Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 2/2018

01-02-2018 | Original Article

3D–2D registration in endovascular image-guided surgery: evaluation of state-of-the-art methods on cerebral angiograms

Authors: Uroš Mitrović, Boštjan Likar, Franjo Pernuš, Žiga Špiclin

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 2/2018

Login to get access

Abstract

Purpose

Image guidance for minimally invasive surgery is based on spatial co-registration and fusion of 3D pre-interventional images and treatment plans with the 2D live intra-interventional images. The spatial co-registration or 3D–2D registration is the key enabling technology; however, the performance of state-of-the-art automated methods is rather unclear as they have not been assessed under the same test conditions. Herein we perform a quantitative and comparative evaluation of ten state-of-the-art methods for 3D–2D registration on a public dataset of clinical angiograms.

Methods

Image database consisted of 3D and 2D angiograms of 25 patients undergoing treatment for cerebral aneurysms or arteriovenous malformations. On each of the datasets, highly accurate “gold-standard” registrations of 3D and 2D images were established based on patient-attached fiducial markers. The database was used to rigorously evaluate ten state-of-the-art 3D–2D registration methods, namely two intensity-, two gradient-, three feature-based and three hybrid methods, both for registration of 3D pre-interventional image to monoplane or biplane 2D images.

Results

Intensity-based methods were most accurate in all tests (0.3 mm). One of the hybrid methods was most robust with 98.75% of successful registrations (SR) and capture range of 18 mm for registrations of 3D to biplane 2D angiograms. In general, registration accuracy was similar whether registration of 3D image was performed onto mono- or biplanar 2D images; however, the SR was substantially lower in case of 3D to monoplane 2D registration. Two feature-based and two hybrid methods had clinically feasible execution times in the order of a second.

Conclusions

Performance of methods seems to fall below expectations in terms of robustness in case of registration of 3D to monoplane 2D images, while translation into clinical image guidance systems seems readily feasible for methods that perform registration of the 3D pre-interventional image onto biplanar intra-interventional 2D images.
Literature
2.
go back to reference Ruijters D, Homan R, Mielekamp P, van de Haar P, Babic D (2011) Validation of 3D multimodality roadmapping in interventional neuroradiology. Phys Med Biol 56(16):5335–5354CrossRefPubMed Ruijters D, Homan R, Mielekamp P, van de Haar P, Babic D (2011) Validation of 3D multimodality roadmapping in interventional neuroradiology. Phys Med Biol 56(16):5335–5354CrossRefPubMed
3.
go back to reference Jannin P, Krupinski E, Warfield S (2006) Validation in medical image processing. IEEE Trans Med Imaging 25(11):1405–1409CrossRefPubMed Jannin P, Krupinski E, Warfield S (2006) Validation in medical image processing. IEEE Trans Med Imaging 25(11):1405–1409CrossRefPubMed
4.
go back to reference Jannin P, Grova C, Maurer CR (2006) Model for defining and reporting reference-based validation protocols in medical image processing. Int J Comput Assist Radiol Surg 1(2):63–73CrossRef Jannin P, Grova C, Maurer CR (2006) Model for defining and reporting reference-based validation protocols in medical image processing. Int J Comput Assist Radiol Surg 1(2):63–73CrossRef
5.
go back to reference Mitrović U, Špiclin Ž, Likar B, Pernus F (2013) 3D–2D registration of cerebral angiograms: a method and evaluation on clinical images. IEEE Trans Med Imag 32(8):1550–1563CrossRef Mitrović U, Špiclin Ž, Likar B, Pernus F (2013) 3D–2D registration of cerebral angiograms: a method and evaluation on clinical images. IEEE Trans Med Imag 32(8):1550–1563CrossRef
6.
go back to reference Markelj P, Likar B, Pernuš F (2010) Standardized evaluation methodology for 3D/2D registration based on the visible human data set. Med Phys 37(9):4643–4647CrossRefPubMed Markelj P, Likar B, Pernuš F (2010) Standardized evaluation methodology for 3D/2D registration based on the visible human data set. Med Phys 37(9):4643–4647CrossRefPubMed
7.
go back to reference van de Kraats E, Penney G, Tomaževič D, van Walsum T, Niessen W (2005) Standardized evaluation methodology for 2-D–3-D registration. IEEE Trans Med Imaging 24(9):1177–1189CrossRefPubMed van de Kraats E, Penney G, Tomaževič D, van Walsum T, Niessen W (2005) Standardized evaluation methodology for 2-D–3-D registration. IEEE Trans Med Imaging 24(9):1177–1189CrossRefPubMed
8.
go back to reference Markelj P, Tomaževič D, Likar B, Pernuš F (2012) A review of 3D/2D registration methods for image-guided interventions. Med Image Anal 16(3):642–661CrossRefPubMed Markelj P, Tomaževič D, Likar B, Pernuš F (2012) A review of 3D/2D registration methods for image-guided interventions. Med Image Anal 16(3):642–661CrossRefPubMed
9.
go back to reference Groher M, Zikic D, Navab N (2009) Deformable 2D–3D registration of vascular structures in a one view scenario. IEEE Trans Med Imaging 28(6):847–860CrossRefPubMed Groher M, Zikic D, Navab N (2009) Deformable 2D–3D registration of vascular structures in a one view scenario. IEEE Trans Med Imaging 28(6):847–860CrossRefPubMed
10.
go back to reference Hipwell JH et al (2003) Intensity-based 2-D–3-D registration of cerebral angiograms. IEEE Trans Med Imaging 22(11):1417–1426CrossRefPubMed Hipwell JH et al (2003) Intensity-based 2-D–3-D registration of cerebral angiograms. IEEE Trans Med Imaging 22(11):1417–1426CrossRefPubMed
11.
go back to reference Kerrien E, Berger M-O, Maurincomme E, Launay L, Vaillant R, Picard L (1999) Fully automatic 3D/2D subtracted angiography registration. In: Medical image computing and computer-assisted intervention—MICCAI 1999. Springer, London, pp 664–671 Kerrien E, Berger M-O, Maurincomme E, Launay L, Vaillant R, Picard L (1999) Fully automatic 3D/2D subtracted angiography registration. In: Medical image computing and computer-assisted intervention—MICCAI 1999. Springer, London, pp 664–671
12.
go back to reference Feldmar J, Ayache N, Betting F (1997) 3D–2D projective registration of free-form curves and surfaces. Comput Vis Image Und 65(3):403–424CrossRef Feldmar J, Ayache N, Betting F (1997) 3D–2D projective registration of free-form curves and surfaces. Comput Vis Image Und 65(3):403–424CrossRef
13.
go back to reference Groher M, Jakobs TF, Padoy N, Navab N (2007) Planning and intraoperative visualization of liver catheterizations: new CTA protocol and 2D–3D registration method. Acad Radiol 14(11):1325–1340CrossRefPubMed Groher M, Jakobs TF, Padoy N, Navab N (2007) Planning and intraoperative visualization of liver catheterizations: new CTA protocol and 2D–3D registration method. Acad Radiol 14(11):1325–1340CrossRefPubMed
14.
go back to reference Groher M, Bender F, Hoffmann R-T, Navab N (2007) Segmentation-driven 2D–3D registration for abdominal catheter interventions. In: Medical image computing and computer-assisted intervention—MICCAI, 2007, vol 10. Springer, Berlin, pp 527–535 Groher M, Bender F, Hoffmann R-T, Navab N (2007) Segmentation-driven 2D–3D registration for abdominal catheter interventions. In: Medical image computing and computer-assisted intervention—MICCAI, 2007, vol 10. Springer, Berlin, pp 527–535
15.
go back to reference Kita Y, Wilson DL, Noble A (1998) Real-time registration of 3D cerebral vessels to X-ray angiograms. In: Medical image computing and computer-assisted interventation—MICCAI 1998, vol 1496. Springer, Berlin, pp 1125–1133 Kita Y, Wilson DL, Noble A (1998) Real-time registration of 3D cerebral vessels to X-ray angiograms. In: Medical image computing and computer-assisted interventation—MICCAI 1998, vol 1496. Springer, Berlin, pp 1125–1133
16.
go back to reference Rivest-Hénault D, Sundar H, Cheriet M (2012) Nonrigid 2D/3D registration of coronary artery models with live fluoroscopy for guidance of cardiac interventions. IEEE Trans Med Imaging 31(8):1557–1572CrossRefPubMed Rivest-Hénault D, Sundar H, Cheriet M (2012) Nonrigid 2D/3D registration of coronary artery models with live fluoroscopy for guidance of cardiac interventions. IEEE Trans Med Imaging 31(8):1557–1572CrossRefPubMed
17.
go back to reference Tomaževič D, Likar B, Slivnik T, Pernuš F (2003) 3-D/2-D registration of CT and MR to X-ray images. IEEE Trans Med Imaging 22(11):1407–1416CrossRefPubMed Tomaževič D, Likar B, Slivnik T, Pernuš F (2003) 3-D/2-D registration of CT and MR to X-ray images. IEEE Trans Med Imaging 22(11):1407–1416CrossRefPubMed
18.
go back to reference Markelj P, Tomaževič D, Pernuš F, Likar B (2008) Robust gradient-based 3-D/2-D registration of CT and MR to X-ray images. IEEE Trans Med Imaging 27(12):1704–1714CrossRefPubMed Markelj P, Tomaževič D, Pernuš F, Likar B (2008) Robust gradient-based 3-D/2-D registration of CT and MR to X-ray images. IEEE Trans Med Imaging 27(12):1704–1714CrossRefPubMed
19.
go back to reference Livyatan H, Yaniv Z, Joskowicz L (2003) Gradient-based 2-D/3-D rigid registration of fluoroscopic X-ray to CT. IEEE Trans Med Imaging 22(11):1395–1406CrossRefPubMed Livyatan H, Yaniv Z, Joskowicz L (2003) Gradient-based 2-D/3-D rigid registration of fluoroscopic X-ray to CT. IEEE Trans Med Imaging 22(11):1395–1406CrossRefPubMed
20.
go back to reference Chan HM, Chung ACS, Yu SCH, Wells WM III (2004) 2D–3D vascular registration between digital subtraction angiographic (DSA) and magnetic resonance angiographic (MRA) images. Presented at the IEEE international symposium on biomedical imaging: nano to macro, vol 1, pp 708–711 Chan HM, Chung ACS, Yu SCH, Wells WM III (2004) 2D–3D vascular registration between digital subtraction angiographic (DSA) and magnetic resonance angiographic (MRA) images. Presented at the IEEE international symposium on biomedical imaging: nano to macro, vol 1, pp 708–711
21.
go back to reference Turgeon G-A, Lehmann G, Guiraudon G, Drangova M, Holdsworth D, Peters T (2005) 2D–3D registration of coronary angiograms for cardiac procedure planning and guidance. Med Phys 32(12):3737–3749CrossRefPubMed Turgeon G-A, Lehmann G, Guiraudon G, Drangova M, Holdsworth D, Peters T (2005) 2D–3D registration of coronary angiograms for cardiac procedure planning and guidance. Med Phys 32(12):3737–3749CrossRefPubMed
22.
go back to reference Vermandel M, Betrouni N, Gauvrit J-Y, Pasquier D, Vasseur C, Rousseau J (2006) Intrinsic 2D/3D registration based on a hybrid approach: use in the radiosurgical imaging process. Cell Mol Biol 52(6):44–53 Vermandel M, Betrouni N, Gauvrit J-Y, Pasquier D, Vasseur C, Rousseau J (2006) Intrinsic 2D/3D registration based on a hybrid approach: use in the radiosurgical imaging process. Cell Mol Biol 52(6):44–53
23.
go back to reference Jomier J, Bullitt E, Van Horn M, Pathak C, Aylward SR (2006) 3D, 2D model-to-image registration applied to TIPS surgery. In: Medical image computing and computer-assisted intervention—MICCAI 2006, vol 9. Springer, Berlin, pp 662–669 Jomier J, Bullitt E, Van Horn M, Pathak C, Aylward SR (2006) 3D, 2D model-to-image registration applied to TIPS surgery. In: Medical image computing and computer-assisted intervention—MICCAI 2006, vol 9. Springer, Berlin, pp 662–669
24.
go back to reference Ruijters D, ter Haar Romeny BM, Suetens P (2009) Vesselness-based 2D–3D registration of the coronary arteries. Int J Comput Assist Radiol Surg 4(4):391–397CrossRefPubMed Ruijters D, ter Haar Romeny BM, Suetens P (2009) Vesselness-based 2D–3D registration of the coronary arteries. Int J Comput Assist Radiol Surg 4(4):391–397CrossRefPubMed
25.
go back to reference Metz C et al (2013) Registration of 3D+t coronary CTA and monoplane 2D+t X-ray angiography. IEEE Trans Med Imaging 32(5):919–931CrossRefPubMed Metz C et al (2013) Registration of 3D+t coronary CTA and monoplane 2D+t X-ray angiography. IEEE Trans Med Imaging 32(5):919–931CrossRefPubMed
26.
go back to reference Copeland AD, Mangoubi RS, Desai MN, Mitter SK, Malek AM (2010) Spatio-temporal data fusion for 3D+T image reconstruction in cerebral angiography. IEEE Trans Med Imaging 29(6):1238–1251CrossRefPubMed Copeland AD, Mangoubi RS, Desai MN, Mitter SK, Malek AM (2010) Spatio-temporal data fusion for 3D+T image reconstruction in cerebral angiography. IEEE Trans Med Imaging 29(6):1238–1251CrossRefPubMed
27.
go back to reference Powell MJD (1964) An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput J 7(2):155–162CrossRef Powell MJD (1964) An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput J 7(2):155–162CrossRef
28.
go back to reference Madan H, Pernuš F, Likar B, Špiclin Ž (2017) A framework for automatic creation of gold-standard rigid 3D–2D registration datasets. Int J CARS 12(2):263–275CrossRef Madan H, Pernuš F, Likar B, Špiclin Ž (2017) A framework for automatic creation of gold-standard rigid 3D–2D registration datasets. Int J CARS 12(2):263–275CrossRef
29.
go back to reference Mitrović U, Pernuš F, Likar B, Špiclin Ž (2015) Simultaneous 3D–2D image registration and C-arm calibration: application to endovascular image-guided interventions. Med Phys 42(11):6433–6447CrossRefPubMed Mitrović U, Pernuš F, Likar B, Špiclin Ž (2015) Simultaneous 3D–2D image registration and C-arm calibration: application to endovascular image-guided interventions. Med Phys 42(11):6433–6447CrossRefPubMed
30.
go back to reference Hansen N (2012) The CMA evolution strategy: a comparing review. In: Lozano JA, Larrañaga P, Inza I, Bengoetxea E, (eds) Springer, Berlin pp 75–102 Hansen N (2012) The CMA evolution strategy: a comparing review. In: Lozano JA, Larrañaga P, Inza I, Bengoetxea E, (eds) Springer, Berlin pp 75–102
Metadata
Title
3D–2D registration in endovascular image-guided surgery: evaluation of state-of-the-art methods on cerebral angiograms
Authors
Uroš Mitrović
Boštjan Likar
Franjo Pernuš
Žiga Špiclin
Publication date
01-02-2018
Publisher
Springer International Publishing
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 2/2018
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-017-1678-2

Other articles of this Issue 2/2018

International Journal of Computer Assisted Radiology and Surgery 2/2018 Go to the issue