Skip to main content
Top
Published in: Radiological Physics and Technology 3/2017

01-09-2017

137Cs transmission imaging and segmented attenuation corrections in a small animal PET scanner

Authors: Ying-Hwey Nai, Takayuki Ose, Miho Shidahara, Hiroshi Watabe

Published in: Radiological Physics and Technology | Issue 3/2017

Login to get access

Abstract

Attenuation correction (AC) is required for accurate quantitative evaluation of small animal PET data. Our objective was to compare three AC methods in the small animal Clairvivo-PET scanner. The three AC methods involve applying attenuation coefficient maps generated by simulating a cylindrical map (SAC), segmenting the emission data (ESAC), and segmenting the transmission data (TSAC), imaged using a 137Cs single-photon source. Investigation was carried out using a 65 mm uniform cylinder and an NEMA NU4 2008 mouse phantom, filled with water or tungsten liquid, to mimic bone. Evaluation was carried out using the difference of the segmented map volume from the known cylindrical phantom volume, the recovery of the radioactivity concentration, and the line profiles. The optimal transmission scan time for achieving accurate AC using TSAC was determined using 5, 10, 15, 20, and 25 min transmission scan time. The effects of scatter correction and reconstruction algorithms on ESAC were investigated. SAC showed the best performance but was unable to correct for different tissues and the scanner bed, and faced difficulty with correct positioning of the attenuation coefficient map. ESAC was affected by scatter correction and reconstruction algorithm, and may result in poor boundary delineation, and hence was unreliable. TSAC showed reasonable performance but required further optimization of the default segmentation setting. A minimum transmission scan time of 20 min is recommended for Clairvivo-PET using 137Cs source to ensure that sufficient transmission counts are obtained to generate accurate attenuation coefficient map.
Literature
1.
go back to reference Zaidi H, Hasegawa B. Determination of the attenuation map in emission tomography. J Nucl Med. 2003;44:291–315.PubMed Zaidi H, Hasegawa B. Determination of the attenuation map in emission tomography. J Nucl Med. 2003;44:291–315.PubMed
2.
go back to reference El Ali HH, Bodholdt RP, Jørgensen JT, Myschetzky R, Kjaer A. Importance of attenuation correction (ac) for small animal PET imaging. Diagnostics. 2012;2:42–51.CrossRefPubMedPubMedCentral El Ali HH, Bodholdt RP, Jørgensen JT, Myschetzky R, Kjaer A. Importance of attenuation correction (ac) for small animal PET imaging. Diagnostics. 2012;2:42–51.CrossRefPubMedPubMedCentral
3.
go back to reference deKemp RA. Attenuation correction in PET using single photon transmission measurement. Med Phys. 1994;21(6):771.CrossRefPubMed deKemp RA. Attenuation correction in PET using single photon transmission measurement. Med Phys. 1994;21(6):771.CrossRefPubMed
4.
go back to reference D’Ambrosio D, Zagni F, Spinelli AE, Marengo M. Attenuation correction for small animal PET images: a comparison of two methods. Comput Math Methods Med. 2013;2013:1–12. doi:10.1155/2013/103476.CrossRef D’Ambrosio D, Zagni F, Spinelli AE, Marengo M. Attenuation correction for small animal PET images: a comparison of two methods. Comput Math Methods Med. 2013;2013:1–12. doi:10.​1155/​2013/​103476.CrossRef
5.
go back to reference Lehnert W, Meikle SR, Siegel S, Newport D, Banati RB, Rosenfeld AB. Evaluation of transmission methodology and attenuation correction for the microPET Focus 220 animal scanner. Phys Med Biol. 2006;51:4003–16.CrossRefPubMed Lehnert W, Meikle SR, Siegel S, Newport D, Banati RB, Rosenfeld AB. Evaluation of transmission methodology and attenuation correction for the microPET Focus 220 animal scanner. Phys Med Biol. 2006;51:4003–16.CrossRefPubMed
7.
go back to reference Sato K, Shidahara M, Watabe H, Watanuki S, Ishikawa Y, Arakawa Y, Nai Y, Furumoto S, Tashiro M, Shoji T, et al. Performance evaluation of the small-animal PET scanner ClairvivoPET using NEMA NU 4-2008 standards. Phys Med Biol. 2016;61:696–711.CrossRefPubMed Sato K, Shidahara M, Watabe H, Watanuki S, Ishikawa Y, Arakawa Y, Nai Y, Furumoto S, Tashiro M, Shoji T, et al. Performance evaluation of the small-animal PET scanner ClairvivoPET using NEMA NU 4-2008 standards. Phys Med Biol. 2016;61:696–711.CrossRefPubMed
8.
go back to reference Mizuta T, Kitamura K, Iwata H, Yamagishi Y, Ohtani A, Tanaka K, Inoue Y. Performance evaluation of a high-sensitivity large-aperture small-animal PET scanner: ClairvivoPET. Ann Nucl Med. 2008;22:447–55.CrossRefPubMed Mizuta T, Kitamura K, Iwata H, Yamagishi Y, Ohtani A, Tanaka K, Inoue Y. Performance evaluation of a high-sensitivity large-aperture small-animal PET scanner: ClairvivoPET. Ann Nucl Med. 2008;22:447–55.CrossRefPubMed
9.
go back to reference Defrise M, Kinahan PE, Townsend DW, Michel C, Sibomana M, Newport DF. Exact and approximate rebinning algorithms for 3-D PET data. IEEE Trans Med Imaging. 1997;16:145–58.CrossRefPubMed Defrise M, Kinahan PE, Townsend DW, Michel C, Sibomana M, Newport DF. Exact and approximate rebinning algorithms for 3-D PET data. IEEE Trans Med Imaging. 1997;16:145–58.CrossRefPubMed
10.
go back to reference Tanaka E, Kudo H. Subset-dependent relaxation in block-iterative algorithms for image reconstruction in emission tomography. Phys Med Biol. 2003;48:1405.CrossRefPubMed Tanaka E, Kudo H. Subset-dependent relaxation in block-iterative algorithms for image reconstruction in emission tomography. Phys Med Biol. 2003;48:1405.CrossRefPubMed
11.
go back to reference Kinouchi S, Yamaya T, Yoshida E, Tashima H, Kudo H, Suga M. GPU implementation of list-mode DRAMA for real-time OpenPET image reconstruction. In: IEEE nuclear science symposium & medical imaging conference. 2010. pp. 2273–2276. Kinouchi S, Yamaya T, Yoshida E, Tashima H, Kudo H, Suga M. GPU implementation of list-mode DRAMA for real-time OpenPET image reconstruction. In: IEEE nuclear science symposium & medical imaging conference. 2010. pp. 2273–2276.
12.
go back to reference Lubberink M, Kosugi T, Schneider H, Ohba H, Bergström M. Non-stationary convolution subtraction scatter correction with a dual-exponential scatter kernel for the Hamamatsu SHR-7700 animal PET scanner. Phys Med Biol. 2004;49:833.CrossRefPubMed Lubberink M, Kosugi T, Schneider H, Ohba H, Bergström M. Non-stationary convolution subtraction scatter correction with a dual-exponential scatter kernel for the Hamamatsu SHR-7700 animal PET scanner. Phys Med Biol. 2004;49:833.CrossRefPubMed
13.
go back to reference Otsu N. A threshold selection method from gray-level histograms. Automatica. 1975;11:23–7. Otsu N. A threshold selection method from gray-level histograms. Automatica. 1975;11:23–7.
14.
go back to reference Loening AM, Gambhir SS. AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging. 2003;2(3):131–7.CrossRefPubMed Loening AM, Gambhir SS. AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging. 2003;2(3):131–7.CrossRefPubMed
15.
go back to reference Chow PL, Bai B, Siegel S, Leahy RM, Chatziioannou AF. Transmission imaging and attenuation correction for the microPET® P4 tomograph. In: IEEE nuclear science symposium conference record. 2002. pp. 1298–1302. Chow PL, Bai B, Siegel S, Leahy RM, Chatziioannou AF. Transmission imaging and attenuation correction for the microPET® P4 tomograph. In: IEEE nuclear science symposium conference record. 2002. pp. 1298–1302.
16.
go back to reference Karp JS, Muehllehner G, Qu H, Yan X-H. Singles transmission in volume-imaging PET with a 137Cs source. Phys Med Biol. 1995;40:929.CrossRefPubMed Karp JS, Muehllehner G, Qu H, Yan X-H. Singles transmission in volume-imaging PET with a 137Cs source. Phys Med Biol. 1995;40:929.CrossRefPubMed
17.
go back to reference Bilger K, Adam LE, Karp JS. Segmented attenuation correction using 137 Cs single photon transmission. In: IEEE nuclear science symposium conference record. 2001. pp. 2095–2099. Bilger K, Adam LE, Karp JS. Segmented attenuation correction using 137 Cs single photon transmission. In: IEEE nuclear science symposium conference record. 2001. pp. 2095–2099.
18.
go back to reference Watson CC, Schaefer A, Luk WK, Kirsch CM. Clinical evaluation of single-photon attenuation correction for 3D whole-body PET. IEEE Trans Nucl Sci. 1999;46:1024–31.CrossRef Watson CC, Schaefer A, Luk WK, Kirsch CM. Clinical evaluation of single-photon attenuation correction for 3D whole-body PET. IEEE Trans Nucl Sci. 1999;46:1024–31.CrossRef
19.
go back to reference Bailey DL, Livieratos L, Jones WF, Jones T. Strategies for accurate attenuation correction with single photon transmission measurements in 3D PET. In: IEEE nuclear science symposium. 1997. pp. 1009–1013. Bailey DL, Livieratos L, Jones WF, Jones T. Strategies for accurate attenuation correction with single photon transmission measurements in 3D PET. In: IEEE nuclear science symposium. 1997. pp. 1009–1013.
Metadata
Title
137Cs transmission imaging and segmented attenuation corrections in a small animal PET scanner
Authors
Ying-Hwey Nai
Takayuki Ose
Miho Shidahara
Hiroshi Watabe
Publication date
01-09-2017
Publisher
Springer Singapore
Published in
Radiological Physics and Technology / Issue 3/2017
Print ISSN: 1865-0333
Electronic ISSN: 1865-0341
DOI
https://doi.org/10.1007/s12194-017-0407-4

Other articles of this Issue 3/2017

Radiological Physics and Technology 3/2017 Go to the issue