Skip to main content
Top
Published in: Neuroradiology 3/2015

01-03-2015 | Functional Neuroradiology

23Na-MRI of recurrent glioblastoma multiforme after intraoperative radiotherapy: technical note

Authors: Stefan Haneder, Frank A. Giordano, Simon Konstandin, Stefanie Brehmer, Karen A. Buesing, Peter Schmiedek, Lothar R. Schad, Frederik Wenz, Stefan O. Schoenberg, Melissa M. Ong

Published in: Neuroradiology | Issue 3/2015

Login to get access

Abstract

Introduction

We report the first case of an intraoperative radiotherapy (IORT) in a patient with recurrent glioblastoma multiforme (GBM) who was followed up with a novel magnetic resonance imaging (MRI) method—23Na-MRI—in comparison to a standard contrast-enhanced 1H-MRI and 18F-FET-PET.

Methods

A 56-year-old female patient with diagnosed GBM in July 2012 underwent tumor resection, radiochemotherapy, and three cycles of chemotherapy. After a relapse, 6 months after the initial diagnosis, an IORT was recommended which was performed in March 2013 using the INTRABEAM system (Carl Zeiss Meditec AG, Germany) with a 3-cm applicator and a surface dose of 20 Gy. Early post-operative contrast-enhanced and 1-month follow-up 1H-MRI and a 18F-FET-PET were performed. In addition, an IRB-approved 23Na-MRI was performed on a 3.0-T MR scanner (MAGNETOM TimTrio, Siemens Healthcare, Germany).

Results

After re-surgery and IORT in March 2013, only a faint contrast enhancement but considerable surrounding edema was visible at the medio-posterior resection margins. In April 2013, new and progressive contrast enhancement, edema, 23Na content, and increased uptake in the 18F-FET-PET were visible, indicating tumor recurrence. Increased sodium content within the area of contrast enhancement was found in the 23Na-MRI, but also exceeding this area, very similar to the increased uptake depicted in the 18F-FET-PET. The clearly delineable zone of edema in both examinations exhibits a lower 23Na content compared to areas with suspected proliferating tumor tissue.

Conclusion

23Na-MRI provided similar information in the suspicious area compared to 18F-FET-PET, exceeding conventional 1H-MRI. Still, 23Na-MRI remains an investigational technique, which is worth to be further evaluated.
Literature
1.
go back to reference Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996CrossRefPubMed Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996CrossRefPubMed
3.
go back to reference Giordano F et al (2014) Intraoperative radiotherapy (IORT)—a resurrected option for treating glioblastoma? Transl Cancer Res 3(1):94–105 Giordano F et al (2014) Intraoperative radiotherapy (IORT)—a resurrected option for treating glioblastoma? Transl Cancer Res 3(1):94–105
4.
go back to reference Weller M et al (2013) Standards of care for treatment of recurrent glioblastoma—are we there yet? J Neurooncol 15(1):4–27 Weller M et al (2013) Standards of care for treatment of recurrent glioblastoma—are we there yet? J Neurooncol 15(1):4–27
5.
go back to reference Kreisl TN et al (2009) Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 27(5):740–745CrossRefPubMedCentralPubMed Kreisl TN et al (2009) Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 27(5):740–745CrossRefPubMedCentralPubMed
6.
go back to reference Brandsma D et al (2008) Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 9(5):453–461CrossRefPubMed Brandsma D et al (2008) Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 9(5):453–461CrossRefPubMed
7.
go back to reference Galldiks N et al (2012) Assessment of treatment response in patients with glioblastoma using O-(2-18F-fluoroethyl)-l-tyrosine PET in comparison to MRI. J Nucl Med Off Publ Soc Nucl Med 53(7):1048–1057 Galldiks N et al (2012) Assessment of treatment response in patients with glioblastoma using O-(2-18F-fluoroethyl)-l-tyrosine PET in comparison to MRI. J Nucl Med Off Publ Soc Nucl Med 53(7):1048–1057
8.
go back to reference Gotz I, Grosu AL (2013) [18F]FET-PET imaging for treatment and response monitoring of radiation therapy in malignant glioma patients—a review. Front Oncol 3:104CrossRefPubMedCentralPubMed Gotz I, Grosu AL (2013) [18F]FET-PET imaging for treatment and response monitoring of radiation therapy in malignant glioma patients—a review. Front Oncol 3:104CrossRefPubMedCentralPubMed
9.
go back to reference Haneder S, et al (2013) Sodium (23Na)-imaging as therapy monitoring in oncology—future prospects. MAGNETOM Flash. 2 (ISMRM edition)(52):72–77 Haneder S, et al (2013) Sodium (23Na)-imaging as therapy monitoring in oncology—future prospects. MAGNETOM Flash. 2 (ISMRM edition)(52):72–77
10.
go back to reference Maudsley AA, Hilal SK (1984) Biological aspects of sodium-23 imaging. Br Med Bull 40(2):165–166PubMed Maudsley AA, Hilal SK (1984) Biological aspects of sodium-23 imaging. Br Med Bull 40(2):165–166PubMed
11.
go back to reference Thulborn KR et al (2005) Sodium MR imaging of acute and subacute stroke for assessment of tissue viability. Neuroimaging Clin N Am 15(3):639–653, xi–xiiCrossRefPubMed Thulborn KR et al (2005) Sodium MR imaging of acute and subacute stroke for assessment of tissue viability. Neuroimaging Clin N Am 15(3):639–653, xi–xiiCrossRefPubMed
12.
go back to reference Nagy I et al (1983) Correlation of malignancy with the intracellular Na+:K+ ratio in human thyroid tumors. Cancer Res 43(11):5395–5402PubMed Nagy I et al (1983) Correlation of malignancy with the intracellular Na+:K+ ratio in human thyroid tumors. Cancer Res 43(11):5395–5402PubMed
13.
go back to reference Cameron IL et al (1980) Intracellular concentration of sodium and other elements as related to mitogenesis and oncogenesis in vivo. Cancer Res 40(5):1493–1500PubMed Cameron IL et al (1980) Intracellular concentration of sodium and other elements as related to mitogenesis and oncogenesis in vivo. Cancer Res 40(5):1493–1500PubMed
14.
go back to reference Ouwerkerk R et al (2003) Tissue sodium concentration in human brain tumors as measured with 23Na MR imaging. Radiology 227(2):529–537CrossRefPubMed Ouwerkerk R et al (2003) Tissue sodium concentration in human brain tumors as measured with 23Na MR imaging. Radiology 227(2):529–537CrossRefPubMed
15.
go back to reference Thulborn KR et al (2009) Quantitative sodium MR imaging and sodium bioscales for the management of brain tumors. Neuroimaging Clin N Am 19(4):615–624CrossRefPubMedCentralPubMed Thulborn KR et al (2009) Quantitative sodium MR imaging and sodium bioscales for the management of brain tumors. Neuroimaging Clin N Am 19(4):615–624CrossRefPubMedCentralPubMed
16.
go back to reference Danisch M et al (2014) Bilateral 23Na MR imaging of the breast and quantification of sodium concentration. Z Med Phys 24(1):65–72CrossRefPubMed Danisch M et al (2014) Bilateral 23Na MR imaging of the breast and quantification of sodium concentration. Z Med Phys 24(1):65–72CrossRefPubMed
17.
go back to reference Stockhammer F et al (2010) Continuous low-dose temozolomide and celecoxib in recurrent glioblastoma. J Neurooncol 100(3):407–415CrossRefPubMed Stockhammer F et al (2010) Continuous low-dose temozolomide and celecoxib in recurrent glioblastoma. J Neurooncol 100(3):407–415CrossRefPubMed
18.
go back to reference Nagel AM et al (2009) Sodium MRI using a density-adapted 3D radial acquisition technique. Magn Reson Med Off J Soc Magn Reson Med Soc Magn Reson Med 62(6):1565–1573CrossRef Nagel AM et al (2009) Sodium MRI using a density-adapted 3D radial acquisition technique. Magn Reson Med Off J Soc Magn Reson Med Soc Magn Reson Med 62(6):1565–1573CrossRef
19.
go back to reference Brem H et al (1995) Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The polymer-brain tumor treatment group. Lancet 345(8956):1008–1012CrossRefPubMed Brem H et al (1995) Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The polymer-brain tumor treatment group. Lancet 345(8956):1008–1012CrossRefPubMed
20.
go back to reference Wen PY et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28(11):1963–1972CrossRefPubMed Wen PY et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28(11):1963–1972CrossRefPubMed
21.
go back to reference Hutterer M et al (2011) O-(2-18F-fluoroethyl)-l-tyrosine PET predicts failure of antiangiogenic treatment in patients with recurrent high-grade glioma. J Nucl Med 52(6):856–864CrossRefPubMed Hutterer M et al (2011) O-(2-18F-fluoroethyl)-l-tyrosine PET predicts failure of antiangiogenic treatment in patients with recurrent high-grade glioma. J Nucl Med 52(6):856–864CrossRefPubMed
22.
go back to reference Ryken TC, et al (2014) The role of imaging in the management of progressive glioblastoma: a systematic review and evidence-based clinical practice guideline. Journal of Neuro-oncology Ryken TC, et al (2014) The role of imaging in the management of progressive glioblastoma: a systematic review and evidence-based clinical practice guideline. Journal of Neuro-oncology
23.
go back to reference Kline RP et al (2000) Rapid in vivo monitoring of chemotherapeutic response using weighted sodium magnetic resonance imaging. Clin Cancer Res Off J Am Assoc Cancer Res 6(6):2146–2156 Kline RP et al (2000) Rapid in vivo monitoring of chemotherapeutic response using weighted sodium magnetic resonance imaging. Clin Cancer Res Off J Am Assoc Cancer Res 6(6):2146–2156
25.
go back to reference Sharma R et al (2005) Rapid in vivo taxotere quantitative chemosensitivity response by 4.23 Tesla sodium MRI and histo-immunostaining features in N-methyl-N-nitrosourea induced breast tumors in rats. Cancer Cell Int 5:26CrossRefPubMedCentralPubMed Sharma R et al (2005) Rapid in vivo taxotere quantitative chemosensitivity response by 4.23 Tesla sodium MRI and histo-immunostaining features in N-methyl-N-nitrosourea induced breast tumors in rats. Cancer Cell Int 5:26CrossRefPubMedCentralPubMed
26.
go back to reference Schepkin VD et al (2006) Sodium and proton diffusion MRI as biomarkers for early therapeutic response in subcutaneous tumors. Magn Reson Imaging 24(3):273–278CrossRefPubMedCentralPubMed Schepkin VD et al (2006) Sodium and proton diffusion MRI as biomarkers for early therapeutic response in subcutaneous tumors. Magn Reson Imaging 24(3):273–278CrossRefPubMedCentralPubMed
28.
go back to reference Henzler T et al (2012) Imaging of tumor viability in lung cancer: initial results using 23Na-MRI. RoFo: Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin 184(4):340–344CrossRefPubMed Henzler T et al (2012) Imaging of tumor viability in lung cancer: initial results using 23Na-MRI. RoFo: Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin 184(4):340–344CrossRefPubMed
29.
go back to reference Laymon CM et al (2012) Combined imaging biomarkers for therapy evaluation in glioblastoma multiforme: correlating sodium MRI and F-18 FLT PET on a voxel-wise basis. Magn Reson Imaging 30(9):1268–1278CrossRefPubMed Laymon CM et al (2012) Combined imaging biomarkers for therapy evaluation in glioblastoma multiforme: correlating sodium MRI and F-18 FLT PET on a voxel-wise basis. Magn Reson Imaging 30(9):1268–1278CrossRefPubMed
Metadata
Title
23Na-MRI of recurrent glioblastoma multiforme after intraoperative radiotherapy: technical note
Authors
Stefan Haneder
Frank A. Giordano
Simon Konstandin
Stefanie Brehmer
Karen A. Buesing
Peter Schmiedek
Lothar R. Schad
Frederik Wenz
Stefan O. Schoenberg
Melissa M. Ong
Publication date
01-03-2015
Publisher
Springer Berlin Heidelberg
Published in
Neuroradiology / Issue 3/2015
Print ISSN: 0028-3940
Electronic ISSN: 1432-1920
DOI
https://doi.org/10.1007/s00234-014-1468-2

Other articles of this Issue 3/2015

Neuroradiology 3/2015 Go to the issue