Skip to main content
Top
Published in: Journal of Digital Imaging 1/2016

01-02-2016

3D Printing of CT Dataset: Validation of an Open Source and Consumer-Available Workflow

Authors: Chandra Bortolotto, Esmeralda Eshja, Caterina Peroni, Matteo A. Orlandi, Nicola Bizzotto, Paolo Poggi

Published in: Journal of Imaging Informatics in Medicine | Issue 1/2016

Login to get access

Abstract

The broad availability of cheap three-dimensional (3D) printing equipment has raised the need for a thorough analysis on its effects on clinical accuracy. Our aim is to determine whether the accuracy of 3D printing process is affected by the use of a low-budget workflow based on open source software and consumer’s commercially available 3D printers. A group of test objects was scanned with a 64-slice computed tomography (CT) in order to build their 3D copies. CT datasets were elaborated using a software chain based on three free and open source software. Objects were printed out with a commercially available 3D printer. Both the 3D copies and the test objects were measured using a digital professional caliper. Overall, the objects’ mean absolute difference between test objects and 3D copies is 0.23 mm and the mean relative difference amounts to 0.55 %. Our results demonstrate that the accuracy of 3D printing process remains high despite the use of a low-budget workflow.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU, Giesel FL: 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg 5(4):335–341, 2010CrossRefPubMed Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU, Giesel FL: 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg 5(4):335–341, 2010CrossRefPubMed
2.
go back to reference Bizzotto N, Sandri A, Regis D, Romani D, Tami I, Magnan B: Three-dimensional printing of bone fractures: a new tangible realistic way for preoperative planning and education. Surg Innov, 2014. doi:10.1177/1553350614547773 Bizzotto N, Sandri A, Regis D, Romani D, Tami I, Magnan B: Three-dimensional printing of bone fractures: a new tangible realistic way for preoperative planning and education. Surg Innov, 2014. doi:10.​1177/​1553350614547773​
3.
go back to reference Tam MD, Laycock SD, Brown JR, Jakeways M: 3D printing of an aortic aneurysm to facilitate decision making and device selection for endovascular aneurysm repair in complex neck anatomy. J Endovasc Ther 20(6):863–867, 2013CrossRefPubMed Tam MD, Laycock SD, Brown JR, Jakeways M: 3D printing of an aortic aneurysm to facilitate decision making and device selection for endovascular aneurysm repair in complex neck anatomy. J Endovasc Ther 20(6):863–867, 2013CrossRefPubMed
4.
go back to reference Spottiswoode BS, van den Heever DJ, Chang Y, Engelhardt S, Du Plessis S, Nicolls F, Hartzenberg HB, Gretschel A: Preoperative three-dimensional model creation of magnetic resonance brain images as a tool to assist neurosurgical planning. Stereotact Funct Neurosurg 91(3):162–169, 2013CrossRefPubMed Spottiswoode BS, van den Heever DJ, Chang Y, Engelhardt S, Du Plessis S, Nicolls F, Hartzenberg HB, Gretschel A: Preoperative three-dimensional model creation of magnetic resonance brain images as a tool to assist neurosurgical planning. Stereotact Funct Neurosurg 91(3):162–169, 2013CrossRefPubMed
5.
go back to reference Esses SJ, Berman P, Bloom AI, Sosna J: Clinical applications of physical 3D models derived from MDCT data and created by rapid prototyping. AJR Am J Roentgenol 196(6):W683–W688, 2011CrossRefPubMed Esses SJ, Berman P, Bloom AI, Sosna J: Clinical applications of physical 3D models derived from MDCT data and created by rapid prototyping. AJR Am J Roentgenol 196(6):W683–W688, 2011CrossRefPubMed
6.
go back to reference Smet MH, Marchal GJ, Baert AL, Van Hoe L, Van Cleynenbreugel J, Daniels H, Molenaers G, Moens P, Fabry G: Three-dimensional imaging of acetabular dysplasia: diagnostic value and impact on surgical type classification. Eur J Radiol 34(1):26–31, 2000CrossRefPubMed Smet MH, Marchal GJ, Baert AL, Van Hoe L, Van Cleynenbreugel J, Daniels H, Molenaers G, Moens P, Fabry G: Three-dimensional imaging of acetabular dysplasia: diagnostic value and impact on surgical type classification. Eur J Radiol 34(1):26–31, 2000CrossRefPubMed
7.
go back to reference Ibrahim D, Broilo TL, Heitz C, de Oliveira MG, de Oliveira HW, Nobre SM, Dos Santos Filho JH, Silva DN: Dimensional error of selective laser sintering, three-dimensional printing and PolyJet models in the reproduction of mandibular anatomy. J Craniomaxillofac Surg 37(3):167–173, 2009CrossRefPubMed Ibrahim D, Broilo TL, Heitz C, de Oliveira MG, de Oliveira HW, Nobre SM, Dos Santos Filho JH, Silva DN: Dimensional error of selective laser sintering, three-dimensional printing and PolyJet models in the reproduction of mandibular anatomy. J Craniomaxillofac Surg 37(3):167–173, 2009CrossRefPubMed
8.
go back to reference Asaumi J, Kawai N, Honda Y, Shigehara H, Wakasa T, Kishi K: Comparison of three-dimensional computed tomography with rapid prototype models in the management of coronoid hyperplasia. Dentomaxillofac Radiol 30:330–335, 2001CrossRefPubMed Asaumi J, Kawai N, Honda Y, Shigehara H, Wakasa T, Kishi K: Comparison of three-dimensional computed tomography with rapid prototype models in the management of coronoid hyperplasia. Dentomaxillofac Radiol 30:330–335, 2001CrossRefPubMed
9.
go back to reference Fourie Z, Damstra J, Schepers RH, Gerrits PO, Ren Y: Segmentation process significantly influences the accuracy of 3D surface models derived from cone beam computed tomography. Eur J Radiol 81(4):e524–e530, 2012CrossRefPubMed Fourie Z, Damstra J, Schepers RH, Gerrits PO, Ren Y: Segmentation process significantly influences the accuracy of 3D surface models derived from cone beam computed tomography. Eur J Radiol 81(4):e524–e530, 2012CrossRefPubMed
10.
go back to reference Silva DN, Gerhardt de Oliveira M, Meurer E, Meurer MI, Lopes da Silva JV, Santa-Bárbara A: Dimensional error in selective laser sintering and 3D-printing of models for craniomaxillary anatomy reconstruction. J Craniomaxillofac Surg 36(8):443–449, 2008CrossRefPubMed Silva DN, Gerhardt de Oliveira M, Meurer E, Meurer MI, Lopes da Silva JV, Santa-Bárbara A: Dimensional error in selective laser sintering and 3D-printing of models for craniomaxillary anatomy reconstruction. J Craniomaxillofac Surg 36(8):443–449, 2008CrossRefPubMed
11.
go back to reference Salmi M, Paloheimo KS, Tuomi J, Wolff J, Mäkitie A: Accuracy of medical models made by additive manufacturing (rapid manufacturing). J Craniomaxillofac Surg 41(7):603–609, 2013CrossRefPubMed Salmi M, Paloheimo KS, Tuomi J, Wolff J, Mäkitie A: Accuracy of medical models made by additive manufacturing (rapid manufacturing). J Craniomaxillofac Surg 41(7):603–609, 2013CrossRefPubMed
12.
go back to reference Murugesan K, Anandapandian PA, Sharma SK, Vasantha Kumar M: Comparative evaluation of dimension and surface detail accuracy of models produced by three different rapid prototype techniques. J Indian Prosthodont Soc 12(1):16–20, 2012PubMedCentralCrossRefPubMed Murugesan K, Anandapandian PA, Sharma SK, Vasantha Kumar M: Comparative evaluation of dimension and surface detail accuracy of models produced by three different rapid prototype techniques. J Indian Prosthodont Soc 12(1):16–20, 2012PubMedCentralCrossRefPubMed
13.
go back to reference Frühwald J, Schicho KA, Figl M, Benesch T, Watzinger F, Kainberger F: Accuracy of craniofacial measurements: computed tomography and three-dimensional computed tomography compared with stereolithographic models. J Craniofac Surg 19(1):22–26, 2008PubMed Frühwald J, Schicho KA, Figl M, Benesch T, Watzinger F, Kainberger F: Accuracy of craniofacial measurements: computed tomography and three-dimensional computed tomography compared with stereolithographic models. J Craniofac Surg 19(1):22–26, 2008PubMed
14.
go back to reference El-Katatny I, Masood SH, Morsi YS: Error analysis of FDM fabricated medical replicas. Rapid Prototyp J 16:36e43, 2010CrossRef El-Katatny I, Masood SH, Morsi YS: Error analysis of FDM fabricated medical replicas. Rapid Prototyp J 16:36e43, 2010CrossRef
15.
go back to reference Huotilainen E, Jaanimets R, Valášek J, Marcián P, Salmi M, Tuomi J, Mäkitie A, Wolff J: Inaccuracies in additive manufactured medical skull models caused by the DICOM to STL conversion process. J Craniomaxillofac Surg 42(5):e259–e265, 2014CrossRefPubMed Huotilainen E, Jaanimets R, Valášek J, Marcián P, Salmi M, Tuomi J, Mäkitie A, Wolff J: Inaccuracies in additive manufactured medical skull models caused by the DICOM to STL conversion process. J Craniomaxillofac Surg 42(5):e259–e265, 2014CrossRefPubMed
16.
Metadata
Title
3D Printing of CT Dataset: Validation of an Open Source and Consumer-Available Workflow
Authors
Chandra Bortolotto
Esmeralda Eshja
Caterina Peroni
Matteo A. Orlandi
Nicola Bizzotto
Paolo Poggi
Publication date
01-02-2016
Publisher
Springer US
Published in
Journal of Imaging Informatics in Medicine / Issue 1/2016
Print ISSN: 2948-2925
Electronic ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-015-9810-8

Other articles of this Issue 1/2016

Journal of Digital Imaging 1/2016 Go to the issue