Skip to main content
Top
Published in: Journal of Clinical Immunology 2/2007

01-03-2007 | Original Article

γδ T Lymphocytes—Selectable Cells Within the Innate System?

Authors: Willi K. Born, Niyun Jin, M. Kemal Aydintug, J. M. Wands, Jena D. French, Christina L. Roark, Rebecca L. O’brien

Published in: Journal of Clinical Immunology | Issue 2/2007

Login to get access

Abstract

Lymphocytes expressing γδ T cell receptors (TCR) constitute an entire system of functionally specialized subsets that have been implicated in the regulation of immune responses, including responses to pathogens and allergens, and in tissue repair. The γδ TCRs share structural features with adaptive receptors and peripheral selection of γδ T cells occurs. Nevertheless, their specificities may be primarily directed at self-determinants, and the responses of γδ T cells exhibit innate characteristics. Continuous cross talk between γδ T cells and myeloid cells is evident in histological studies and in in vitro co-culture experiments, suggesting that γδ T cells play a functional role as an integral component of the innate immune system.
Literature
1.
go back to reference Janeway CA Jr, Travers P: Immunobiology. New York, Garland Publishing, 1994 Janeway CA Jr, Travers P: Immunobiology. New York, Garland Publishing, 1994
2.
go back to reference Janeway CA Jr, Medzhitov R: Introduction: The role of innate immunity in the adaptive immune response. Semin Immunol 10:349–350, 1998PubMed Janeway CA Jr, Medzhitov R: Introduction: The role of innate immunity in the adaptive immune response. Semin Immunol 10:349–350, 1998PubMed
3.
go back to reference Hayday AC, Saito H, Gillies SD, Kranz DM, Tanigawa G, Eisen H, et al.: Structure, organization, and somatic rearrangement of cell gamma genes. Cell 40:259–269, 1985PubMed Hayday AC, Saito H, Gillies SD, Kranz DM, Tanigawa G, Eisen H, et al.: Structure, organization, and somatic rearrangement of cell gamma genes. Cell 40:259–269, 1985PubMed
4.
go back to reference Chien Y-H, Iwashima M, Kaplan K, Elliott JF, Davis MM: A new T-cell receptor gene located within the alpha locus and expressed early in T-cell differentiation. Nature 327:677–682, 1987PubMed Chien Y-H, Iwashima M, Kaplan K, Elliott JF, Davis MM: A new T-cell receptor gene located within the alpha locus and expressed early in T-cell differentiation. Nature 327:677–682, 1987PubMed
5.
go back to reference Haas W, Pereira P, Tonegawa S: Gamma/delta T cells. Annu Rev Immunol 11:637–685, 1993PubMed Haas W, Pereira P, Tonegawa S: Gamma/delta T cells. Annu Rev Immunol 11:637–685, 1993PubMed
6.
go back to reference Davis MM, Bjorkman PJ: T cell antigen receptor genes and T cell recognition. Nature 334:395–402, 1988PubMed Davis MM, Bjorkman PJ: T cell antigen receptor genes and T cell recognition. Nature 334:395–402, 1988PubMed
7.
go back to reference Sim G-K, Augustin A: Dominantly inherited expression of BID, an invariant undiversified T cell receptor δ chain. Cell 61:397–405, 1990PubMed Sim G-K, Augustin A: Dominantly inherited expression of BID, an invariant undiversified T cell receptor δ chain. Cell 61:397–405, 1990PubMed
8.
go back to reference Sim G-K, Augustin A: Dominant expression of the T cell receptor BALB invariant δ (BID) chain in resident pulmonary lymphocytes is due to selection. Eur J Immunol 21:859–861, 1991PubMed Sim G-K, Augustin A: Dominant expression of the T cell receptor BALB invariant δ (BID) chain in resident pulmonary lymphocytes is due to selection. Eur J Immunol 21:859–861, 1991PubMed
9.
go back to reference Sim G-K, Augustin A: Extrathymic positive selection of γδ T cells. Vγ4Jγ1 rearrangements with “GxYS“ junctions. J Immunol 146:2439–2445, 1991PubMed Sim G-K, Augustin A: Extrathymic positive selection of γδ T cells. Vγ4Jγ1 rearrangements with “GxYS“ junctions. J Immunol 146:2439–2445, 1991PubMed
10.
go back to reference Hohlfeld R, Engel AG, Ii K, Harper MC: Polymyositis mediated by T lymphocytes that express that γ/δ receptor. N Engl J Med 324:877–881, 1991PubMedCrossRef Hohlfeld R, Engel AG, Ii K, Harper MC: Polymyositis mediated by T lymphocytes that express that γ/δ receptor. N Engl J Med 324:877–881, 1991PubMedCrossRef
11.
go back to reference Pluschke G, Rüegg D, Hohlfeld R, Engel AG: Autoaggressive myocytotoxic T lymphocytes expressing an unusual γ/δ T cell receptor. J Exp Med 176:1785–1789, 1992PubMed Pluschke G, Rüegg D, Hohlfeld R, Engel AG: Autoaggressive myocytotoxic T lymphocytes expressing an unusual γ/δ T cell receptor. J Exp Med 176:1785–1789, 1992PubMed
12.
go back to reference Wiendl H, Malotka J, Holzwarth B, Weltzien H-U, Wekerle H, Hohlfeld R, et al.: An autoreactive γδ TCR derived from a polymyositis lesion. J Immunol 169:515–521, 2002PubMed Wiendl H, Malotka J, Holzwarth B, Weltzien H-U, Wekerle H, Hohlfeld R, et al.: An autoreactive γδ TCR derived from a polymyositis lesion. J Immunol 169:515–521, 2002PubMed
13.
go back to reference Shimonkevitz R, Colburn C, Burnham JA, Murray RS, Kotzin BL: Clonal expansions of activated γ/δ T cells in recent-onset multiple sclerosis. Proc Natl Acad Sci USA 90:923–927, 1993PubMed Shimonkevitz R, Colburn C, Burnham JA, Murray RS, Kotzin BL: Clonal expansions of activated γ/δ T cells in recent-onset multiple sclerosis. Proc Natl Acad Sci USA 90:923–927, 1993PubMed
14.
go back to reference Lahmers KK, Norimine J, Abrahamsen MS, Palmer GH, Brown WC: The CD4+ T cell immunodominant Anaplasma marginale major surface protein 2 stimulates gammadelta T cell clones that express unique T cell receptors. J Leukocyte Biol 77:199–208, 2005PubMed Lahmers KK, Norimine J, Abrahamsen MS, Palmer GH, Brown WC: The CD4+ T cell immunodominant Anaplasma marginale major surface protein 2 stimulates gammadelta T cell clones that express unique T cell receptors. J Leukocyte Biol 77:199–208, 2005PubMed
15.
go back to reference Fu Y-X, Cranfill R, Vollmer M, Van Der Zee R, O'Brien RL, Born W: In vivo response of murine γδ T cells to a heat shock protein-derived peptide. Proc Natl Acad Sci USA 90:322–326, 1993PubMed Fu Y-X, Cranfill R, Vollmer M, Van Der Zee R, O'Brien RL, Born W: In vivo response of murine γδ T cells to a heat shock protein-derived peptide. Proc Natl Acad Sci USA 90:322–326, 1993PubMed
16.
go back to reference Janeway CA Jr, Jones B, Hayday A: Specificity and function of T cells bearing γδ receptors. Immunol Today 9:73–76, 1988PubMed Janeway CA Jr, Jones B, Hayday A: Specificity and function of T cells bearing γδ receptors. Immunol Today 9:73–76, 1988PubMed
17.
go back to reference Crowley MP, Reich Z, Mavaddat N, Altman JD, Chien Y-H: The recognition of the nonclassical major histocompatibility complex (MHC) class I molecule, T10, by the γδ T cell, G8. J Exp Med 185(7):1223–1230, 1997PubMed Crowley MP, Reich Z, Mavaddat N, Altman JD, Chien Y-H: The recognition of the nonclassical major histocompatibility complex (MHC) class I molecule, T10, by the γδ T cell, G8. J Exp Med 185(7):1223–1230, 1997PubMed
18.
go back to reference Porcelli S, Brenner MS, Greenstein JK, Balk SP, Terhorst C, Bleicher P: Recognition of cluster of differentiational antigens by human CD4− CD8− cytolytic T lymphocytes. Nature 341:447–450, 1989PubMed Porcelli S, Brenner MS, Greenstein JK, Balk SP, Terhorst C, Bleicher P: Recognition of cluster of differentiational antigens by human CD4− CD8− cytolytic T lymphocytes. Nature 341:447–450, 1989PubMed
19.
go back to reference Groh V, Steinle A, Bauer S, Spies T: Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science 279:1737–1740, 1998PubMed Groh V, Steinle A, Bauer S, Spies T: Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science 279:1737–1740, 1998PubMed
20.
go back to reference Scotet E, Martinez LO, Grant E, Barbaras R, Jeno P, Saulquin X, et al.: Tumor recognition following Vγ9Vδ2 T cell receptor interactions with a surface F1-ATPase-related structure and apolipoprotein A-1. Immunity 22:71–80, 2005PubMed Scotet E, Martinez LO, Grant E, Barbaras R, Jeno P, Saulquin X, et al.: Tumor recognition following Vγ9Vδ2 T cell receptor interactions with a surface F1-ATPase-related structure and apolipoprotein A-1. Immunity 22:71–80, 2005PubMed
21.
go back to reference Hayday AC: γδ cells: A right time and a right place for a conserved third way of protection. Annu Rev Immunol 18:975–1026, 2000PubMed Hayday AC: γδ cells: A right time and a right place for a conserved third way of protection. Annu Rev Immunol 18:975–1026, 2000PubMed
22.
go back to reference Konigshofer Y, Chien Y-H: γδ T cells—Innate immune lymphocytes? Curr Opin Immunol 18:527–533, 2006PubMed Konigshofer Y, Chien Y-H: γδ T cells—Innate immune lymphocytes? Curr Opin Immunol 18:527–533, 2006PubMed
23.
go back to reference Aydintug MK, Roark CL, Yin X, Wands JM, Born WK, O'Brien RL: Detection of cell surface ligands for the γδ TCR using soluble TCRs. J Immunol 172:4167–4175, 2004PubMed Aydintug MK, Roark CL, Yin X, Wands JM, Born WK, O'Brien RL: Detection of cell surface ligands for the γδ TCR using soluble TCRs. J Immunol 172:4167–4175, 2004PubMed
24.
go back to reference Chien Y-H, Jores R, Crowley MP: Recognition by γ/δ T cells. Annu Rev Immunol 14:511–532, 1996PubMed Chien Y-H, Jores R, Crowley MP: Recognition by γ/δ T cells. Annu Rev Immunol 14:511–532, 1996PubMed
25.
go back to reference Asarnow DM, Kuziel WA, Bonyhadi M, Tigelaar RE, Tucker PW, Allison JP: Limited diversity of γδ antigen receptor genes of Thy-1+ dendritic epidermal cells. Cell 55:837–847, 1988PubMed Asarnow DM, Kuziel WA, Bonyhadi M, Tigelaar RE, Tucker PW, Allison JP: Limited diversity of γδ antigen receptor genes of Thy-1+ dendritic epidermal cells. Cell 55:837–847, 1988PubMed
26.
go back to reference Adams EJ, Chien Y-H, Garcia KC: Structure of a γδ T cell receptor in complex with the nonclassical MHC T22. Science 308:227–231, 2005PubMed Adams EJ, Chien Y-H, Garcia KC: Structure of a γδ T cell receptor in complex with the nonclassical MHC T22. Science 308:227–231, 2005PubMed
27.
go back to reference Rock EP, Sibbald PR, Davis MM, Chien Y-H: CDR3 length in antigen-specific immune receptors. J Exp Med 179:323–328, 1994PubMed Rock EP, Sibbald PR, Davis MM, Chien Y-H: CDR3 length in antigen-specific immune receptors. J Exp Med 179:323–328, 1994PubMed
28.
go back to reference Matis LA, Cron R, Bluestone JA: Major histocompatibility complex-linked specificity of γδ receptor-bearing T lymphocytes. Nature 330:262–264, 1987PubMed Matis LA, Cron R, Bluestone JA: Major histocompatibility complex-linked specificity of γδ receptor-bearing T lymphocytes. Nature 330:262–264, 1987PubMed
29.
go back to reference Crowley MP, Fahrer AM, Baumgarth N, Hampl J, Gutgemann I, Teyton L, et al.: A population of murine γδ T cells that recognize an inducible MHC class Ib molecule. Science 287:314–316, 2000PubMed Crowley MP, Fahrer AM, Baumgarth N, Hampl J, Gutgemann I, Teyton L, et al.: A population of murine γδ T cells that recognize an inducible MHC class Ib molecule. Science 287:314–316, 2000PubMed
30.
go back to reference Shin S, El-Diwany R, Schaffert S, Adams EJ, Garcia KC, Pereira P, et al.: Antigen recognition determinants of γδ T cell receptors. Science 308:252–255, 2005PubMed Shin S, El-Diwany R, Schaffert S, Adams EJ, Garcia KC, Pereira P, et al.: Antigen recognition determinants of γδ T cell receptors. Science 308:252–255, 2005PubMed
31.
go back to reference Wingren C, Crowley MP, Degano M, Chien Y-H, Wilson IA: Crystal structure of a γδ T cell receptor ligand T22: A truncated MHC-like fold. Science 287:310–314, 2000PubMed Wingren C, Crowley MP, Degano M, Chien Y-H, Wilson IA: Crystal structure of a γδ T cell receptor ligand T22: A truncated MHC-like fold. Science 287:310–314, 2000PubMed
32.
go back to reference Wu J, Groh V, Spies T: T cell antigen receptor engagement and specificty in the recognition of stress-inducible MHC class I-related chains by human epithelial γδ T cells. J Immunol 169:1236–1240, 2002PubMed Wu J, Groh V, Spies T: T cell antigen receptor engagement and specificty in the recognition of stress-inducible MHC class I-related chains by human epithelial γδ T cells. J Immunol 169:1236–1240, 2002PubMed
33.
go back to reference Spada FM, Grant EP, Peters PJ, Sugita M, Melian A, Leslie DS, et al.: Self-recognition of CD1 by γ/δ T cells: Implications for innate immunity. J Exp Med 191:937–948, 2000PubMed Spada FM, Grant EP, Peters PJ, Sugita M, Melian A, Leslie DS, et al.: Self-recognition of CD1 by γ/δ T cells: Implications for innate immunity. J Exp Med 191:937–948, 2000PubMed
34.
go back to reference Blackman M, Yague J, Kubo R, Gay D, Coleclough C, Palmer E, et al.: The T cell recpertoire may be biased in favor of MHC recognition. Cell 47:349–357, 1986PubMed Blackman M, Yague J, Kubo R, Gay D, Coleclough C, Palmer E, et al.: The T cell recpertoire may be biased in favor of MHC recognition. Cell 47:349–357, 1986PubMed
35.
go back to reference Sciammas R, Bluestone JA: HSV-1 glycoprotein I-reactive TCRγδ cells directly recognize the peptide backbone in a conformationally dependent manner. J Immunol 161:5187–5192, 1998PubMed Sciammas R, Bluestone JA: HSV-1 glycoprotein I-reactive TCRγδ cells directly recognize the peptide backbone in a conformationally dependent manner. J Immunol 161:5187–5192, 1998PubMed
36.
go back to reference Harrison LC, Dempsey-Collier M, Kramer DR, Takahashi K: Aerosol insulin induced regulatory CD8 γT cells that prevent murine insulin-dependent diabetes. J Exp Med 184:2167–2174, 1996PubMed Harrison LC, Dempsey-Collier M, Kramer DR, Takahashi K: Aerosol insulin induced regulatory CD8 γT cells that prevent murine insulin-dependent diabetes. J Exp Med 184:2167–2174, 1996PubMed
37.
go back to reference Born W, Hall L, Dallas A, Boymel J, Shinnick T, Young D, et al.: Recognition of a peptide antigen by heat shock reactive γδ T lymphocytes. Science 249:67–69, 1990PubMed Born W, Hall L, Dallas A, Boymel J, Shinnick T, Young D, et al.: Recognition of a peptide antigen by heat shock reactive γδ T lymphocytes. Science 249:67–69, 1990PubMed
38.
go back to reference Constant P, Davodeau F, Peyrat M-A, Poquet Y, Puzo G, Bonneville M, et al.: Stimulation of human γδ T cells by nonpeptidic mycobacterial ligands. Science 264:267–270, 1994PubMed Constant P, Davodeau F, Peyrat M-A, Poquet Y, Puzo G, Bonneville M, et al.: Stimulation of human γδ T cells by nonpeptidic mycobacterial ligands. Science 264:267–270, 1994PubMed
39.
go back to reference Tanaka Y, Sano S, Nieves E, De Libero G, Rosa D, Modlin RL, et al.: Nonpeptide ligands for human γδ T cells. Proc Natl Acad Sci USA 91:8175–8179, 1994PubMed Tanaka Y, Sano S, Nieves E, De Libero G, Rosa D, Modlin RL, et al.: Nonpeptide ligands for human γδ T cells. Proc Natl Acad Sci USA 91:8175–8179, 1994PubMed
40.
go back to reference O'Brien RL, Fu Y-X, Cranfill R, Dallas A, Reardon C, Lang J, et al.: Heat shock protein Hsp-60 reactive γδ cells: A large, diversified T lymphocyte subset with highly focused specificity. Proc Natl Acad Sci USA 89:4348–4352, 1992PubMed O'Brien RL, Fu Y-X, Cranfill R, Dallas A, Reardon C, Lang J, et al.: Heat shock protein Hsp-60 reactive γδ cells: A large, diversified T lymphocyte subset with highly focused specificity. Proc Natl Acad Sci USA 89:4348–4352, 1992PubMed
41.
go back to reference Fu Y-X, Kersh G, Vollmer M, Kalataradi H, Heyborne K, Reardon C, et al.: Structural requirements for peptides that stimulate a subset of γδ T cells. J Immunol 152:1578–1588, 1994PubMed Fu Y-X, Kersh G, Vollmer M, Kalataradi H, Heyborne K, Reardon C, et al.: Structural requirements for peptides that stimulate a subset of γδ T cells. J Immunol 152:1578–1588, 1994PubMed
42.
go back to reference Tanaka Y, Morita CT, Tanaka Y, Nieves E, Brenner MB, Bloom BR: Natural and synthetic non-peptide antigens recognized by human γδ T cells. Nature 375:155–158, 1995PubMed Tanaka Y, Morita CT, Tanaka Y, Nieves E, Brenner MB, Bloom BR: Natural and synthetic non-peptide antigens recognized by human γδ T cells. Nature 375:155–158, 1995PubMed
43.
go back to reference Davodeau F, Peyrat M-A, Hallet M-M, Gaschet J, Houde I, Vivien R, et al.: Close correlation between Daudi and mycobacterial antigen recognition by human γδ T cells and expression of V9JPC1γ/V2DJCδ-encoded T cell receptors. J Immunol 151:1214–1223, 1993PubMed Davodeau F, Peyrat M-A, Hallet M-M, Gaschet J, Houde I, Vivien R, et al.: Close correlation between Daudi and mycobacterial antigen recognition by human γδ T cells and expression of V9JPC1γ/V2DJCδ-encoded T cell receptors. J Immunol 151:1214–1223, 1993PubMed
44.
go back to reference Davodeau F, Peyrat MA, Hallet MM, Houde I, Vie H, Bonneville M: Peripheral selection of antigen receptor junctional features in a major human γδ subset. Eur J Immunol 23:804–808, 1993PubMed Davodeau F, Peyrat MA, Hallet MM, Houde I, Vie H, Bonneville M: Peripheral selection of antigen receptor junctional features in a major human γδ subset. Eur J Immunol 23:804–808, 1993PubMed
45.
go back to reference Morita CT, Beckman EM, Bukowski JF, Tanaka Y, Band H, Bloom BR, et al.: Direct presentation of nonpeptide prenyl pyrophosphate antigens to human γδ T cells. Immunity 3:495–507, 1995PubMed Morita CT, Beckman EM, Bukowski JF, Tanaka Y, Band H, Bloom BR, et al.: Direct presentation of nonpeptide prenyl pyrophosphate antigens to human γδ T cells. Immunity 3:495–507, 1995PubMed
46.
go back to reference Allison TJ, Winter CC, Fournie JJ, Bonneville M, Garboczi DN: Structure of a human gammadelta T-cell antigen receptor. Nature 411:820–824, 2001PubMed Allison TJ, Winter CC, Fournie JJ, Bonneville M, Garboczi DN: Structure of a human gammadelta T-cell antigen receptor. Nature 411:820–824, 2001PubMed
47.
go back to reference Porcelli S, Brenner MB, Band H: Biology of the human γδ T-cell receptor. Immunol Rev 120:137–183, 1991PubMed Porcelli S, Brenner MB, Band H: Biology of the human γδ T-cell receptor. Immunol Rev 120:137–183, 1991PubMed
48.
go back to reference Gumperz JE: The ins and outs of CD1 molecules: Bringing lipids under immunological surveillance. Traffic 7:2–13, 2006PubMed Gumperz JE: The ins and outs of CD1 molecules: Bringing lipids under immunological surveillance. Traffic 7:2–13, 2006PubMed
49.
go back to reference Agea E, Russano A, Bistoni O, Mannucci R, Nicoletti I, Corazzi L, et al.: Human CD1-restricted T cell recognition of lipids from pollens. J Exp Med 202:295–308, 2005PubMed Agea E, Russano A, Bistoni O, Mannucci R, Nicoletti I, Corazzi L, et al.: Human CD1-restricted T cell recognition of lipids from pollens. J Exp Med 202:295–308, 2005PubMed
50.
go back to reference Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, et al.: CD1δ-restricted and TCR-mediated activation of Va 14 NKT cells by glycosylceramides. Science 278:1626–1629, 1997PubMed Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, et al.: CD1δ-restricted and TCR-mediated activation of Va 14 NKT cells by glycosylceramides. Science 278:1626–1629, 1997PubMed
51.
go back to reference Russano AM, Agea E, Corazzi L, Postle AD, De Libero G, Porcelli SA, et al.: Recognition of pollen-derived phosphatidyl-ethanolamine by human CD1δ-restricted gamma delta T cells. J Allergy Clin Immunol 117:1178–1184, 2006PubMed Russano AM, Agea E, Corazzi L, Postle AD, De Libero G, Porcelli SA, et al.: Recognition of pollen-derived phosphatidyl-ethanolamine by human CD1δ-restricted gamma delta T cells. J Allergy Clin Immunol 117:1178–1184, 2006PubMed
52.
go back to reference Huber S, Sartini D, Exley M: Role of CD1δ in Coxsackievirus B3-induced myocarditis. J Immunol 170:3147–3153, 2003PubMed Huber S, Sartini D, Exley M: Role of CD1δ in Coxsackievirus B3-induced myocarditis. J Immunol 170:3147–3153, 2003PubMed
53.
go back to reference Born WK, Vollmer M, Reardon C, Matsuura E, Voelker DR, Giclas PC, et al.: Hybridomas expressing γδ T-cell receptors respond to cardiolipin and b2-glycoprotein 1 (apolipoprotein H). Scand J Immunol 58:374–381, 2003PubMed Born WK, Vollmer M, Reardon C, Matsuura E, Voelker DR, Giclas PC, et al.: Hybridomas expressing γδ T-cell receptors respond to cardiolipin and b2-glycoprotein 1 (apolipoprotein H). Scand J Immunol 58:374–381, 2003PubMed
54.
go back to reference Shen Y, Zhou D, Qiu L, Lai X, Simon M, Shen L, et al.: Adaptive immune response of Vγ2Vδ2+ T cells during mycobacterial infections. Science 295:2255–2258, 2002PubMed Shen Y, Zhou D, Qiu L, Lai X, Simon M, Shen L, et al.: Adaptive immune response of Vγ2Vδ2+ T cells during mycobacterial infections. Science 295:2255–2258, 2002PubMed
55.
go back to reference Blumerman SL, Herzig CT, Wang F, Coussens PM, Baldwin CL: Comparison of gene expression by co-cultured WC1(+) gammadelta and CD4(+) alphabeta T cells exhibiting a recall response to bacterial antigen. Mol Immunol 44:2033–2045, 2007PubMed Blumerman SL, Herzig CT, Wang F, Coussens PM, Baldwin CL: Comparison of gene expression by co-cultured WC1(+) gammadelta and CD4(+) alphabeta T cells exhibiting a recall response to bacterial antigen. Mol Immunol 44:2033–2045, 2007PubMed
56.
go back to reference Hamelmann E, Oshiba A, Paluh J, Bradley K, Loader J, Potter TA, et al.: Requirement for CD8+ T cells in the development of airway hyperresponsiveness in a murine model of airway sensitization. J Exp Med 183(4):1719–1729, 1996PubMed Hamelmann E, Oshiba A, Paluh J, Bradley K, Loader J, Potter TA, et al.: Requirement for CD8+ T cells in the development of airway hyperresponsiveness in a murine model of airway sensitization. J Exp Med 183(4):1719–1729, 1996PubMed
57.
go back to reference Lahn M, Kanehiro A, Takeda K, Joetham A, Schwarze J, Koehler G, et al.: Negative regulation of airway responsiveness that is dependent on γδ T cells and independent of a T cells. Nat Med 5:1150–1156, 1999PubMed Lahn M, Kanehiro A, Takeda K, Joetham A, Schwarze J, Koehler G, et al.: Negative regulation of airway responsiveness that is dependent on γδ T cells and independent of a T cells. Nat Med 5:1150–1156, 1999PubMed
58.
go back to reference Hahn Y-S, Taube C, Jin N, Takeda K, Park J-W, Wands JM, et al.: Vγ4+ T cells regulate airway hyperreactivity to methacholine in ovalbumin-sensitized and challenged mice. J Immunol 171:3170–3178, 2003PubMed Hahn Y-S, Taube C, Jin N, Takeda K, Park J-W, Wands JM, et al.: Vγ4+ T cells regulate airway hyperreactivity to methacholine in ovalbumin-sensitized and challenged mice. J Immunol 171:3170–3178, 2003PubMed
59.
go back to reference Jin N, Taube C, Sharp L, Hahn Y-S, Yin X, Wands JM, et al.: Mismatched antigen prepares gd T cells for suppression of airway hyperresponsiveness. J Immunol 174:2671–2679, 2005PubMed Jin N, Taube C, Sharp L, Hahn Y-S, Yin X, Wands JM, et al.: Mismatched antigen prepares gd T cells for suppression of airway hyperresponsiveness. J Immunol 174:2671–2679, 2005PubMed
60.
go back to reference McMenamin C, Pimm C, McKersey M, Holt PG: Regulation of IgE responses to inhaled antigen in mice by antigen-specific γδ T cells. Science 265:1869–1871, 1994PubMed McMenamin C, Pimm C, McKersey M, Holt PG: Regulation of IgE responses to inhaled antigen in mice by antigen-specific γδ T cells. Science 265:1869–1871, 1994PubMed
61.
go back to reference Ke Y, Pearce K, Lake JP, Ziegler HK, Kapp JA: Gamma delta T lymphocytes regulate the induction and maintenance of oral tolerance. J Immunol 158:3610–3618, 1997PubMed Ke Y, Pearce K, Lake JP, Ziegler HK, Kapp JA: Gamma delta T lymphocytes regulate the induction and maintenance of oral tolerance. J Immunol 158:3610–3618, 1997PubMed
62.
go back to reference Stingl G, Gunter KC, Tschachler E, Yamada H, Lechler RI, Yokoyama WM, et al.: Thy-1+ dendritic epidermal cells belong to the T-cell lineage. Proc Natl Acad Sci USA 84:2430–2434, 1987PubMed Stingl G, Gunter KC, Tschachler E, Yamada H, Lechler RI, Yokoyama WM, et al.: Thy-1+ dendritic epidermal cells belong to the T-cell lineage. Proc Natl Acad Sci USA 84:2430–2434, 1987PubMed
63.
go back to reference Havran WL, Chien Y-H, Allison JP: Recognition of self antigens by skin-derived T cells with invariant γδ antigen receptors. Science 252:1430–1432, 1991PubMed Havran WL, Chien Y-H, Allison JP: Recognition of self antigens by skin-derived T cells with invariant γδ antigen receptors. Science 252:1430–1432, 1991PubMed
64.
go back to reference Jameson J, Ugarte K, Chen N, Yachi P, Fuchs E, Boismenu R, et al.: A role for skin γδ T cells in wound repair. Science 296:747–749, 2002PubMed Jameson J, Ugarte K, Chen N, Yachi P, Fuchs E, Boismenu R, et al.: A role for skin γδ T cells in wound repair. Science 296:747–749, 2002PubMed
65.
go back to reference Itohara S, Farr AG, Lafaille JJ, Bonneville M, Takagaki Y, Haas W, et al.: Homing of a γδ thymocyte subset with homogeneous T-cell receptors to mucosal epithelia. Nature 343:754–757, 1990PubMed Itohara S, Farr AG, Lafaille JJ, Bonneville M, Takagaki Y, Haas W, et al.: Homing of a γδ thymocyte subset with homogeneous T-cell receptors to mucosal epithelia. Nature 343:754–757, 1990PubMed
66.
go back to reference Hayes SM, Sirr A, Jacob S, Sim G-K, Augustin A: Role of IL-7 in the shaping of the pulmonary γδ T cell repertoire. J Immunol 156:2723–2729, 1996PubMed Hayes SM, Sirr A, Jacob S, Sim G-K, Augustin A: Role of IL-7 in the shaping of the pulmonary γδ T cell repertoire. J Immunol 156:2723–2729, 1996PubMed
67.
go back to reference Heyborne KD, Cranfill RL, Carding SR, Born WK, O'Brien RL: Characterization of γδ T lymphocytes at the maternal–fetal interface. J Immunol 149:2872–2878, 1992PubMed Heyborne KD, Cranfill RL, Carding SR, Born WK, O'Brien RL: Characterization of γδ T lymphocytes at the maternal–fetal interface. J Immunol 149:2872–2878, 1992PubMed
68.
go back to reference Simonian PL, Roark CL, Diaz del Valle F, Palmer BE, Douglas IS, Ikuta K, et al.: Regulatory role of gammadelta T cells in the recruitment of CD4+ and CD8+ T cells to lung and subsequent pulmonary fibrosis. J Immunol 177:4436–4443, 2006PubMed Simonian PL, Roark CL, Diaz del Valle F, Palmer BE, Douglas IS, Ikuta K, et al.: Regulatory role of gammadelta T cells in the recruitment of CD4+ and CD8+ T cells to lung and subsequent pulmonary fibrosis. J Immunol 177:4436–4443, 2006PubMed
69.
go back to reference Mukasa A, Born WK, O'Brien RL: Inflammation alone evokes the response of a TCR-invariant mouse γδ T cell subset. J Immunol 162:4910–4913, 1998 Mukasa A, Born WK, O'Brien RL: Inflammation alone evokes the response of a TCR-invariant mouse γδ T cell subset. J Immunol 162:4910–4913, 1998
70.
go back to reference Brenner MB, McLean J, Scheft H, Riberdy J, Ang S-L, Seidman JG, et al.: Two forms of the T-cell receptor γδ chain found on peripheral blood cytotoxic T lymphocytes. Nature 325:689–694, 1987PubMed Brenner MB, McLean J, Scheft H, Riberdy J, Ang S-L, Seidman JG, et al.: Two forms of the T-cell receptor γδ chain found on peripheral blood cytotoxic T lymphocytes. Nature 325:689–694, 1987PubMed
71.
go back to reference Ito K, Bonneville M, Takagaki Y, Nakanishi N, Kanagawa O, Krecko EG, et al.: Different γδ T-cell receptors are expressed on thymocytes at different stages of development. Proc Natl Acad Sci USA 86:631–635, 1989PubMed Ito K, Bonneville M, Takagaki Y, Nakanishi N, Kanagawa O, Krecko EG, et al.: Different γδ T-cell receptors are expressed on thymocytes at different stages of development. Proc Natl Acad Sci USA 86:631–635, 1989PubMed
72.
go back to reference French JD, Roark CL, Born WK, O'Brien RL: Gamma delta T cell homeostasis is established in competition with alpha beta T cells and NK cells. Proc Natl Acad Sci USA 102:14741–14746, 2005PubMed French JD, Roark CL, Born WK, O'Brien RL: Gamma delta T cell homeostasis is established in competition with alpha beta T cells and NK cells. Proc Natl Acad Sci USA 102:14741–14746, 2005PubMed
73.
go back to reference Parker CM, Groh V, Band H, Porcelli SA, Morita C, Fabbi M, et al.: Evidence for extrathymic changes in the T cell receptor γ/δ repertoire. J Exp Med 171:1597–1612, 1990PubMed Parker CM, Groh V, Band H, Porcelli SA, Morita C, Fabbi M, et al.: Evidence for extrathymic changes in the T cell receptor γ/δ repertoire. J Exp Med 171:1597–1612, 1990PubMed
74.
go back to reference Tam S, King DP, Beaman BL: Increase of γδ T lymphocytes in murine lungs occurs during recovery from pulmonary infection by Nocardia asteroides. Infect Immun 69:6165–6171, 2001PubMed Tam S, King DP, Beaman BL: Increase of γδ T lymphocytes in murine lungs occurs during recovery from pulmonary infection by Nocardia asteroides. Infect Immun 69:6165–6171, 2001PubMed
75.
go back to reference Cui Z-H, Joetham A, Aydintug MK, Born WK, Gelfand EW: Reversal of established allergic airway hyperreactivity by long-term allergen challenge depends on γ/δ T cells. Am J Resp Crit Care Med 168:1324–1332, 2003PubMed Cui Z-H, Joetham A, Aydintug MK, Born WK, Gelfand EW: Reversal of established allergic airway hyperreactivity by long-term allergen challenge depends on γ/δ T cells. Am J Resp Crit Care Med 168:1324–1332, 2003PubMed
76.
go back to reference Wands JM, Roark CL, Aydintug MK, Jin N, Hahn Y-S, Cook L, et al.: Distribution and leukocyte contacts of gd T cells in the lung. J Leukocyte Biol 78:1086–1096, 2005PubMed Wands JM, Roark CL, Aydintug MK, Jin N, Hahn Y-S, Cook L, et al.: Distribution and leukocyte contacts of gd T cells in the lung. J Leukocyte Biol 78:1086–1096, 2005PubMed
77.
go back to reference Lahn M, Kanehiro A, Takeda K, Terry J, Hahn Y-S, Aydintug MK, et al.: MHC class I-dependent Vδ4+ pulmonary T cells regulate a T cell-independent airway responsiveness. Proc Natl Acad Sci USA 99:8850–8855, 2002PubMed Lahn M, Kanehiro A, Takeda K, Terry J, Hahn Y-S, Aydintug MK, et al.: MHC class I-dependent Vδ4+ pulmonary T cells regulate a T cell-independent airway responsiveness. Proc Natl Acad Sci USA 99:8850–8855, 2002PubMed
78.
go back to reference Lahn M, Kanehiro A, Hahn Y-S, Wands JM, Aydintug MK, O'Brien RL, et al.: Aerosolized anti-T-cell-receptor antibodies are effective against airway inflammation and hyperreactivity. Int Arch Allergy Immunol 134:49–55, 2004PubMed Lahn M, Kanehiro A, Hahn Y-S, Wands JM, Aydintug MK, O'Brien RL, et al.: Aerosolized anti-T-cell-receptor antibodies are effective against airway inflammation and hyperreactivity. Int Arch Allergy Immunol 134:49–55, 2004PubMed
79.
go back to reference Huber SA, Graveline D, Newell MK, Born WK, O'Brien RL: Vδ1+ T cells suppress and Vδ4+ T cells promote susceptibility to coxsackievirus B3-induced myocarditis in mice. J Immunol 165:4174–4181, 2000PubMed Huber SA, Graveline D, Newell MK, Born WK, O'Brien RL: Vδ1+ T cells suppress and Vδ4+ T cells promote susceptibility to coxsackievirus B3-induced myocarditis in mice. J Immunol 165:4174–4181, 2000PubMed
80.
go back to reference Hahn Y-S, Taube C, Jin N, Sharp L, Wands JM, Kemal Aydintug M, et al.: Different potentials of γδ T cell subsets in regulating airway responsiveness: Vδ1+ cells, but not Vδ4+ cells, promote airway hyperreactivity, TH2 cytokines, and airway inflammation. J Immunol 172:2894–2902, 2004PubMed Hahn Y-S, Taube C, Jin N, Sharp L, Wands JM, Kemal Aydintug M, et al.: Different potentials of γδ T cell subsets in regulating airway responsiveness: Vδ1+ cells, but not Vδ4+ cells, promote airway hyperreactivity, TH2 cytokines, and airway inflammation. J Immunol 172:2894–2902, 2004PubMed
81.
go back to reference Bajenoff M, Egen JG, Koo LY, Laugier JP, Brau F, Glaichenhaus N, et al.: Stromal networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25:989–1001, 2006PubMed Bajenoff M, Egen JG, Koo LY, Laugier JP, Brau F, Glaichenhaus N, et al.: Stromal networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25:989–1001, 2006PubMed
82.
go back to reference Munz C, Steinman RM, Fujii S: Dendritic cell maturation by innate lymphocytes: Coordinated stimulation of innate and adaptive immunity. J Exp Med 202:203–207, 2005PubMed Munz C, Steinman RM, Fujii S: Dendritic cell maturation by innate lymphocytes: Coordinated stimulation of innate and adaptive immunity. J Exp Med 202:203–207, 2005PubMed
83.
go back to reference Yokota K, Ariizumi K, Kitajima T, Bergstresser PR, Street NE, Takashima A: Cytokine-mediated communication between dendritic epidermal T cells and Langerhans cells: In vitro studies using cell lines. J Immunol 157:1529–1537, 1996PubMed Yokota K, Ariizumi K, Kitajima T, Bergstresser PR, Street NE, Takashima A: Cytokine-mediated communication between dendritic epidermal T cells and Langerhans cells: In vitro studies using cell lines. J Immunol 157:1529–1537, 1996PubMed
84.
go back to reference Ismaili J, Olislagers V, Poupot M, Fournie JJ, Goldman M: Human gamma delta T cells induce dendritic cell maturation. Clin Immunol 103:296–302, 2002PubMed Ismaili J, Olislagers V, Poupot M, Fournie JJ, Goldman M: Human gamma delta T cells induce dendritic cell maturation. Clin Immunol 103:296–302, 2002PubMed
85.
go back to reference Leslie DS, Vincent MS, Spada FM, Das H, Sugita M, Morita CT, et al.: CD1-mediated γ/δ T cell maturation of dendritic cells. J Exp Med 196:1575–1584, 2002PubMed Leslie DS, Vincent MS, Spada FM, Das H, Sugita M, Morita CT, et al.: CD1-mediated γ/δ T cell maturation of dendritic cells. J Exp Med 196:1575–1584, 2002PubMed
86.
go back to reference Collins C, Wolfe J, Roessner K, Shi C, Sigal LH, Budd RC: Lyme arthritis synovial γδ T cells instruct dendritic cells via Fas ligand. J Immunol 175:5656–5665, 2005PubMed Collins C, Wolfe J, Roessner K, Shi C, Sigal LH, Budd RC: Lyme arthritis synovial γδ T cells instruct dendritic cells via Fas ligand. J Immunol 175:5656–5665, 2005PubMed
87.
go back to reference Dieli F, Caccamo N, Meraviglia S, Ivanyi J, Sireci G, Bonanno CT, et al.: Reciprocal stimulation of γδ T cells and dendritic cells during the anti-mycobacterial immune response. Eur J Immunol 34:3227–3235, 2004PubMed Dieli F, Caccamo N, Meraviglia S, Ivanyi J, Sireci G, Bonanno CT, et al.: Reciprocal stimulation of γδ T cells and dendritic cells during the anti-mycobacterial immune response. Eur J Immunol 34:3227–3235, 2004PubMed
88.
go back to reference Conti L, Casetti R, Cardone M, Varano B, Martino A, Belardelli F, et al.: Reciprocal activating interaction between dendritic cells and pamidronate-stimulated gammadelta T cells: Role of CD86 and inflammatory cytokines. J Immunol 174:252–260, 2005PubMed Conti L, Casetti R, Cardone M, Varano B, Martino A, Belardelli F, et al.: Reciprocal activating interaction between dendritic cells and pamidronate-stimulated gammadelta T cells: Role of CD86 and inflammatory cytokines. J Immunol 174:252–260, 2005PubMed
89.
go back to reference Martino A, Casetti R, D'Alessandri A, Sacci A, Poccia F: Complementary function of gamma delta T-lymphocytes and dendritic cells in the response to isopentenyl-pyrophosphate and lipopolysaccharide antigens. J Clin Immunol 25:230–237, 2005PubMed Martino A, Casetti R, D'Alessandri A, Sacci A, Poccia F: Complementary function of gamma delta T-lymphocytes and dendritic cells in the response to isopentenyl-pyrophosphate and lipopolysaccharide antigens. J Clin Immunol 25:230–237, 2005PubMed
90.
go back to reference Dieli F, Ivanyi J, Marsh P, Williams A, Naylor I, Sireci G, et al.: Characterization of lung γδ T cells following intranasal infection with Mycobacterium bovis Bacillus Calmette-Guerin. J Immunol 170:463-469, 2003PubMed Dieli F, Ivanyi J, Marsh P, Williams A, Naylor I, Sireci G, et al.: Characterization of lung γδ T cells following intranasal infection with Mycobacterium bovis Bacillus Calmette-Guerin. J Immunol 170:463-469, 2003PubMed
91.
go back to reference Kunzmann V, Kretzschmar E, Herrmann T, Wilhelm M: Polyinosinic-polycytidylic acid-mediated stimulation of human gammadelta T cells via CD11c dendritic cell-derived type I interferons. Immunology 112:364–368, 2004 Kunzmann V, Kretzschmar E, Herrmann T, Wilhelm M: Polyinosinic-polycytidylic acid-mediated stimulation of human gammadelta T cells via CD11c dendritic cell-derived type I interferons. Immunology 112:364–368, 2004
92.
go back to reference Fu Y-X, Roark CE, Kelly K, Drevets D, Campbell P, O'Brien R, et al.: Immune protection and control of inflammatory tissue necrosis by γδ T cells. J Immunol 153:3101–3115, 1994PubMed Fu Y-X, Roark CE, Kelly K, Drevets D, Campbell P, O'Brien R, et al.: Immune protection and control of inflammatory tissue necrosis by γδ T cells. J Immunol 153:3101–3115, 1994PubMed
93.
go back to reference Skeen MJ, Freeman MM, Ziegler HK:Changes in peritoneal myeloid populations and their proinflammatory cytokine expression during infection with Listeria monocytogenes are altered in the absence of γ/δ T cells. J Leukocyte Biol 76:104–115, 2004PubMed Skeen MJ, Freeman MM, Ziegler HK:Changes in peritoneal myeloid populations and their proinflammatory cytokine expression during infection with Listeria monocytogenes are altered in the absence of γ/δ T cells. J Leukocyte Biol 76:104–115, 2004PubMed
94.
go back to reference DiTirro J, Rhoades ER, Roberts AD, Burke JM, Mukasa A, Cooper AM, et al.: Disruption of the cellular inflammatory response to Listeria monocytogenes infection in mice with disruptions in targeted genes. Infect Immun 66:2284–2289, 1998PubMed DiTirro J, Rhoades ER, Roberts AD, Burke JM, Mukasa A, Cooper AM, et al.: Disruption of the cellular inflammatory response to Listeria monocytogenes infection in mice with disruptions in targeted genes. Infect Immun 66:2284–2289, 1998PubMed
95.
go back to reference Sharp LL, Jameson JM, Cauvi G, Havran WL: Dendritic epidermal T cells regulate skin homeostasis through local production of insulin-like growth factor 1. Nat Immunol 6:73–79, 2005PubMed Sharp LL, Jameson JM, Cauvi G, Havran WL: Dendritic epidermal T cells regulate skin homeostasis through local production of insulin-like growth factor 1. Nat Immunol 6:73–79, 2005PubMed
96.
go back to reference Jameson JM, Cauvi G, Sharp LL, Witherden DA, Havran WL: γδ T cell-induced hyaluronan production by epithelial cells regulates inflammation. J Exp Med 201:1269–1279, 2005PubMed Jameson JM, Cauvi G, Sharp LL, Witherden DA, Havran WL: γδ T cell-induced hyaluronan production by epithelial cells regulates inflammation. J Exp Med 201:1269–1279, 2005PubMed
97.
go back to reference Carding SR, Allan W, Kyes S, Hayday A, Bottomly K, Doherty PC: Late dominance of the inflammatory process in murine influenza by γδ+ T cells. J Exp Med 172:1225–1231, 1990PubMed Carding SR, Allan W, Kyes S, Hayday A, Bottomly K, Doherty PC: Late dominance of the inflammatory process in murine influenza by γδ+ T cells. J Exp Med 172:1225–1231, 1990PubMed
98.
go back to reference Carding ASR: Role for γ/δ T cells in the primary immune resonse to influenza virus. Res Immunol 141:603–606, 1990PubMed Carding ASR: Role for γ/δ T cells in the primary immune resonse to influenza virus. Res Immunol 141:603–606, 1990PubMed
99.
go back to reference Dalton JE, Pearson J, Scott P, Carding S: The interaction of γδ T cells with activated macrophages is a property of the Vγ1 subset. J Immunol 171:6488–6494, 2003PubMed Dalton JE, Pearson J, Scott P, Carding S: The interaction of γδ T cells with activated macrophages is a property of the Vγ1 subset. J Immunol 171:6488–6494, 2003PubMed
100.
go back to reference Dalton JE, Howell G, Pearson J, Scott P, Carding SR: Fas–Fas ligand interactions are essential for the binding to and killing of activated macrophages by gamma delta T cells. J Immunol 173:3660–3667, 2004PubMed Dalton JE, Howell G, Pearson J, Scott P, Carding SR: Fas–Fas ligand interactions are essential for the binding to and killing of activated macrophages by gamma delta T cells. J Immunol 173:3660–3667, 2004PubMed
101.
102.
go back to reference Ponomarev ED, Novikova M, Yassai M, Szczepanik M, Gorski J, Dittel BN: γδ T cell regulation of IFN-γδ production by central nervous system-infiltrating encephalitogenic T cells: Correlation with recovery from experimental autoimmune encephalomyelitis. J Immunol 173:1587–1595, 2004PubMed Ponomarev ED, Novikova M, Yassai M, Szczepanik M, Gorski J, Dittel BN: γδ T cell regulation of IFN-γδ production by central nervous system-infiltrating encephalitogenic T cells: Correlation with recovery from experimental autoimmune encephalomyelitis. J Immunol 173:1587–1595, 2004PubMed
103.
go back to reference Holtmeier W, Kaller J, Geisel W, Pabst R, Caspary WF, Rothkotter HJ: Development and compartmentalization of the porcine TCR δ repertoire at mucosal and extraintestinal sites: the pig as a model for analyzing the effects of age and microbial factors. J Immunol 169:1993–2002, 2002PubMed Holtmeier W, Kaller J, Geisel W, Pabst R, Caspary WF, Rothkotter HJ: Development and compartmentalization of the porcine TCR δ repertoire at mucosal and extraintestinal sites: the pig as a model for analyzing the effects of age and microbial factors. J Immunol 169:1993–2002, 2002PubMed
104.
go back to reference Pennington DJ, Silva-Santos B, Shires J, Theodoridis E, Pollitt C, Wise EL, et al.: The inter-relatedness and interdependence of mouse T cell receptor gammadelta(+) and alphabeta(+) cells. Nat Immunol 4:991–998, 2003PubMed Pennington DJ, Silva-Santos B, Shires J, Theodoridis E, Pollitt C, Wise EL, et al.: The inter-relatedness and interdependence of mouse T cell receptor gammadelta(+) and alphabeta(+) cells. Nat Immunol 4:991–998, 2003PubMed
105.
go back to reference Havran W, Allison JP: Developmentally ordered appearance of thymocytes expressing different T cell antigen receptors. Nature 335:443–445, 1988PubMed Havran W, Allison JP: Developmentally ordered appearance of thymocytes expressing different T cell antigen receptors. Nature 335:443–445, 1988PubMed
106.
go back to reference Zhao H, Nguyen H, Kang J: Interleukin 15 controls the generation of the restricted T cell receptor repertoire of gd intestinal intraepithelial lymphocytes. Nat Immunol 6:1263–1271, 2005PubMed Zhao H, Nguyen H, Kang J: Interleukin 15 controls the generation of the restricted T cell receptor repertoire of gd intestinal intraepithelial lymphocytes. Nat Immunol 6:1263–1271, 2005PubMed
107.
go back to reference Kress E, Hedges JF, Jutila MA: Distinct gene expression in human Vdelta1 and Vdelta2 gammadelta T cells following non-TCR agonist stimulation. Mol Immunol 43:2002–2011, 2006PubMed Kress E, Hedges JF, Jutila MA: Distinct gene expression in human Vdelta1 and Vdelta2 gammadelta T cells following non-TCR agonist stimulation. Mol Immunol 43:2002–2011, 2006PubMed
108.
go back to reference Yamagata T, Benoist C, Mathis D: A shared gene-expression signature in innate-like lymphocytes. Immunol Rev 210:52–66, 2006PubMed Yamagata T, Benoist C, Mathis D: A shared gene-expression signature in innate-like lymphocytes. Immunol Rev 210:52–66, 2006PubMed
109.
go back to reference Yamagata T, Mathis D, Benoist C: Self-reactivity in thymic double-positive cells commits cells to a CD8alpha alpha lineage with characteristics of innate immune cells. Nat Immunol 5:597–605, 2004PubMed Yamagata T, Mathis D, Benoist C: Self-reactivity in thymic double-positive cells commits cells to a CD8alpha alpha lineage with characteristics of innate immune cells. Nat Immunol 5:597–605, 2004PubMed
110.
go back to reference Fahrer AM, Konigshofer Y, Kerr EM, Ghandour G, Mack DH, Davis MM, et al.: Attributes of γδ intraepithelal lymphocytes as suggested by their transcriptional profile. Proc Natl Acad Sci USA 98:10261–10266, 2001PubMed Fahrer AM, Konigshofer Y, Kerr EM, Ghandour G, Mack DH, Davis MM, et al.: Attributes of γδ intraepithelal lymphocytes as suggested by their transcriptional profile. Proc Natl Acad Sci USA 98:10261–10266, 2001PubMed
Metadata
Title
γδ T Lymphocytes—Selectable Cells Within the Innate System?
Authors
Willi K. Born
Niyun Jin
M. Kemal Aydintug
J. M. Wands
Jena D. French
Christina L. Roark
Rebecca L. O’brien
Publication date
01-03-2007
Published in
Journal of Clinical Immunology / Issue 2/2007
Print ISSN: 0271-9142
Electronic ISSN: 1573-2592
DOI
https://doi.org/10.1007/s10875-007-9077-z

Other articles of this Issue 2/2007

Journal of Clinical Immunology 2/2007 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine