Skip to main content
Top
Published in: Journal of Neural Transmission 4/2015

01-04-2015 | Neurology and Preclinical Neurological Studies - Original Article

1H- and 13C-NMR spectroscopy of Thy-1-APPSL mice brain extracts indicates metabolic changes in Alzheimer’s disease

Authors: A. Doert, U. Pilatus, F. Zanella, W. E. Müller, G. P. Eckert

Published in: Journal of Neural Transmission | Issue 4/2015

Login to get access

Abstract

Biochemical alterations underlying the symptoms and pathomechanisms of Alzheimer’s disease (AD) are not fully understood. However, alterations of glucose metabolism and mitochondrial dysfunction certainly play an important role. 1H- and 13C-NMR spectroscopy exhibits promising results in providing information about those alterations in vivo in patients and animals, especially regarding the mitochondrial tricarboxylic acid (TCA) cycle. Accordingly, transgenic mice expressing mutant human amyloid precursor protein (APPSL)—serving as a model of neuropathological changes in AD—were examined with in vitro 1D 1H- and 2D 1H-13C-HSQC-NMR spectroscopy after oral administration of 1-13C-glucose and acquisition of brain material after 30 min. Perchloric acid extracts were measured using a 500 MHz spectrometer, providing more detailed information compared to in vivo spectra achievable nowadays. Area under curve (AUC) data of metabolite peaks were obtained and normalized in relation to the creatine signal, serving as internal reference. Besides confirming well-known metabolic alterations in AD like decreased N-acetylaspartate (NAA)/Creatine (Cr) ratio, new findings such as a decrease in phosphorylcholine (PC) are presented. Glutamate (Glu) and glutamine (Gln) concentrations were decreased while γ-aminobutyric acid (GABA) was elevated in Thy1-APPSL mice. 13C-NMR spectroscopy revealed a shift in the Glx-2/Glx-4-ratio—where Glx represents a combined Glu/Gln-signal—towards Glx-2 in AD. These findings correlated well with the NAA/Cr-ratio. The Gln-4/Glu-4-ratio is altered in favor of Glu. Our findings suggest that glutamine synthetase (GS), which is predominantly present in glial cells may be impaired in the brain of Thy1-APPSL transgenic mice. Since GS is an ATP-dependent enzyme, mitochondrial dysfunction might contribute to reduced activity, which might also account for the increased metabolism of glutamate via the GABA shunt, a metabolic pathway to bypass intra-mitochondrial α-ketoglutarate-dehydrogenase, resulting in elevated GABA levels.
Literature
go back to reference Antuono PG, Jones JL, Wang Y, Li SJ (2001a) Decreased glutamate + glutamine in Alzheimer’s disease detected in vivo with (1)H-MRS at 0.5 T. Neurology 56(6):737–742CrossRefPubMed Antuono PG, Jones JL, Wang Y, Li SJ (2001a) Decreased glutamate + glutamine in Alzheimer’s disease detected in vivo with (1)H-MRS at 0.5 T. Neurology 56(6):737–742CrossRefPubMed
go back to reference Antuono PG, Jones JL, Wang Y, Li SJ (2001b) Decreased glutamate + glutamine in Alzheimer’s disease detected in vivo with (1)H-MRS at 0.5 T 11353. Neurology 56(6):737–742CrossRefPubMed Antuono PG, Jones JL, Wang Y, Li SJ (2001b) Decreased glutamate + glutamine in Alzheimer’s disease detected in vivo with (1)H-MRS at 0.5 T 11353. Neurology 56(6):737–742CrossRefPubMed
go back to reference Bates TE, Strangward M, Keelan J, Davey GP, Munro PM, Clark JB (1996) Inhibition of N-acetylaspartate production: implications for 1H MRS studies in vivo. NeuroReport 7(8):1397–1400CrossRefPubMed Bates TE, Strangward M, Keelan J, Davey GP, Munro PM, Clark JB (1996) Inhibition of N-acetylaspartate production: implications for 1H MRS studies in vivo. NeuroReport 7(8):1397–1400CrossRefPubMed
go back to reference Bernstein HG, Bannier J, Meyer-Lotz G, Steiner J, Keilhoff G, Dobrowolny H, Walter M, Bogerts B (2014) Distribution of immunoreactive glutamine synthetase in the adult human and mouse brain. Qualitative and quantitative observations with special emphasis on extra-astroglial protein localization. J Chem Neuroanat 61–62:33–50. doi:10.1016/j.jchemneu.2014.07.003 CrossRefPubMed Bernstein HG, Bannier J, Meyer-Lotz G, Steiner J, Keilhoff G, Dobrowolny H, Walter M, Bogerts B (2014) Distribution of immunoreactive glutamine synthetase in the adult human and mouse brain. Qualitative and quantitative observations with special emphasis on extra-astroglial protein localization. J Chem Neuroanat 61–62:33–50. doi:10.​1016/​j.​jchemneu.​2014.​07.​003 CrossRefPubMed
go back to reference Brooks WM, Friedman SD, Stidley CA (1999) Reproducibility of 1H-MRS in vivo. Magn Reson Med 41(1):193–197CrossRefPubMed Brooks WM, Friedman SD, Stidley CA (1999) Reproducibility of 1H-MRS in vivo. Magn Reson Med 41(1):193–197CrossRefPubMed
go back to reference Brooks WM, Stidley CA, Petropoulos H, Jung RE, Weers DC, Friedman SD, Barlow MA, Sibbitt WL Jr, Yeo RA (2000) Metabolic and cognitive response to human traumatic brain injury: a quantitative proton magnetic resonance study. J Neurotrauma 17(8):629–640. doi:10.1089/089771500415382 CrossRefPubMed Brooks WM, Stidley CA, Petropoulos H, Jung RE, Weers DC, Friedman SD, Barlow MA, Sibbitt WL Jr, Yeo RA (2000) Metabolic and cognitive response to human traumatic brain injury: a quantitative proton magnetic resonance study. J Neurotrauma 17(8):629–640. doi:10.​1089/​089771500415382 CrossRefPubMed
go back to reference Burbaeva G, Boksha IS, Tereshkina EB, Savushkina OK, Starodubtseva LI, Turishcheva MS (2005) Glutamate metabolizing enzymes in prefrontal cortex of Alzheimer’s disease patients. Neurochem Res 30(11):1443–1451. doi:10.1007/s11064-005-8654-x CrossRefPubMed Burbaeva G, Boksha IS, Tereshkina EB, Savushkina OK, Starodubtseva LI, Turishcheva MS (2005) Glutamate metabolizing enzymes in prefrontal cortex of Alzheimer’s disease patients. Neurochem Res 30(11):1443–1451. doi:10.​1007/​s11064-005-8654-x CrossRefPubMed
go back to reference Burri R, Bigler P, Straehl P, Posse S, Colombo JP, Herschkowitz N (1990) Brain development: 1H magnetic resonance spectroscopy of rat brain extracts compared with chromatographic methods. Neurochem Res 15(10):1009–1016CrossRefPubMed Burri R, Bigler P, Straehl P, Posse S, Colombo JP, Herschkowitz N (1990) Brain development: 1H magnetic resonance spectroscopy of rat brain extracts compared with chromatographic methods. Neurochem Res 15(10):1009–1016CrossRefPubMed
go back to reference Chantal S, Braun CM, Bouchard RW, Labelle M, Boulanger Y (2004) Similar 1H magnetic resonance spectroscopic metabolic pattern in the medial temporal lobes of patients with mild cognitive impairment and Alzheimer disease. Brain Res 1003(1–2):26–35. doi:10.1016/j.brainres.2003.11.074 CrossRefPubMed Chantal S, Braun CM, Bouchard RW, Labelle M, Boulanger Y (2004) Similar 1H magnetic resonance spectroscopic metabolic pattern in the medial temporal lobes of patients with mild cognitive impairment and Alzheimer disease. Brain Res 1003(1–2):26–35. doi:10.​1016/​j.​brainres.​2003.​11.​074 CrossRefPubMed
go back to reference Cuadrado-Tejedor M, Cabodevilla JF, Zamarbide M, Gomez-Isla T, Franco R, Perez-Mediavilla A (2013) Age-related mitochondrial alterations without neuronal loss in the hippocampus of a transgenic model of Alzheimer’s disease. Curr Alzheimer Res 10(4):390–405CrossRefPubMed Cuadrado-Tejedor M, Cabodevilla JF, Zamarbide M, Gomez-Isla T, Franco R, Perez-Mediavilla A (2013) Age-related mitochondrial alterations without neuronal loss in the hippocampus of a transgenic model of Alzheimer’s disease. Curr Alzheimer Res 10(4):390–405CrossRefPubMed
go back to reference Czech C, Delaere P, Macq AF, Reibaud M, Dreisler S, Touchet N, Schombert B, Mazadier M, Mercken L, Theisen M, Pradier L, Octave JN, Beyreuther K, Tremp G (1997) Proteolytical processing of mutated human amyloid precursor protein in transgenic mice. Brain Res Mol Brain Res 47(1–2):108–116CrossRefPubMed Czech C, Delaere P, Macq AF, Reibaud M, Dreisler S, Touchet N, Schombert B, Mazadier M, Mercken L, Theisen M, Pradier L, Octave JN, Beyreuther K, Tremp G (1997) Proteolytical processing of mutated human amyloid precursor protein in transgenic mice. Brain Res Mol Brain Res 47(1–2):108–116CrossRefPubMed
go back to reference De Stefano N, Matthews PM, Narayanan S, Francis GS, Antel JP, Arnold DL (1997) Axonal dysfunction and disability in a relapse of multiple sclerosis: longitudinal study of a patient. Neurology 49(4):1138–1141CrossRefPubMed De Stefano N, Matthews PM, Narayanan S, Francis GS, Antel JP, Arnold DL (1997) Axonal dysfunction and disability in a relapse of multiple sclerosis: longitudinal study of a patient. Neurology 49(4):1138–1141CrossRefPubMed
go back to reference Eckert GP, Renner K, Eckert SH, Eckmann J, Hagl S, Abdel-Kader RM, Kurz C, Leuner K, Muller WE (2012) Mitochondrial dysfunction—a pharmacological target in Alzheimer’s disease. Mol Neurobiol 46(1):136–150. doi:10.1007/s12035-012-8271-z CrossRefPubMed Eckert GP, Renner K, Eckert SH, Eckmann J, Hagl S, Abdel-Kader RM, Kurz C, Leuner K, Muller WE (2012) Mitochondrial dysfunction—a pharmacological target in Alzheimer’s disease. Mol Neurobiol 46(1):136–150. doi:10.​1007/​s12035-012-8271-z CrossRefPubMed
go back to reference Ernst T, Chang L, Melchor R, Mehringer CM (1997) Frontotemporal dementia and early Alzheimer disease: differentiation with frontal lobe H-1 MR spectroscopy 11354. Radiology 203(3):829–836CrossRefPubMed Ernst T, Chang L, Melchor R, Mehringer CM (1997) Frontotemporal dementia and early Alzheimer disease: differentiation with frontal lobe H-1 MR spectroscopy 11354. Radiology 203(3):829–836CrossRefPubMed
go back to reference Golde TE, Dickson D, Hutton M (2006) Filling the gaps in the abeta cascade hypothesis of Alzheimer’s disease. Curr Alzheimer Res 3(5):421–430CrossRefPubMed Golde TE, Dickson D, Hutton M (2006) Filling the gaps in the abeta cascade hypothesis of Alzheimer’s disease. Curr Alzheimer Res 3(5):421–430CrossRefPubMed
go back to reference Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8(2):101–112CrossRefPubMed Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8(2):101–112CrossRefPubMed
go back to reference Hattori N, Abe K, Sakoda S, Sawada T (2002) Proton MR spectroscopic study at 3 Tesla on glutamate/glutamine in Alzheimer’s disease 11352. NeuroReport 13(1):183–186CrossRefPubMed Hattori N, Abe K, Sakoda S, Sawada T (2002) Proton MR spectroscopic study at 3 Tesla on glutamate/glutamine in Alzheimer’s disease 11352. NeuroReport 13(1):183–186CrossRefPubMed
go back to reference Herminghaus S, Frolich L, Gorriz C, Pilatus U, Dierks T, Wittsack HJ, Lanfermann H, Maurer K, Zanella FE (2003) Brain metabolism in Alzheimer disease and vascular dementia assessed by in vivo proton magnetic resonance spectroscopy. Psychiatry Res 123(3):183–190CrossRefPubMed Herminghaus S, Frolich L, Gorriz C, Pilatus U, Dierks T, Wittsack HJ, Lanfermann H, Maurer K, Zanella FE (2003) Brain metabolism in Alzheimer disease and vascular dementia assessed by in vivo proton magnetic resonance spectroscopy. Psychiatry Res 123(3):183–190CrossRefPubMed
go back to reference Hertz L, Dringen R, Schousboe A, Robinson SR (1999) Astrocytes: glutamate producers for neurons. J Neurosci Res 57(4):417–428CrossRefPubMed Hertz L, Dringen R, Schousboe A, Robinson SR (1999) Astrocytes: glutamate producers for neurons. J Neurosci Res 57(4):417–428CrossRefPubMed
go back to reference Hoyer S (2004a) Causes and consequences of disturbances of cerebral glucose metabolism in sporadic Alzheimer disease: therapeutic implications. Adv Exp Med Biol 541:135–152CrossRefPubMed Hoyer S (2004a) Causes and consequences of disturbances of cerebral glucose metabolism in sporadic Alzheimer disease: therapeutic implications. Adv Exp Med Biol 541:135–152CrossRefPubMed
go back to reference Jones RS, Waldman AD (2004) 1H-MRS evaluation of metabolism in Alzheimer’s disease and vascular dementia 11351. Neurol Res 26(5):488–495CrossRefPubMed Jones RS, Waldman AD (2004) 1H-MRS evaluation of metabolism in Alzheimer’s disease and vascular dementia 11351. Neurol Res 26(5):488–495CrossRefPubMed
go back to reference Klunk WE, Panchalingam K, Moossy J, McClure RJ, Pettegrew JW (1992) N-acetyl-L-aspartate and other amino acid metabolites in Alzheimer’s disease brain: a preliminary proton nuclear magnetic resonance study. Neurology 42(8):1578–1585CrossRefPubMed Klunk WE, Panchalingam K, Moossy J, McClure RJ, Pettegrew JW (1992) N-acetyl-L-aspartate and other amino acid metabolites in Alzheimer’s disease brain: a preliminary proton nuclear magnetic resonance study. Neurology 42(8):1578–1585CrossRefPubMed
go back to reference Klunk WE, Xu C, Panchalingam K, McClure RJ, Pettegrew JW (1996) Quantitative 1 H and 31 P MRS of PCA extracts of postmortem Alzheimer’s disease brain. Neurobiol Aging 17(3):349–357CrossRefPubMed Klunk WE, Xu C, Panchalingam K, McClure RJ, Pettegrew JW (1996) Quantitative 1 H and 31 P MRS of PCA extracts of postmortem Alzheimer’s disease brain. Neurobiol Aging 17(3):349–357CrossRefPubMed
go back to reference Klunk WE, Panchalingam K, McClure RJ, Stanley JA, Pettegrew JW (1998) Metabolic alterations in postmortem Alzheimer’s disease brain are exaggerated by Apo-E4. Neurobiol Aging 19(6):511–515CrossRefPubMed Klunk WE, Panchalingam K, McClure RJ, Stanley JA, Pettegrew JW (1998) Metabolic alterations in postmortem Alzheimer’s disease brain are exaggerated by Apo-E4. Neurobiol Aging 19(6):511–515CrossRefPubMed
go back to reference Kulijewicz-Nawrot M, Sykova E, Chvatal A, Verkhratsky A, Rodriguez JJ (2013) Astrocytes and glutamate homoeostasis in Alzheimer’s disease: a decrease in glutamine synthetase, but not in glutamate transporter-1, in the prefrontal cortex. ASN Neuro 5(4):273–282. doi:10.1042/an20130017 CrossRefPubMed Kulijewicz-Nawrot M, Sykova E, Chvatal A, Verkhratsky A, Rodriguez JJ (2013) Astrocytes and glutamate homoeostasis in Alzheimer’s disease: a decrease in glutamine synthetase, but not in glutamate transporter-1, in the prefrontal cortex. ASN Neuro 5(4):273–282. doi:10.​1042/​an20130017 CrossRefPubMed
go back to reference Kwo-On-Yuen PF, Newmark RD, Budinger TF, Kaye JA, Ball MJ, Jagust WJ (1994) Brain N-acetyl-l-aspartic acid in Alzheimer’s disease: a proton magnetic resonance spectroscopy study. Brain Res 667(2):167–174CrossRefPubMed Kwo-On-Yuen PF, Newmark RD, Budinger TF, Kaye JA, Ball MJ, Jagust WJ (1994) Brain N-acetyl-l-aspartic acid in Alzheimer’s disease: a proton magnetic resonance spectroscopy study. Brain Res 667(2):167–174CrossRefPubMed
go back to reference Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M, Viola KL, Klein WL (2007) Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27(4):796–807CrossRefPubMed Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M, Viola KL, Klein WL (2007) Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27(4):796–807CrossRefPubMed
go back to reference Lalande J, Halley H, Balayssac S, Gilard V, Dejean S, Martino R, Frances B, Lassalle JM, Malet-Martino M (2014) 1H NMR metabolomic signatures in five brain regions of the AbetaPPswe Tg2576 mouse model of Alzheimer’s disease at four ages. J Alzheimers Dis 39(1):121–143. doi:10.3233/jad-130023 PubMed Lalande J, Halley H, Balayssac S, Gilard V, Dejean S, Martino R, Frances B, Lassalle JM, Malet-Martino M (2014) 1H NMR metabolomic signatures in five brain regions of the AbetaPPswe Tg2576 mouse model of Alzheimer’s disease at four ages. J Alzheimers Dis 39(1):121–143. doi:10.​3233/​jad-130023 PubMed
go back to reference Lanctot KL, Herrmann N, Mazzotta P, Khan LR, Ingber N (2004) GABAergic function in Alzheimer’s disease: evidence for dysfunction and potential as a therapeutic target for the treatment of behavioural and psychological symptoms of dementia. Can J Psychiatry Revue Canadienne de Psychiatrie 49(7):439–453 Lanctot KL, Herrmann N, Mazzotta P, Khan LR, Ingber N (2004) GABAergic function in Alzheimer’s disease: evidence for dysfunction and potential as a therapeutic target for the treatment of behavioural and psychological symptoms of dementia. Can J Psychiatry Revue Canadienne de Psychiatrie 49(7):439–453
go back to reference Lazeyras F, Charles HC, Tupler LA, Erickson R, Boyko OB, Krishnan KR (1998) Metabolic brain mapping in Alzheimer’s disease using proton magnetic resonance spectroscopy. Psychiatry Res 82(2):95–106CrossRefPubMed Lazeyras F, Charles HC, Tupler LA, Erickson R, Boyko OB, Krishnan KR (1998) Metabolic brain mapping in Alzheimer’s disease using proton magnetic resonance spectroscopy. Psychiatry Res 82(2):95–106CrossRefPubMed
go back to reference Leuner K, Schütt T, Kurz C, Eckert SH, Schiller C, Occhipinti A, Mai S, Jendrach M, Eckert GP, Kruse SE, Palmiter RD, Brandt U, Dröse S, Wittig I, Willem M, Haass C, Reichert AS, Müller WE (2012) Mitochondrion-derived reactive oxygen species lead to enhanced amyloid beta formation. Antioxid Redox Signal 16(12):1421–1433. doi:10.1089/ars.2011.4173 CrossRefPubMedCentralPubMed Leuner K, Schütt T, Kurz C, Eckert SH, Schiller C, Occhipinti A, Mai S, Jendrach M, Eckert GP, Kruse SE, Palmiter RD, Brandt U, Dröse S, Wittig I, Willem M, Haass C, Reichert AS, Müller WE (2012) Mitochondrion-derived reactive oxygen species lead to enhanced amyloid beta formation. Antioxid Redox Signal 16(12):1421–1433. doi:10.​1089/​ars.​2011.​4173 CrossRefPubMedCentralPubMed
go back to reference Lowe SL, Francis PT, Procter AW, Palmer AM, Davison AN, Bowen DM (1988) Gamma-aminobutyric acid concentration in brain tissue at two stages of Alzheimer’s disease. Brain 111(Pt 4):785–799CrossRefPubMed Lowe SL, Francis PT, Procter AW, Palmer AM, Davison AN, Bowen DM (1988) Gamma-aminobutyric acid concentration in brain tissue at two stages of Alzheimer’s disease. Brain 111(Pt 4):785–799CrossRefPubMed
go back to reference Marjanska M, Curran GL, Wengenack TM, Henry PG, Bliss RL, Poduslo JF, Jack CR Jr, Ugurbil K, Garwood M (2005) Monitoring disease progression in transgenic mouse models of Alzheimer’s disease with proton magnetic resonance spectroscopy. Proc Natl Acad Sci USA 102(33):11906–11910. doi:10.1073/pnas.0505513102 CrossRefPubMedCentralPubMed Marjanska M, Curran GL, Wengenack TM, Henry PG, Bliss RL, Poduslo JF, Jack CR Jr, Ugurbil K, Garwood M (2005) Monitoring disease progression in transgenic mouse models of Alzheimer’s disease with proton magnetic resonance spectroscopy. Proc Natl Acad Sci USA 102(33):11906–11910. doi:10.​1073/​pnas.​0505513102 CrossRefPubMedCentralPubMed
go back to reference Mlynarik V, Cacquevel M, Sun-Reimer L, Janssens S, Cudalbu C, Lei H, Schneider BL, Aebischer P, Gruetter R (2012) Proton and phosphorus magnetic resonance spectroscopy of a mouse model of Alzheimer’s disease. J Alzheimers Dis 31(Suppl 3):S87–99. doi:10.3233/jad-2012-112072 PubMed Mlynarik V, Cacquevel M, Sun-Reimer L, Janssens S, Cudalbu C, Lei H, Schneider BL, Aebischer P, Gruetter R (2012) Proton and phosphorus magnetic resonance spectroscopy of a mouse model of Alzheimer’s disease. J Alzheimers Dis 31(Suppl 3):S87–99. doi:10.​3233/​jad-2012-112072 PubMed
go back to reference Moats RA, Ernst T, Shonk TK, Ross BD (1994) Abnormal cerebral metabolite concentrations in patients with probable Alzheimer disease. Magn Reson Med 32(1):110–115CrossRefPubMed Moats RA, Ernst T, Shonk TK, Ross BD (1994) Abnormal cerebral metabolite concentrations in patients with probable Alzheimer disease. Magn Reson Med 32(1):110–115CrossRefPubMed
go back to reference Mohanakrishnan P, Fowler AH, Vonsattel JP, Husain MM, Jolles PR, Liem P, Komoroski RA (1995) An in vitro 1H nuclear magnetic resonance study of the temporoparietal cortex of Alzheimer brains. Exp Brain Res 102(3):503–510CrossRefPubMed Mohanakrishnan P, Fowler AH, Vonsattel JP, Husain MM, Jolles PR, Liem P, Komoroski RA (1995) An in vitro 1H nuclear magnetic resonance study of the temporoparietal cortex of Alzheimer brains. Exp Brain Res 102(3):503–510CrossRefPubMed
go back to reference Nitsch RM, Blusztajn JK, Pittas AG, Slack BE, Growdon JH, Wurtman RJ (1992) Evidence for a membrane defect in Alzheimer disease brain. Proc Natl Acad Sci USA 89(5):1671–1675CrossRefPubMedCentralPubMed Nitsch RM, Blusztajn JK, Pittas AG, Slack BE, Growdon JH, Wurtman RJ (1992) Evidence for a membrane defect in Alzheimer disease brain. Proc Natl Acad Sci USA 89(5):1671–1675CrossRefPubMedCentralPubMed
go back to reference Parnetti L, Tarducci R, Presciutti O, Lowenthal DT, Pippi M, Palumbo B, Gobbi G, Pelliccioli GP, Senin U (1997) Proton magnetic resonance spectroscopy can differentiate Alzheimer’s disease from normal aging. Mech Ageing Dev 97(1):9–14CrossRefPubMed Parnetti L, Tarducci R, Presciutti O, Lowenthal DT, Pippi M, Palumbo B, Gobbi G, Pelliccioli GP, Senin U (1997) Proton magnetic resonance spectroscopy can differentiate Alzheimer’s disease from normal aging. Mech Ageing Dev 97(1):9–14CrossRefPubMed
go back to reference Robinson SR (2000) Neuronal expression of glutamine synthetase in Alzheimer’s disease indicates a profound impairment of metabolic interactions with astrocytes. Neurochem Int 36(4–5):471–482CrossRefPubMed Robinson SR (2000) Neuronal expression of glutamine synthetase in Alzheimer’s disease indicates a profound impairment of metabolic interactions with astrocytes. Neurochem Int 36(4–5):471–482CrossRefPubMed
go back to reference Rose SE, de Zubicaray GI, Wang D, Galloway GJ, Chalk JB, Eagle SC, Semple J, Doddrell DM (1999) A 1H MRS study of probable Alzheimer’s disease and normal aging: implications for longitudinal monitoring of dementia progression. Magn Reson Imaging 17(2):291–299CrossRefPubMed Rose SE, de Zubicaray GI, Wang D, Galloway GJ, Chalk JB, Eagle SC, Semple J, Doddrell DM (1999) A 1H MRS study of probable Alzheimer’s disease and normal aging: implications for longitudinal monitoring of dementia progression. Magn Reson Imaging 17(2):291–299CrossRefPubMed
go back to reference Satlin A, Bodick N, Offen WW, Renshaw PF (1997) Brain proton magnetic resonance spectroscopy (1H-MRS) in Alzheimer’s disease: changes after treatment with xanomeline, an M1 selective cholinergic agonist. Am J Psychiatry 154(10):1459–1461CrossRefPubMed Satlin A, Bodick N, Offen WW, Renshaw PF (1997) Brain proton magnetic resonance spectroscopy (1H-MRS) in Alzheimer’s disease: changes after treatment with xanomeline, an M1 selective cholinergic agonist. Am J Psychiatry 154(10):1459–1461CrossRefPubMed
go back to reference Schuff N, Capizzano AA, Du AT, Amend DL, O’Neill J, Norman D, Kramer J, Jagust W, Miller B, Wolkowitz OM, Yaffe K, Weiner MW (2002) Selective reduction of N-acetylaspartate in medial temporal and parietal lobes in AD. Neurology 58(6):928–935CrossRefPubMedCentralPubMed Schuff N, Capizzano AA, Du AT, Amend DL, O’Neill J, Norman D, Kramer J, Jagust W, Miller B, Wolkowitz OM, Yaffe K, Weiner MW (2002) Selective reduction of N-acetylaspartate in medial temporal and parietal lobes in AD. Neurology 58(6):928–935CrossRefPubMedCentralPubMed
go back to reference Seidl R, Cairns N, Singewald N, Kaehler ST, Lubec G (2001) Differences between GABA levels in Alzheimer’s disease and Down syndrome with Alzheimer-like neuropathology 11346. Naunyn Schmiedebergs ArchPharmacol 363(2):139–145CrossRef Seidl R, Cairns N, Singewald N, Kaehler ST, Lubec G (2001) Differences between GABA levels in Alzheimer’s disease and Down syndrome with Alzheimer-like neuropathology 11346. Naunyn Schmiedebergs ArchPharmacol 363(2):139–145CrossRef
go back to reference Sweet RA, Panchalingam K, Pettegrew JW, McClure RJ, Hamilton RL, Lopez OL, Kaufer DI, DeKosky ST, Klunk WE (2002) Psychosis in Alzheimer disease: postmortem magnetic resonance spectroscopy evidence of excess neuronal and membrane phospholipid pathology. Neurobiol Aging 23(4):547–553 (S019745800200009X [pii])CrossRefPubMed Sweet RA, Panchalingam K, Pettegrew JW, McClure RJ, Hamilton RL, Lopez OL, Kaufer DI, DeKosky ST, Klunk WE (2002) Psychosis in Alzheimer disease: postmortem magnetic resonance spectroscopy evidence of excess neuronal and membrane phospholipid pathology. Neurobiol Aging 23(4):547–553 (S019745800200009X [pii])CrossRefPubMed
go back to reference Tillakaratne NJ, Medina-Kauwe L, Gibson KM (1995) Gamma-aminobutyric acid (GABA) metabolism in mammalian neural and nonneural tissues. Comp Biochem Physiol Part A Physiol 112(2):247–263CrossRef Tillakaratne NJ, Medina-Kauwe L, Gibson KM (1995) Gamma-aminobutyric acid (GABA) metabolism in mammalian neural and nonneural tissues. Comp Biochem Physiol Part A Physiol 112(2):247–263CrossRef
go back to reference Tumani H, Shen G, Peter JB, Bruck W (1999) Glutamine synthetase in cerebrospinal fluid, serum, and brain: a diagnostic marker for Alzheimer disease? Arch Neurol 56(10):1241–1246CrossRefPubMed Tumani H, Shen G, Peter JB, Bruck W (1999) Glutamine synthetase in cerebrospinal fluid, serum, and brain: a diagnostic marker for Alzheimer disease? Arch Neurol 56(10):1241–1246CrossRefPubMed
go back to reference von Kienlin M, Kunnecke B, Metzger F, Steiner G, Richards JG, Ozmen L, Jacobsen H, Loetscher H (2005) Altered metabolic profile in the frontal cortex of PS2APP transgenic mice, monitored throughout their life span. Neurobiol Dis 18(1):32–39. doi:10.1016/j.nbd.2004.09.005 CrossRef von Kienlin M, Kunnecke B, Metzger F, Steiner G, Richards JG, Ozmen L, Jacobsen H, Loetscher H (2005) Altered metabolic profile in the frontal cortex of PS2APP transgenic mice, monitored throughout their life span. Neurobiol Dis 18(1):32–39. doi:10.​1016/​j.​nbd.​2004.​09.​005 CrossRef
go back to reference Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416(6880):535–539CrossRefPubMed Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416(6880):535–539CrossRefPubMed
go back to reference Woo DC, Lee SH, Lee DW, Kim SY, Kim GY, Rhim HS, Choi CB, Kim HY, Lee CU, Choe BY (2010) Regional metabolic alteration of Alzheimer’s disease in mouse brain expressing mutant human APP-PS1 by 1H HR-MAS. Behav Brain Res 211(1):125–131. doi:10.1016/j.bbr.2010.03.026 CrossRefPubMed Woo DC, Lee SH, Lee DW, Kim SY, Kim GY, Rhim HS, Choi CB, Kim HY, Lee CU, Choe BY (2010) Regional metabolic alteration of Alzheimer’s disease in mouse brain expressing mutant human APP-PS1 by 1H HR-MAS. Behav Brain Res 211(1):125–131. doi:10.​1016/​j.​bbr.​2010.​03.​026 CrossRefPubMed
go back to reference Yeh CY, Verkhratsky A, Terzieva S, Rodriguez JJ (2013) Glutamine synthetase in astrocytes from entorhinal cortex of the triple transgenic animal model of Alzheimer’s disease is not affected by pathological progression. Biogerontology 14(6):777–787. doi:10.1007/s10522-013-9456-1 CrossRefPubMed Yeh CY, Verkhratsky A, Terzieva S, Rodriguez JJ (2013) Glutamine synthetase in astrocytes from entorhinal cortex of the triple transgenic animal model of Alzheimer’s disease is not affected by pathological progression. Biogerontology 14(6):777–787. doi:10.​1007/​s10522-013-9456-1 CrossRefPubMed
Metadata
Title
1H- and 13C-NMR spectroscopy of Thy-1-APPSL mice brain extracts indicates metabolic changes in Alzheimer’s disease
Authors
A. Doert
U. Pilatus
F. Zanella
W. E. Müller
G. P. Eckert
Publication date
01-04-2015
Publisher
Springer Vienna
Published in
Journal of Neural Transmission / Issue 4/2015
Print ISSN: 0300-9564
Electronic ISSN: 1435-1463
DOI
https://doi.org/10.1007/s00702-015-1387-3

Other articles of this Issue 4/2015

Journal of Neural Transmission 4/2015 Go to the issue

Neurology and Preclinical Neurological Studies - Review Article

Editorial: Siegfried Hoyer’s concept of Alzheimer pathophysiology