Skip to main content
Top
Published in: Radiation Oncology 1/2022

Open Access 01-12-2022 | Research

ΔNp63α transcriptionally represses p53 target genes involved in the radiation-induced DNA damage response

ΔNp63α may cause genomic instability in epithelial stem cells

Authors: Ken-ichi Kudo, Naohiro Tsuyama, Kento Nagata, Tatsuhiko Imaoka, Daisuke Iizuka, Misaki Sugai-Takahashi, Moe Muramatsu, Akira Sakai

Published in: Radiation Oncology | Issue 1/2022

Login to get access

Abstract

Background

The DNA damage response (DDR) is a mechanism that protects cells against radiation-induced oxidative DNA damage by causing cell cycle arrest and apoptosis. TP63 is a member of the tumour suppressor TP53 gene family, and ΔNp63α, a TP63 splicing variant, is constitutively expressed in the stem cell-containing basal layer of stratified epithelial tissues, including the mammary gland, where it plays a critical role in stemness and tissue development. ΔNp63α has been reported to transcriptionally inhibit the tumour suppression protein p53. This p53-repressive activity may cause genomic instability in epithelial stem cells exposed to radiation. In this study, we analysed the inhibitory effect of ΔNp63α on radiation-induced DDR.

Methods

To elucidate the role of the p53-repressive effect of ΔNp63α in radiation response, we performed a p63-siRNA knockdown experiment using human mammary epithelial cells (HMECs) expressing ΔNp63α and then performed ectopic and entopic expression experiments using human induced pluripotent stem cells (hiPSCs). After irradiation, the expression of DDR-related genes and proteins in ΔNp63α-expressing and control cells was analysed by RT–qPCR, Western blotting, and flow cytometry.

Results

The mRNA/protein expression levels of BAX and p21 were significantly increased in p63-siRNA-treated HMECs (sip63) after X-ray irradiation (4 Gy, 0.7 Gy/min) but not in scramble-siRNA treated HMECs (scr). Transcriptomic analysis showed decreased RNA expression of cell cycle-related genes and increased expression of programmed cell death-related genes in sip63 cells compared to scr cells. Furthermore, flow cytometric analysis revealed an increase in apoptotic cells and a decrease in 5-ethynyl-2´-deoxyuridine uptake in sip63 cells compared to scr cells. On the other hand, both the ectopic and entopic expression of ΔNp63α in apoptosis-sensitive hiPSCs reduced the expression levels of BAX after irradiation and significantly decreased the number of apoptotic cells induced by radiation.

Conclusion

Taken together, these results indicate that ΔNp63α represses p53-related radiation-induced DDR, thereby potentially causing genomic instability in epithelial stem cells.
Appendix
Available only for authorised users
Literature
1.
go back to reference Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387:296–9.PubMedCrossRef Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387:296–9.PubMedCrossRef
2.
go back to reference Valerie K, Povirk LF. Regulation and mechanisms of mammalian double-strand break repair. Oncogene. 2003;22:5792–812.PubMedCrossRef Valerie K, Povirk LF. Regulation and mechanisms of mammalian double-strand break repair. Oncogene. 2003;22:5792–812.PubMedCrossRef
3.
go back to reference El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, et al. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993;75:817–25.PubMedCrossRef El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, et al. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993;75:817–25.PubMedCrossRef
5.
go back to reference Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007;87:99–163.PubMedCrossRef Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007;87:99–163.PubMedCrossRef
6.
go back to reference Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dötsch V, et al. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell. 1998;2:305–16.PubMedCrossRef Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dötsch V, et al. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell. 1998;2:305–16.PubMedCrossRef
7.
go back to reference Osada M, Ohba M, Kawahara C, Ishioka C, Kanamaru R, Katoh I, et al. Cloning and functional analysis of human p51, which structurally and functionally resembles p53. Nat Med. 1998;4:839–43.PubMedCrossRef Osada M, Ohba M, Kawahara C, Ishioka C, Kanamaru R, Katoh I, et al. Cloning and functional analysis of human p51, which structurally and functionally resembles p53. Nat Med. 1998;4:839–43.PubMedCrossRef
8.
go back to reference Westfall MD, Mays DJ, Sniezek JC, Pietenpol JA. The Delta Np63 alpha phosphoprotein binds the p21 and 14-3-3 sigma promoters in vivo and has transcriptional repressor activity that is reduced by Hay-Wells syndrome-derived mutations. Mol Cell Biol. 2003;23:2264–76.PubMedPubMedCentralCrossRef Westfall MD, Mays DJ, Sniezek JC, Pietenpol JA. The Delta Np63 alpha phosphoprotein binds the p21 and 14-3-3 sigma promoters in vivo and has transcriptional repressor activity that is reduced by Hay-Wells syndrome-derived mutations. Mol Cell Biol. 2003;23:2264–76.PubMedPubMedCentralCrossRef
9.
11.
go back to reference Cai J, Chen S, Yi M, Tan Y, Peng Q, Ban Y, et al. ∆Np63α is a super enhancer-enriched master factor controlling the basal-to-luminal differentiation transcriptional program and gene regulatory networks in nasopharyngeal carcinoma. Carcinogenesis. 2020;41:1282–93.PubMedCrossRef Cai J, Chen S, Yi M, Tan Y, Peng Q, Ban Y, et al. ∆Np63α is a super enhancer-enriched master factor controlling the basal-to-luminal differentiation transcriptional program and gene regulatory networks in nasopharyngeal carcinoma. Carcinogenesis. 2020;41:1282–93.PubMedCrossRef
12.
go back to reference Gaiddon C, Lokshin M, Ahn J, Zhang T, Prives C. A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol Cell Biol. 2001;21:1874–87.PubMedPubMedCentralCrossRef Gaiddon C, Lokshin M, Ahn J, Zhang T, Prives C. A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol Cell Biol. 2001;21:1874–87.PubMedPubMedCentralCrossRef
13.
go back to reference Cam M, Gardner HL, Roberts RD, Fenger JM, Guttridge DC, London CA, et al. ∆Np63 mediates cellular survival and metastasis in canine osteosarcoma. Oncotarget. 2016;7:48533–46.PubMedPubMedCentralCrossRef Cam M, Gardner HL, Roberts RD, Fenger JM, Guttridge DC, London CA, et al. ∆Np63 mediates cellular survival and metastasis in canine osteosarcoma. Oncotarget. 2016;7:48533–46.PubMedPubMedCentralCrossRef
14.
go back to reference Min S, Oyelakin A, Gluck C, Bard JE, Song EC, Smalley K, et al. p63 and its target follistatin maintain salivary gland stem/progenitor cell function through TGF-β/Activin signaling. iScience. 2020;23:101524.PubMedPubMedCentralCrossRef Min S, Oyelakin A, Gluck C, Bard JE, Song EC, Smalley K, et al. p63 and its target follistatin maintain salivary gland stem/progenitor cell function through TGF-β/Activin signaling. iScience. 2020;23:101524.PubMedPubMedCentralCrossRef
15.
go back to reference Gallant-Behm CL, Ramsey MR, Bensard CL, Nojek I, Tran J, Liu M, et al. ∆Np63α represses anti-proliferative genes via H2A.Z deposition. Genes Dev. 2012;26:2325–36.PubMedPubMedCentralCrossRef Gallant-Behm CL, Ramsey MR, Bensard CL, Nojek I, Tran J, Liu M, et al. ∆Np63α represses anti-proliferative genes via H2A.Z deposition. Genes Dev. 2012;26:2325–36.PubMedPubMedCentralCrossRef
16.
go back to reference Melino G, Memmi -EM, Pelicci PG, Bernassola F. Maintaining epithelial stemness with p63. Sci Signal. 2015;8:re9.PubMedCrossRef Melino G, Memmi -EM, Pelicci PG, Bernassola F. Maintaining epithelial stemness with p63. Sci Signal. 2015;8:re9.PubMedCrossRef
17.
go back to reference Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, et al. Purification and unique properties of mammary epithelial stem cells. Nature. 2006;439:993–7.PubMedCrossRef Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, et al. Purification and unique properties of mammary epithelial stem cells. Nature. 2006;439:993–7.PubMedCrossRef
18.
go back to reference Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, et al. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439:84–8.PubMedCrossRef Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, et al. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439:84–8.PubMedCrossRef
19.
go back to reference Kurinna S, Seltmann K, Bachmann AL, Schwendimann A, Thiagarajan L, Hennig P, et al. Interaction of the NRF2 and p63 transcription factors promotes keratinocyte proliferation in the epidermis. Nucleic Acids Res. 2021;49:3748–63.PubMedPubMedCentralCrossRef Kurinna S, Seltmann K, Bachmann AL, Schwendimann A, Thiagarajan L, Hennig P, et al. Interaction of the NRF2 and p63 transcription factors promotes keratinocyte proliferation in the epidermis. Nucleic Acids Res. 2021;49:3748–63.PubMedPubMedCentralCrossRef
20.
go back to reference Centonze A, Lin S, Tika E, Sifrim A, Fioramonti M, Malfait M, et al. Heterotypic cell-cell communication regulates glandular stem cell multipotency. Nature. 2020;584:608–13.PubMedPubMedCentralCrossRef Centonze A, Lin S, Tika E, Sifrim A, Fioramonti M, Malfait M, et al. Heterotypic cell-cell communication regulates glandular stem cell multipotency. Nature. 2020;584:608–13.PubMedPubMedCentralCrossRef
22.
go back to reference Niwa O, Barcellos-Hoff MH, Globus RK, Harrison JD, Hendry JH, Jacob P, et al. ICRP publication 131: stem cell biology with respect to carcinogenesis aspects of radiological protection. Ann ICRP. 2015;44:7–357.PubMedCrossRef Niwa O, Barcellos-Hoff MH, Globus RK, Harrison JD, Hendry JH, Jacob P, et al. ICRP publication 131: stem cell biology with respect to carcinogenesis aspects of radiological protection. Ann ICRP. 2015;44:7–357.PubMedCrossRef
23.
go back to reference Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M, et al Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res. 2007;168:1–64.Kim M, Mun H, Sung CO, Cho EJ, Jeon HJ, Chun SM, et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat Commun. 2019;10:3991. Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M, et al Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res. 2007;168:1–64.Kim M, Mun H, Sung CO, Cho EJ, Jeon HJ, Chun SM, et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat Commun. 2019;10:3991.
24.
go back to reference Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger K, Yatabe Y, et al. Diagnosis of lung cancer in small biopsies and cytology: implications of the 2011 International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification. Arch Pathol Lab Med. 2013;137:668–84.PubMedCrossRef Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger K, Yatabe Y, et al. Diagnosis of lung cancer in small biopsies and cytology: implications of the 2011 International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification. Arch Pathol Lab Med. 2013;137:668–84.PubMedCrossRef
25.
go back to reference Kim M, Mun H, Sung CO, Cho EJ, Jeon HJ, Chun SM, et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat Commun. 2019;10:3991.PubMedPubMedCentralCrossRef Kim M, Mun H, Sung CO, Cho EJ, Jeon HJ, Chun SM, et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat Commun. 2019;10:3991.PubMedPubMedCentralCrossRef
26.
go back to reference Chang CH, Zhang M, Rajapakshe K, Coarfa C, Edwards D, Huang S, et al. Mammary stem cells and tumor-initiating cells are more resistant to apoptosis and exhibit increased DNA repair activity in response to DNA damage. Stem Cell Reports. 2015;5:378–91.PubMedPubMedCentralCrossRef Chang CH, Zhang M, Rajapakshe K, Coarfa C, Edwards D, Huang S, et al. Mammary stem cells and tumor-initiating cells are more resistant to apoptosis and exhibit increased DNA repair activity in response to DNA damage. Stem Cell Reports. 2015;5:378–91.PubMedPubMedCentralCrossRef
27.
go back to reference Kudo KI, Takabatake M, Nagata K, Nishimura Y, Daino K, Iizuka D, et al. Flow cytometry definition of rat mammary epithelial cell populations and their distinct radiation responses. Radiat Res. 2020;194:22–37.PubMedCrossRef Kudo KI, Takabatake M, Nagata K, Nishimura Y, Daino K, Iizuka D, et al. Flow cytometry definition of rat mammary epithelial cell populations and their distinct radiation responses. Radiat Res. 2020;194:22–37.PubMedCrossRef
28.
go back to reference Tsuyama N, Abe Y, Yanagi A, Yanai Y, Sugai M, Katafuchi A, et al. Induction of t(11;14) IgH enhancer/promoter-cyclin D1 gene translocation using CRISPR/Cas9. Oncol Lett. 2019;18:275–82.PubMedPubMedCentral Tsuyama N, Abe Y, Yanagi A, Yanai Y, Sugai M, Katafuchi A, et al. Induction of t(11;14) IgH enhancer/promoter-cyclin D1 gene translocation using CRISPR/Cas9. Oncol Lett. 2019;18:275–82.PubMedPubMedCentral
29.
go back to reference Ge SX, Son EW, Yao R. iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinformatics. 2018;19:534.PubMedPubMedCentralCrossRef Ge SX, Son EW, Yao R. iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinformatics. 2018;19:534.PubMedPubMedCentralCrossRef
30.
go back to reference Miyake T, Shimada M, Matsumoto Y, Okino A. DNA damage response after ionizing radiation exposure in skin keratinocytes derived from human-induced pluripotent stem cells. Int J Radiat Oncol Biol Phys. 2019;105:193–205.PubMedCrossRef Miyake T, Shimada M, Matsumoto Y, Okino A. DNA damage response after ionizing radiation exposure in skin keratinocytes derived from human-induced pluripotent stem cells. Int J Radiat Oncol Biol Phys. 2019;105:193–205.PubMedCrossRef
31.
go back to reference Romano RA, Ortt K, Birkaya B, Smalley K, Sinha S. An active role of the DeltaN isoform of p63 in regulating basal keratin genes K5 and K14 and directing epidermal cell fate. PLoS One. 2009;4:e5623.PubMedPubMedCentralCrossRef Romano RA, Ortt K, Birkaya B, Smalley K, Sinha S. An active role of the DeltaN isoform of p63 in regulating basal keratin genes K5 and K14 and directing epidermal cell fate. PLoS One. 2009;4:e5623.PubMedPubMedCentralCrossRef
32.
go back to reference Imaoka T, Nishimura M, Daino K, Hosoki A, Takabatake M, Kokubo T, et al. Age modifies the effect of 2-MeV fast neutrons on rat mammary carcinogenesis. Radiat Res. 2017;188:419–25.PubMedCrossRef Imaoka T, Nishimura M, Daino K, Hosoki A, Takabatake M, Kokubo T, et al. Age modifies the effect of 2-MeV fast neutrons on rat mammary carcinogenesis. Radiat Res. 2017;188:419–25.PubMedCrossRef
33.
go back to reference Asatsuma-Okumura T, Ando H, De Simone M, Yamamoto J, Sato T, Shimizu N, et al. p63 is a cereblon substrate involved in thalidomide teratogenicity. Nat Chem Biol. 2019;15:1077–84.PubMedCrossRef Asatsuma-Okumura T, Ando H, De Simone M, Yamamoto J, Sato T, Shimizu N, et al. p63 is a cereblon substrate involved in thalidomide teratogenicity. Nat Chem Biol. 2019;15:1077–84.PubMedCrossRef
34.
go back to reference Leonard MK, Kommagani R, Payal V, Mayo LD, Shamma HN, Kadakia MP. ∆Np63α regulates keratinocyte proliferation by controlling PTEN expression and localization. Cell Death Differ. 2011;18:1924–33.PubMedPubMedCentralCrossRef Leonard MK, Kommagani R, Payal V, Mayo LD, Shamma HN, Kadakia MP. ∆Np63α regulates keratinocyte proliferation by controlling PTEN expression and localization. Cell Death Differ. 2011;18:1924–33.PubMedPubMedCentralCrossRef
35.
go back to reference Linnemann JR, Miura H, Meixner LK, Irmler M, Kloos UJ, Hirschi B, et al. Quantification of regenerative potential in primary human mammary epithelial cells. Development. 2015;142:3239–51.PubMedPubMedCentral Linnemann JR, Miura H, Meixner LK, Irmler M, Kloos UJ, Hirschi B, et al. Quantification of regenerative potential in primary human mammary epithelial cells. Development. 2015;142:3239–51.PubMedPubMedCentral
36.
go back to reference Latina A, Viticchiè G, Lena AM, Piro MC, Annicchiarico-Petruzzelli M, Melino G, et al. ∆Np63 targets cytoglobin to inhibit oxidative stress-induced apoptosis in keratinocytes and lung cancer. Oncogene. 2016;35:1493–503.PubMedCrossRef Latina A, Viticchiè G, Lena AM, Piro MC, Annicchiarico-Petruzzelli M, Melino G, et al. ∆Np63 targets cytoglobin to inhibit oxidative stress-induced apoptosis in keratinocytes and lung cancer. Oncogene. 2016;35:1493–503.PubMedCrossRef
37.
go back to reference Yan W, Chen X. GPX2, a direct target of p63, inhibits oxidative stress-induced apoptosis in a p53-dependent manner. J Biol Chem. 2006;281:7856–62.PubMedCrossRef Yan W, Chen X. GPX2, a direct target of p63, inhibits oxidative stress-induced apoptosis in a p53-dependent manner. J Biol Chem. 2006;281:7856–62.PubMedCrossRef
38.
go back to reference Oleksiewicz U, Liloglou T, Field JK, Xinarianos G. Cytoglobin: biochemical, functional and clinical perspective of the newest member of the globin family. Cell Mol Life Sci. 2011;68:3869–83.PubMedCrossRef Oleksiewicz U, Liloglou T, Field JK, Xinarianos G. Cytoglobin: biochemical, functional and clinical perspective of the newest member of the globin family. Cell Mol Life Sci. 2011;68:3869–83.PubMedCrossRef
39.
go back to reference Olive PL, Wlodek D, Banáth JP. DNA double-strand breaks measured in individual cells subjected to gel electrophoresis. Cancer Res. 1991;51:4671–6.PubMed Olive PL, Wlodek D, Banáth JP. DNA double-strand breaks measured in individual cells subjected to gel electrophoresis. Cancer Res. 1991;51:4671–6.PubMed
40.
go back to reference Driessens N, Versteyhe S, Ghaddhab C, Burniat A, De Deken X, Van Sande J, et al. Hydrogen peroxide induces DNA single- and double-strand breaks in thyroid cells and is therefore a potential mutagen for this organ. Endocr Relat Cancer. 2009;16:845–56.PubMedCrossRef Driessens N, Versteyhe S, Ghaddhab C, Burniat A, De Deken X, Van Sande J, et al. Hydrogen peroxide induces DNA single- and double-strand breaks in thyroid cells and is therefore a potential mutagen for this organ. Endocr Relat Cancer. 2009;16:845–56.PubMedCrossRef
41.
go back to reference Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998;273:5858–68.PubMedCrossRef Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998;273:5858–68.PubMedCrossRef
42.
go back to reference Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem. 2001;276:42462–7.PubMedCrossRef Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem. 2001;276:42462–7.PubMedCrossRef
43.
go back to reference Lebel CP, Bondy SC. Sensitive and rapid quantitation of oxygen reactive species formation in rat synaptosomes. Neurochem Int. 1990;17:435–40.PubMedCrossRef Lebel CP, Bondy SC. Sensitive and rapid quantitation of oxygen reactive species formation in rat synaptosomes. Neurochem Int. 1990;17:435–40.PubMedCrossRef
44.
go back to reference Kawamura F, Inaki M, Katafuchi A, Abe Y, Tsuyama N, Kurosu Y, et al. Establishment of induced pluripotent stem cells from normal B cells and inducing AID expression in their differentiation into hematopoietic progenitor cells. Sci Rep. 2017;7:1659.PubMedPubMedCentralCrossRef Kawamura F, Inaki M, Katafuchi A, Abe Y, Tsuyama N, Kurosu Y, et al. Establishment of induced pluripotent stem cells from normal B cells and inducing AID expression in their differentiation into hematopoietic progenitor cells. Sci Rep. 2017;7:1659.PubMedPubMedCentralCrossRef
45.
go back to reference Deckbar D, Jeggo PA, Löbrich M. Understanding the limitations of radiation-induced cell cycle checkpoints. Crit Rev Biochem Mol Biol. 2011;46:271–83.PubMedPubMedCentralCrossRef Deckbar D, Jeggo PA, Löbrich M. Understanding the limitations of radiation-induced cell cycle checkpoints. Crit Rev Biochem Mol Biol. 2011;46:271–83.PubMedPubMedCentralCrossRef
46.
go back to reference Landsverk KS, Patzke S, Rein ID, Stokke C, Lyng H, et al. Three independent mechanisms for arrest in G2 after ionizing radiation. Cell Cycle. 2011;10:1–11.CrossRef Landsverk KS, Patzke S, Rein ID, Stokke C, Lyng H, et al. Three independent mechanisms for arrest in G2 after ionizing radiation. Cell Cycle. 2011;10:1–11.CrossRef
47.
go back to reference Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature. 2016;534:47–54.PubMedPubMedCentralCrossRef Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature. 2016;534:47–54.PubMedPubMedCentralCrossRef
Metadata
Title
ΔNp63α transcriptionally represses p53 target genes involved in the radiation-induced DNA damage response
ΔNp63α may cause genomic instability in epithelial stem cells
Authors
Ken-ichi Kudo
Naohiro Tsuyama
Kento Nagata
Tatsuhiko Imaoka
Daisuke Iizuka
Misaki Sugai-Takahashi
Moe Muramatsu
Akira Sakai
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2022
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-022-02139-7

Other articles of this Issue 1/2022

Radiation Oncology 1/2022 Go to the issue