prognostic, and predictive biomarkers. Adv Genet. 2010, 71: 125-176.CrossRefPubMed Deng D, Liu Z, Du Y: Epigenetic alterations as cancer diagnostic, prognostic, and predictive biomarkers. Adv Genet. 2010, 71: 125-176.CrossRefPubMed
2.
go back to reference Wong DJ, Foster SA, Galloway DA, Reid BJ: Progressive region-specific de novo methylation of the p16 CpG island in primary human mammary epithelial cell strains during escape from M(0) growth arrest. Mol Cell Biol. 1999, 19: 5642-5651.CrossRefPubMedPubMedCentral Wong DJ, Foster SA, Galloway DA, Reid BJ: Progressive region-specific de novo methylation of the p16 CpG island in primary human mammary epithelial cell strains during escape from M(0) growth arrest. Mol Cell Biol. 1999, 19: 5642-5651.CrossRefPubMedPubMedCentral
3.
go back to reference Luo DY, Zhang BZ, Lv LB, Xiang SY, Liu YH, Ji JF, Deng DJ: Methylation of CpG islands of p16 associated with progression of primary gastric carcinomas. Laboratory Investigation. 2006, 86: 591-598.PubMed Luo DY, Zhang BZ, Lv LB, Xiang SY, Liu YH, Ji JF, Deng DJ: Methylation of CpG islands of p16 associated with progression of primary gastric carcinomas. Laboratory Investigation. 2006, 86: 591-598.PubMed
4.
go back to reference Hinshelwood RA, Melki JR, Huschtscha LI, Paul C, Song JZ, Stirzaker C, Reddel RR, Clark SJ: Aberrant de novo methylation of the p16INK4A CpG island is initiated post gene silencing in association with chromatin remodelling and mimics nucleosome positioning. Hum Mol Genet. 2009, 18: 3098-3109. 10.1093/hmg/ddp251.CrossRefPubMed Hinshelwood RA, Melki JR, Huschtscha LI, Paul C, Song JZ, Stirzaker C, Reddel RR, Clark SJ: Aberrant de novo methylation of the p16INK4A CpG island is initiated post gene silencing in association with chromatin remodelling and mimics nucleosome positioning. Hum Mol Genet. 2009, 18: 3098-3109. 10.1093/hmg/ddp251.CrossRefPubMed
5.
go back to reference Capel E, Fléjou JF, Hamelin R: Assessment of MLH1 promoter methylation in relation to gene expression requires specific analysis. Oncogene. 2007, 26: 7596-7600. 10.1038/sj.onc.1210581.CrossRefPubMed Capel E, Fléjou JF, Hamelin R: Assessment of MLH1 promoter methylation in relation to gene expression requires specific analysis. Oncogene. 2007, 26: 7596-7600. 10.1038/sj.onc.1210581.CrossRefPubMed
6.
go back to reference Serrano M, Hannon G, Beach D: A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature. 1993, 366: 704-707. 10.1038/366704a0.CrossRefPubMed Serrano M, Hannon G, Beach D: A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature. 1993, 366: 704-707. 10.1038/366704a0.CrossRefPubMed
7.
go back to reference Sun Y, Deng DJ, You WC, Bai H, Zhang L, Zhou J, Shen L, Ma JL, Xie YQ, Li JY: Methylation of p16 CpG islands associated with malignant transformation of gastric dysplasia in a population-based study. Clinical Cancer Research. 2004, 10: 5087-5093. 10.1158/1078-0432.CCR-03-0622.CrossRefPubMed Sun Y, Deng DJ, You WC, Bai H, Zhang L, Zhou J, Shen L, Ma JL, Xie YQ, Li JY: Methylation of p16 CpG islands associated with malignant transformation of gastric dysplasia in a population-based study. Clinical Cancer Research. 2004, 10: 5087-5093. 10.1158/1078-0432.CCR-03-0622.CrossRefPubMed
8.
go back to reference Belinsky SA, Liechty KC, Gentry FD, Wolf HJ, Rogers J, Vu K, Haney J, Kenned TC, Hirsch FR, Miller Y, Franklin WA, Herman JG, Baylin SB, Bunn PA, Byers T: Promoter hypermethylation of multiple genes in sputum precedes lung cancer incidence in a high-risk cohort. Cancer Research. 2006, 66: 3338-3344. 10.1158/0008-5472.CAN-05-3408.CrossRefPubMed Belinsky SA, Liechty KC, Gentry FD, Wolf HJ, Rogers J, Vu K, Haney J, Kenned TC, Hirsch FR, Miller Y, Franklin WA, Herman JG, Baylin SB, Bunn PA, Byers T: Promoter hypermethylation of multiple genes in sputum precedes lung cancer incidence in a high-risk cohort. Cancer Research. 2006, 66: 3338-3344. 10.1158/0008-5472.CAN-05-3408.CrossRefPubMed
9.
go back to reference Schulmann K, Sterian A, Berki A, Yin J, Sato F, Xu Y, Olaru A, Wang S, Mori Y, Deacu E, Hamilton J, Kan T, Krasna MJ, Beer DG, Pepe MS, Abraham JM, Feng Z, Schmiegel W, Greenwald BD, Meltzer SJ: Inactivation of p16, RUNX3, and HPP1 occurs early in Barrett's-associated neoplastic progression and predicts progression risk. Oncogene. 2005, 24: 4138-4148.CrossRefPubMed Schulmann K, Sterian A, Berki A, Yin J, Sato F, Xu Y, Olaru A, Wang S, Mori Y, Deacu E, Hamilton J, Kan T, Krasna MJ, Beer DG, Pepe MS, Abraham JM, Feng Z, Schmiegel W, Greenwald BD, Meltzer SJ: Inactivation of p16, RUNX3, and HPP1 occurs early in Barrett's-associated neoplastic progression and predicts progression risk. Oncogene. 2005, 24: 4138-4148.CrossRefPubMed
10.
go back to reference Wang JS, Guo M, Montgomery EA, Thompson RE, Cosby H, Hicks L, Wang S, Herman JG, Canto MI: DNA promoter hypermethylation of p16 and APC predicts neoplastic progression in Barrett's esophagus. Am J Gastroenterol. 2009, 104: 2153-2160. 10.1038/ajg.2009.300.CrossRefPubMedPubMedCentral Wang JS, Guo M, Montgomery EA, Thompson RE, Cosby H, Hicks L, Wang S, Herman JG, Canto MI: DNA promoter hypermethylation of p16 and APC predicts neoplastic progression in Barrett's esophagus. Am J Gastroenterol. 2009, 104: 2153-2160. 10.1038/ajg.2009.300.CrossRefPubMedPubMedCentral
11.
go back to reference Jin Z, Cheng Y, Gu W, Zheng Y, Sato F, Mori Y, Olaru A, Paun B, Yang J, Kan T, Ito T, Hamilton JP, Selaru FM, Agarwal R, David S, Abraham JM, Wolfsen HC, Wallace MB, Shaheen NJ, Washington K, Wang J, Canto MI, Bhattacharyya A, Nelson MA, Wagner PD, Romero Y, Wang KK, Feng Z, Sampliner RE, Meltzer SJ: A multicenter, double-blinded validation study of methylation biomarkers for progression prediction in Barrett's esophagus. Cancer Res. 2009, 69: 4112-4115.CrossRefPubMedPubMedCentral Jin Z, Cheng Y, Gu W, Zheng Y, Sato F, Mori Y, Olaru A, Paun B, Yang J, Kan T, Ito T, Hamilton JP, Selaru FM, Agarwal R, David S, Abraham JM, Wolfsen HC, Wallace MB, Shaheen NJ, Washington K, Wang J, Canto MI, Bhattacharyya A, Nelson MA, Wagner PD, Romero Y, Wang KK, Feng Z, Sampliner RE, Meltzer SJ: A multicenter, double-blinded validation study of methylation biomarkers for progression prediction in Barrett's esophagus. Cancer Res. 2009, 69: 4112-4115.CrossRefPubMedPubMedCentral
12.
go back to reference Hall G, Shaw R, Field E, Rogers S, Sutton D, Woolgar J, Lowe D, Liloglou T, Field J, Risk J: p16 Promoter methylation is a potential predictor of malignant transformation in oral epithelial dysplasia. Cancer Epidemiol Biomarkers Prev. 2008, 17: 2174-2179. 10.1158/1055-9965.EPI-07-2867.CrossRefPubMed Hall G, Shaw R, Field E, Rogers S, Sutton D, Woolgar J, Lowe D, Liloglou T, Field J, Risk J: p16 Promoter methylation is a potential predictor of malignant transformation in oral epithelial dysplasia. Cancer Epidemiol Biomarkers Prev. 2008, 17: 2174-2179. 10.1158/1055-9965.EPI-07-2867.CrossRefPubMed
13.
go back to reference Cao J, Zhou J, Gao Y, Gu LK, Meng HX, Liu HW, Deng DJ: Methylation of p16 CpG Island Associated with Malignant Progression of Oral Epithelial Dysplasia: A Prospective Cohort Study. Clinical Cancer Research. 2009, 15: 5178-5183. 10.1158/1078-0432.CCR-09-0580.CrossRefPubMed Cao J, Zhou J, Gao Y, Gu LK, Meng HX, Liu HW, Deng DJ: Methylation of p16 CpG Island Associated with Malignant Progression of Oral Epithelial Dysplasia: A Prospective Cohort Study. Clinical Cancer Research. 2009, 15: 5178-5183. 10.1158/1078-0432.CCR-09-0580.CrossRefPubMed
14.
go back to reference Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB: Methylation-specific PCR: A novel PCR assay for methylation status of CpG islands. Proceedings of the National Academy of Sciences of the United States of America. 1996, 93: 9821-9826. 10.1073/pnas.93.18.9821.CrossRefPubMedPubMedCentral Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB: Methylation-specific PCR: A novel PCR assay for methylation status of CpG islands. Proceedings of the National Academy of Sciences of the United States of America. 1996, 93: 9821-9826. 10.1073/pnas.93.18.9821.CrossRefPubMedPubMedCentral
15.
go back to reference Eads CA, Lord RV, Kurumboor SK, Wickramasinghe K, Skinner ML, Long TI, Peters JH, DeMeester TR, Danenberg KD, Danenberg PV, Laird PW, Skinner KA: Fields of aberrant CpG island hypermethylation in Barrett's esophagus and associated adenocarcinoma. Cancer Res. 2000, 60: 5021-5026.PubMed Eads CA, Lord RV, Kurumboor SK, Wickramasinghe K, Skinner ML, Long TI, Peters JH, DeMeester TR, Danenberg KD, Danenberg PV, Laird PW, Skinner KA: Fields of aberrant CpG island hypermethylation in Barrett's esophagus and associated adenocarcinoma. Cancer Res. 2000, 60: 5021-5026.PubMed
16.
go back to reference Shaw RJ, Akufo-Tetteh EK, Risk JM, Field JK, Liloglou T: Methylation enrichment pyrosequencing: combining the specificity of MSP with validation by pyrosequencing. Nucleic Acids Res. 2006, 34: e78-10.1093/nar/gkl424.CrossRefPubMedPubMedCentral Shaw RJ, Akufo-Tetteh EK, Risk JM, Field JK, Liloglou T: Methylation enrichment pyrosequencing: combining the specificity of MSP with validation by pyrosequencing. Nucleic Acids Res. 2006, 34: e78-10.1093/nar/gkl424.CrossRefPubMedPubMedCentral
17.
go back to reference Widschwendter M, Siegmund KD, Müller HM, Fiegl H, Marth C, Müller-Holzner E, Jones PA, Laird PW: Association of breast cancer DNA methylation profiles with hormone receptor status and response to tamoxifen. Cancer Res. 2004, 64: 3807-3813. 10.1158/0008-5472.CAN-03-3852.CrossRefPubMed Widschwendter M, Siegmund KD, Müller HM, Fiegl H, Marth C, Müller-Holzner E, Jones PA, Laird PW: Association of breast cancer DNA methylation profiles with hormone receptor status and response to tamoxifen. Cancer Res. 2004, 64: 3807-3813. 10.1158/0008-5472.CAN-03-3852.CrossRefPubMed
18.
go back to reference Dieffenbach CW, Dveksler GS: PCR Primer: A Laboratory Manual. 1995, New York: Cold Spring Harbor Laboratory Press, 1 Dieffenbach CW, Dveksler GS: PCR Primer: A Laboratory Manual. 1995, New York: Cold Spring Harbor Laboratory Press, 1
19.
go back to reference Furihata C, Yamawaki Y, Jin SS, Moriya H, Kodama K, Matsushima T, Ishikawa T, Takayama S, Nakadate M: Induction of unscheduled DNA synthesis in rat stomach mucosa by glandular stomach carcinogens. J Natl Cancer Inst. 1984, 72: 1327-1334.PubMed Furihata C, Yamawaki Y, Jin SS, Moriya H, Kodama K, Matsushima T, Ishikawa T, Takayama S, Nakadate M: Induction of unscheduled DNA synthesis in rat stomach mucosa by glandular stomach carcinogens. J Natl Cancer Inst. 1984, 72: 1327-1334.PubMed
20.
go back to reference Tetzner R, Dietrich D, Distler J: Control of carry-over contamination for PCR-based DNA methylation quantification using bisulfite treated DNA. Nucleic Acids Res. 2007, 35: e4-CrossRefPubMed Tetzner R, Dietrich D, Distler J: Control of carry-over contamination for PCR-based DNA methylation quantification using bisulfite treated DNA. Nucleic Acids Res. 2007, 35: e4-CrossRefPubMed
Metadata
Title
A 115-bp MethyLight assay for detection of p16 (CDKN2A) methylation as a diagnostic biomarker in human tissues
Authors
Jing Zhou
Jie Cao
Zheming Lu
Hongwei Liu
Dajun Deng
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Medical Genetics / Issue 1/2011
Electronic ISSN: 1471-2350
DOI
https://doi.org/10.1186/1471-2350-12-67

Other articles of this Issue 1/2011

BMC Medical Genetics 1/2011 Go to the issue