Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2023

Open Access 01-12-2023 | Research

β-arrestin1 regulates astrocytic reactivity via Drp1-dependent mitochondrial fission: implications in postoperative delirium

Authors: Fuzhou Hua, Hong Zhu, Wen Yu, Qingcui Zheng, Lieliang Zhang, Weidong Liang, Yue Lin, Fan Xiao, Pengcheng Yi, Yanhong Xiong, Yao Dong, Hua Li, Lanran Fang, Hailin Liu, Jun Ying, Xifeng Wang

Published in: Journal of Neuroinflammation | Issue 1/2023

Login to get access

Abstract

Postoperative delirium (POD) is a frequent and debilitating complication, especially amongst high risk procedures, such as orthopedic surgery. This kind of neurocognitive disorder negatively affects cognitive domains, such as memory, awareness, attention, and concentration after surgery; however, its pathophysiology remains unknown. Multiple lines of evidence supporting the occurrence of inflammatory events have come forward from studies in human patients’ brain and bio-fluids (CSF and serum), as well as in animal models for POD. β-arrestins are downstream molecules of guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs). As versatile proteins, they regulate numerous pathophysiological processes of inflammatory diseases by scaffolding with inflammation-linked partners. Here we report that β-arrestin1, one type of β-arrestins, decreases significantly in the reactive astrocytes of a mouse model for POD. Using β-arrestin1 knockout (KO) mice, we find aggravating effect of β-arrestin1 deficiency on the cognitive dysfunctions and inflammatory phenotype of astrocytes in POD model mice. We conduct the in vitro experiments to investigate the regulatory roles of β-arrestin1 and demonstrate that β-arrestin1 in astrocytes interacts with the dynamin-related protein 1 (Drp1) to regulate mitochondrial fusion/fission process. β-arrestin1 deletion cancels the combination of β-arrestin1 and cellular Drp1, thus promoting the translocation of Drp1 to mitochondrial membrane to provoke the mitochondrial fragments and the subsequent mitochondrial malfunctions. Using β-arrestin1-biased agonist, cognitive dysfunctions of POD mice and pathogenic activation of astrocytes in the POD-linked brain region are reduced. We, therefore, conclude that β-arrestin1 is a promising target for the understanding of POD pathology and development of POD therapeutics.
Literature
1.
go back to reference Bowman E, Cardwell C, McAuley DF, McGuinness B, Passmore AP, Beverland D, et al. Factors influencing resilience to postoperative delirium in adults undergoing elective orthopaedic surgery. Brit J Surg. 2022;109:908–11.PubMed Bowman E, Cardwell C, McAuley DF, McGuinness B, Passmore AP, Beverland D, et al. Factors influencing resilience to postoperative delirium in adults undergoing elective orthopaedic surgery. Brit J Surg. 2022;109:908–11.PubMed
2.
go back to reference Witlox J, Eurelings LS, de Jonghe JF, Kalisvaart KJ, Eikelenboom P, van Gool WA. Delirium in elderly patients and the risk of postdischarge mortality, institutionalization, and dementia: a meta-analysis. Jama-J Am Med Assoc. 2010;304:443–51.CrossRef Witlox J, Eurelings LS, de Jonghe JF, Kalisvaart KJ, Eikelenboom P, van Gool WA. Delirium in elderly patients and the risk of postdischarge mortality, institutionalization, and dementia: a meta-analysis. Jama-J Am Med Assoc. 2010;304:443–51.CrossRef
3.
go back to reference Peden CJ, Miller TR, Deiner SG, Eckenhoff RG, Fleisher LA. Improving perioperative brain health: an expert consensus review of key actions for the perioperative care team. Brit J Anaesth. 2021;126:423–32.PubMedCrossRef Peden CJ, Miller TR, Deiner SG, Eckenhoff RG, Fleisher LA. Improving perioperative brain health: an expert consensus review of key actions for the perioperative care team. Brit J Anaesth. 2021;126:423–32.PubMedCrossRef
4.
go back to reference Wang P, Velagapudi R, Kong C, Rodriguiz RM, Wetsel WC, Yang T, et al. Neurovascular and immune mechanisms that regulate postoperative delirium superimposed on dementia. Alzheimers Dement. 2020;16:734–49.PubMedPubMedCentralCrossRef Wang P, Velagapudi R, Kong C, Rodriguiz RM, Wetsel WC, Yang T, et al. Neurovascular and immune mechanisms that regulate postoperative delirium superimposed on dementia. Alzheimers Dement. 2020;16:734–49.PubMedPubMedCentralCrossRef
5.
go back to reference Zhang MD, Barde S, Yang T, Lei B, Eriksson LI, Mathew JP, et al. Orthopedic surgery modulates neuropeptides and BDNF expression at the spinal and hippocampal levels. P Natl Acad Sci Usa. 2016;113:E6686–95.CrossRef Zhang MD, Barde S, Yang T, Lei B, Eriksson LI, Mathew JP, et al. Orthopedic surgery modulates neuropeptides and BDNF expression at the spinal and hippocampal levels. P Natl Acad Sci Usa. 2016;113:E6686–95.CrossRef
7.
go back to reference Beloosesky Y, Hendel D, Weiss A, Hershkovitz A, Grinblat J, Pirotsky A, et al. Cytokines and C-reactive protein production in hip-fracture-operated elderly patients. J Gerontol a-Biol. 2007;62:420–6.CrossRef Beloosesky Y, Hendel D, Weiss A, Hershkovitz A, Grinblat J, Pirotsky A, et al. Cytokines and C-reactive protein production in hip-fracture-operated elderly patients. J Gerontol a-Biol. 2007;62:420–6.CrossRef
8.
go back to reference Zhou Y, Wang J, Li X, Li K, Chen L, Zhang Z, et al. Neuroprotectin D1 protects against postoperative delirium-like behavior in aged mice. Front Aging Neurosci. 2020;12: 582674.PubMedPubMedCentralCrossRef Zhou Y, Wang J, Li X, Li K, Chen L, Zhang Z, et al. Neuroprotectin D1 protects against postoperative delirium-like behavior in aged mice. Front Aging Neurosci. 2020;12: 582674.PubMedPubMedCentralCrossRef
10.
go back to reference Zhang L, Xiao F, Zhang J, Wang X, Ying J, Wei G, et al. Dexmedetomidine mitigated NLRP3-mediated neuroinflammation via the ubiquitin-autophagy pathway to improve perioperative neurocognitive disorder in mice. Front Pharmacol. 2021;12: 646265.PubMedPubMedCentralCrossRef Zhang L, Xiao F, Zhang J, Wang X, Ying J, Wei G, et al. Dexmedetomidine mitigated NLRP3-mediated neuroinflammation via the ubiquitin-autophagy pathway to improve perioperative neurocognitive disorder in mice. Front Pharmacol. 2021;12: 646265.PubMedPubMedCentralCrossRef
11.
12.
go back to reference Mesquida-Veny F, Del RJ, Hervera A. Macrophagic and microglial complexity after neuronal injury. Prog Neurobiol. 2021;200: 101970.PubMedCrossRef Mesquida-Veny F, Del RJ, Hervera A. Macrophagic and microglial complexity after neuronal injury. Prog Neurobiol. 2021;200: 101970.PubMedCrossRef
14.
go back to reference Cortese GP, Burger C. Neuroinflammatory challenges compromise neuronal function in the aging brain: postoperative cognitive delirium and Alzheimer’s disease. Behav Brain Res. 2017;322:269–79.PubMedCrossRef Cortese GP, Burger C. Neuroinflammatory challenges compromise neuronal function in the aging brain: postoperative cognitive delirium and Alzheimer’s disease. Behav Brain Res. 2017;322:269–79.PubMedCrossRef
15.
go back to reference Cibelli M, Fidalgo AR, Terrando N, Ma D, Monaco C, Feldmann M, et al. Role of interleukin-1beta in postoperative cognitive dysfunction. Ann Neurol. 2010;68:360–8.PubMedPubMedCentralCrossRef Cibelli M, Fidalgo AR, Terrando N, Ma D, Monaco C, Feldmann M, et al. Role of interleukin-1beta in postoperative cognitive dysfunction. Ann Neurol. 2010;68:360–8.PubMedPubMedCentralCrossRef
16.
go back to reference Xiong C, Liu J, Lin D, Zhang J, Terrando N, Wu A. Complement activation contributes to perioperative neurocognitive disorders in mice. J Neuroinflamm. 2018;15:254.CrossRef Xiong C, Liu J, Lin D, Zhang J, Terrando N, Wu A. Complement activation contributes to perioperative neurocognitive disorders in mice. J Neuroinflamm. 2018;15:254.CrossRef
17.
go back to reference Hauser AS, Attwood MM, Rask-Andersen M, Schioth HB, Gloriam DE. Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov. 2017;16:829–42.PubMedPubMedCentralCrossRef Hauser AS, Attwood MM, Rask-Andersen M, Schioth HB, Gloriam DE. Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov. 2017;16:829–42.PubMedPubMedCentralCrossRef
18.
go back to reference Pydi SP, Barella LF, Meister J, Wess J. Key metabolic functions of beta-arrestins: studies with novel mouse models. Trends Endocrin Met. 2021;32:118–29.CrossRef Pydi SP, Barella LF, Meister J, Wess J. Key metabolic functions of beta-arrestins: studies with novel mouse models. Trends Endocrin Met. 2021;32:118–29.CrossRef
19.
go back to reference Kang J, Shi Y, Xiang B, Qu B, Su W, Zhu M, et al. A nuclear function of beta-arrestin1 in GPCR signaling: regulation of histone acetylation and gene transcription. Cell. 2005;123:833–47.PubMedCrossRef Kang J, Shi Y, Xiang B, Qu B, Su W, Zhu M, et al. A nuclear function of beta-arrestin1 in GPCR signaling: regulation of histone acetylation and gene transcription. Cell. 2005;123:833–47.PubMedCrossRef
20.
go back to reference Luttrell LM, Roudabush FL, Choy EW, Miller WE, Field ME, Pierce KL, et al. Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. P Natl Acad Sci Usa. 2001;98:2449–54.CrossRef Luttrell LM, Roudabush FL, Choy EW, Miller WE, Field ME, Pierce KL, et al. Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. P Natl Acad Sci Usa. 2001;98:2449–54.CrossRef
21.
go back to reference Smith JS, Pack TF, Inoue A, Lee C, Zheng K, Choi I, et al. Noncanonical scaffolding of Galphai and beta-arrestin by G protein-coupled receptors. Science. 2021;371: eaay1833.PubMedPubMedCentralCrossRef Smith JS, Pack TF, Inoue A, Lee C, Zheng K, Choi I, et al. Noncanonical scaffolding of Galphai and beta-arrestin by G protein-coupled receptors. Science. 2021;371: eaay1833.PubMedPubMedCentralCrossRef
22.
go back to reference Shenoy SK, McDonald PH, Kohout TA, Lefkowitz RJ. Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. Science. 2001;294:1307–13.PubMedCrossRef Shenoy SK, McDonald PH, Kohout TA, Lefkowitz RJ. Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. Science. 2001;294:1307–13.PubMedCrossRef
23.
go back to reference Tocci P, Cianfrocca R, Di Castro V, Rosano L, Sacconi A, Donzelli S, et al. beta-arrestin1/YAP/mutant p53 complexes orchestrate the endothelin A receptor signaling in high-grade serous ovarian cancer. Nat Commun. 2019;10:3196.PubMedPubMedCentralCrossRef Tocci P, Cianfrocca R, Di Castro V, Rosano L, Sacconi A, Donzelli S, et al. beta-arrestin1/YAP/mutant p53 complexes orchestrate the endothelin A receptor signaling in high-grade serous ovarian cancer. Nat Commun. 2019;10:3196.PubMedPubMedCentralCrossRef
24.
go back to reference Zhu J, Hu Z, Han X, Wang D, Jiang Q, Ding J, et al. Dopamine D2 receptor restricts astrocytic NLRP3 inflammasome activation via enhancing the interaction of beta-arrestin2 and NLRP3. Cell Death Differ. 2018;25:2037–49.PubMedPubMedCentralCrossRef Zhu J, Hu Z, Han X, Wang D, Jiang Q, Ding J, et al. Dopamine D2 receptor restricts astrocytic NLRP3 inflammasome activation via enhancing the interaction of beta-arrestin2 and NLRP3. Cell Death Differ. 2018;25:2037–49.PubMedPubMedCentralCrossRef
25.
go back to reference Zhu J, Sun T, Zhang J, Liu Y, Wang D, Zhu H, et al. Drd2 biased agonist prevents neurodegeneration against NLRP3 inflammasome in Parkinson’s disease model via a beta-arrestin2-biased mechanism. Brain Behav Immun. 2020;90:259–71.PubMedCrossRef Zhu J, Sun T, Zhang J, Liu Y, Wang D, Zhu H, et al. Drd2 biased agonist prevents neurodegeneration against NLRP3 inflammasome in Parkinson’s disease model via a beta-arrestin2-biased mechanism. Brain Behav Immun. 2020;90:259–71.PubMedCrossRef
26.
go back to reference Liu X, Zhao X, Zeng X, Bossers K, Swaab DF, Zhao J, et al. beta-arrestin1 regulates gamma-secretase complex assembly and modulates amyloid-beta pathology. Cell Res. 2013;23:351–65.PubMedCrossRef Liu X, Zhao X, Zeng X, Bossers K, Swaab DF, Zhao J, et al. beta-arrestin1 regulates gamma-secretase complex assembly and modulates amyloid-beta pathology. Cell Res. 2013;23:351–65.PubMedCrossRef
27.
go back to reference Liu Y, Yao J, Song Z, Guo W, Sun B, Wei J, et al. Limiting RyR2 open time prevents Alzheimer’s disease-related deficits in the 3xTG-AD mouse model. J Neurosci Res. 2021;99:2906–21.PubMedCrossRef Liu Y, Yao J, Song Z, Guo W, Sun B, Wei J, et al. Limiting RyR2 open time prevents Alzheimer’s disease-related deficits in the 3xTG-AD mouse model. J Neurosci Res. 2021;99:2906–21.PubMedCrossRef
28.
go back to reference Wyrobek J, LaFlam A, Max L, Tian J, Neufeld KJ, Kebaish KM, et al. Association of intraoperative changes in brain-derived neurotrophic factor and postoperative delirium in older adults. Brit J Anaesth. 2017;119:324–32.PubMedPubMedCentralCrossRef Wyrobek J, LaFlam A, Max L, Tian J, Neufeld KJ, Kebaish KM, et al. Association of intraoperative changes in brain-derived neurotrophic factor and postoperative delirium in older adults. Brit J Anaesth. 2017;119:324–32.PubMedPubMedCentralCrossRef
29.
go back to reference Lima GB, Doorduin J, Klein HC, Dierckx R, Bromberg E, de Vries E. Brain-derived neurotrophic factor in brain disorders: focus on neuroinflammation. Mol Neurobiol. 2019;56:3295–312.CrossRef Lima GB, Doorduin J, Klein HC, Dierckx R, Bromberg E, de Vries E. Brain-derived neurotrophic factor in brain disorders: focus on neuroinflammation. Mol Neurobiol. 2019;56:3295–312.CrossRef
30.
go back to reference Marinelli S, Marrone MC, Di Domenico M, Marinelli S. Endocannabinoid signaling in microglia. Glia. 2022;71:71–90.PubMedCrossRef Marinelli S, Marrone MC, Di Domenico M, Marinelli S. Endocannabinoid signaling in microglia. Glia. 2022;71:71–90.PubMedCrossRef
31.
go back to reference Jha MK, Jo M, Kim JH, Suk K. Microglia-astrocyte crosstalk: an intimate molecular conversation. Neuroscientist. 2019;25:227–40.PubMedCrossRef Jha MK, Jo M, Kim JH, Suk K. Microglia-astrocyte crosstalk: an intimate molecular conversation. Neuroscientist. 2019;25:227–40.PubMedCrossRef
32.
go back to reference Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541:481–7.PubMedPubMedCentralCrossRef Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541:481–7.PubMedPubMedCentralCrossRef
33.
go back to reference Thathiah A, Horre K, Snellinx A, Vandewyer E, Huang Y, Ciesielska M, et al. beta-arrestin 2 regulates Abeta generation and gamma-secretase activity in Alzheimer’s disease. Nat Med. 2013;19:43–9.PubMedCrossRef Thathiah A, Horre K, Snellinx A, Vandewyer E, Huang Y, Ciesielska M, et al. beta-arrestin 2 regulates Abeta generation and gamma-secretase activity in Alzheimer’s disease. Nat Med. 2013;19:43–9.PubMedCrossRef
34.
go back to reference Joshi AU, Minhas PS, Liddelow SA, Haileselassie B, Andreasson KI, Dorn GN, et al. Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat Neurosci. 2019;22:1635–48.PubMedPubMedCentralCrossRef Joshi AU, Minhas PS, Liddelow SA, Haileselassie B, Andreasson KI, Dorn GN, et al. Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat Neurosci. 2019;22:1635–48.PubMedPubMedCentralCrossRef
35.
go back to reference Chan DC. Mitochondrial dynamics and its involvement in disease. Annu Rev Pathol-Mech. 2020;15:235–59.CrossRef Chan DC. Mitochondrial dynamics and its involvement in disease. Annu Rev Pathol-Mech. 2020;15:235–59.CrossRef
36.
go back to reference Smirnova E, Griparic L, Shurland DL, van der Bliek AM. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell. 2001;12:2245–56.PubMedPubMedCentralCrossRef Smirnova E, Griparic L, Shurland DL, van der Bliek AM. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell. 2001;12:2245–56.PubMedPubMedCentralCrossRef
37.
go back to reference Kim IM, Wang Y, Park KM, Tang Y, Teoh JP, Vinson J, et al. beta-arrestin1-biased beta1-adrenergic receptor signaling regulates microRNA processing. Circ Res. 2014;114:833–44.PubMedCrossRef Kim IM, Wang Y, Park KM, Tang Y, Teoh JP, Vinson J, et al. beta-arrestin1-biased beta1-adrenergic receptor signaling regulates microRNA processing. Circ Res. 2014;114:833–44.PubMedCrossRef
38.
go back to reference Pani B, Ahn S, Rambarat PK, Vege S, Kahsai AW, Liu A, et al. Unique positive cooperativity between the beta-arrestin-biased beta-blocker carvedilol and a small molecule positive allosteric modulator of the beta2-adrenergic receptor. Mol Pharmacol. 2021;100:513–25.PubMedPubMedCentralCrossRef Pani B, Ahn S, Rambarat PK, Vege S, Kahsai AW, Liu A, et al. Unique positive cooperativity between the beta-arrestin-biased beta-blocker carvedilol and a small molecule positive allosteric modulator of the beta2-adrenergic receptor. Mol Pharmacol. 2021;100:513–25.PubMedPubMedCentralCrossRef
39.
go back to reference Li Y, Zhang XL, Huang YR, Zheng YY, Zheng GQ, Zhang LP. Extracts or active components from Acorus gramineus aiton for cognitive function impairment: preclinical evidence and possible mechanisms. Oxid Med Cell Longev. 2020;2020:6752876.PubMedPubMedCentralCrossRef Li Y, Zhang XL, Huang YR, Zheng YY, Zheng GQ, Zhang LP. Extracts or active components from Acorus gramineus aiton for cognitive function impairment: preclinical evidence and possible mechanisms. Oxid Med Cell Longev. 2020;2020:6752876.PubMedPubMedCentralCrossRef
40.
go back to reference Evans AK, Ardestani PM, Yi B, Park HH, Lam RK, Shamloo M. Beta-adrenergic receptor antagonism is proinflammatory and exacerbates neuroinflammation in a mouse model of Alzheimer’s Disease. Neurobiol Dis. 2020;146: 105089.PubMedPubMedCentralCrossRef Evans AK, Ardestani PM, Yi B, Park HH, Lam RK, Shamloo M. Beta-adrenergic receptor antagonism is proinflammatory and exacerbates neuroinflammation in a mouse model of Alzheimer’s Disease. Neurobiol Dis. 2020;146: 105089.PubMedPubMedCentralCrossRef
41.
go back to reference Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, et al. GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science. 2007;318:1266–73.PubMedCrossRef Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, et al. GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science. 2007;318:1266–73.PubMedCrossRef
42.
go back to reference Wang DS, Kaneshwaran K, Lei G, Mostafa F, Wang J, Lecker I, et al. Dexmedetomidine prevents excessive gamma-aminobutyric acid type A receptor function after anesthesia. Anesthesiology. 2018;129:477–89.PubMedCrossRef Wang DS, Kaneshwaran K, Lei G, Mostafa F, Wang J, Lecker I, et al. Dexmedetomidine prevents excessive gamma-aminobutyric acid type A receptor function after anesthesia. Anesthesiology. 2018;129:477–89.PubMedCrossRef
43.
go back to reference Liu JX, Cao X, Tang YC, Liu Y, Tang FR. CCR7, CCR8, CCR9 and CCR10 in the mouse hippocampal CA1 area and the dentate gyrus during and after pilocarpine-induced status epilepticus. J Neurochem. 2007;100:1072–88.PubMedCrossRef Liu JX, Cao X, Tang YC, Liu Y, Tang FR. CCR7, CCR8, CCR9 and CCR10 in the mouse hippocampal CA1 area and the dentate gyrus during and after pilocarpine-induced status epilepticus. J Neurochem. 2007;100:1072–88.PubMedCrossRef
44.
go back to reference Kelly E, Conibear A, Henderson G. Biased agonism: lessons from studies of opioid receptor agonists. Annu Rev Pharmacol. 2022;63:491.CrossRef Kelly E, Conibear A, Henderson G. Biased agonism: lessons from studies of opioid receptor agonists. Annu Rev Pharmacol. 2022;63:491.CrossRef
46.
go back to reference Liu S, Luttrell LM, Premont RT, Rockey DC. beta-Arrestin2 is a critical component of the GPCR-eNOS signalosome. P Natl Acad Sci Usa. 2020;117:11483–92.CrossRef Liu S, Luttrell LM, Premont RT, Rockey DC. beta-Arrestin2 is a critical component of the GPCR-eNOS signalosome. P Natl Acad Sci Usa. 2020;117:11483–92.CrossRef
47.
go back to reference Tao L, Lin X, Tan S, Lei Y, Liu H, Guo Y, et al. beta-Arrestin1 alleviates acute pancreatitis via repression of NF-kappaBp65 activation. J Gastroen Hepatol. 2019;34:284–92.CrossRef Tao L, Lin X, Tan S, Lei Y, Liu H, Guo Y, et al. beta-Arrestin1 alleviates acute pancreatitis via repression of NF-kappaBp65 activation. J Gastroen Hepatol. 2019;34:284–92.CrossRef
48.
go back to reference Zarini-Gakiye E, Amini J, Sanadgol N, Vaezi G, Parivar K. Recent updates in the Alzheimer’s disease etiopathology and possible treatment approaches: a narrative review of current clinical trials. Curr Mol Pharmacol. 2020;13:273–94.PubMedCrossRef Zarini-Gakiye E, Amini J, Sanadgol N, Vaezi G, Parivar K. Recent updates in the Alzheimer’s disease etiopathology and possible treatment approaches: a narrative review of current clinical trials. Curr Mol Pharmacol. 2020;13:273–94.PubMedCrossRef
49.
go back to reference Elvington M, Liszewski MK, Atkinson JP. Evolution of the complement system: from defense of the single cell to guardian of the intravascular space. Immunol Rev. 2016;274:9–15.PubMedPubMedCentralCrossRef Elvington M, Liszewski MK, Atkinson JP. Evolution of the complement system: from defense of the single cell to guardian of the intravascular space. Immunol Rev. 2016;274:9–15.PubMedPubMedCentralCrossRef
50.
go back to reference Konishi H, Okamoto T, Hara Y, Komine O, Tamada H, Maeda M, et al. Astrocytic phagocytosis is a compensatory mechanism for microglial dysfunction. Embo J. 2020;39: e104464.PubMedPubMedCentralCrossRef Konishi H, Okamoto T, Hara Y, Komine O, Tamada H, Maeda M, et al. Astrocytic phagocytosis is a compensatory mechanism for microglial dysfunction. Embo J. 2020;39: e104464.PubMedPubMedCentralCrossRef
51.
go back to reference Clarke LE, Liddelow SA, Chakraborty C, Munch AE, Heiman M, Barres BA. Normal aging induces A1-like astrocyte reactivity. P Natl Acad Sci Usa. 2018;115:E1896–905.CrossRef Clarke LE, Liddelow SA, Chakraborty C, Munch AE, Heiman M, Barres BA. Normal aging induces A1-like astrocyte reactivity. P Natl Acad Sci Usa. 2018;115:E1896–905.CrossRef
52.
go back to reference Escartin C, Galea E, Lakatos A, O’Callaghan JP, Petzold GC, Serrano-Pozo A, et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci. 2021;24:312–25.PubMedPubMedCentralCrossRef Escartin C, Galea E, Lakatos A, O’Callaghan JP, Petzold GC, Serrano-Pozo A, et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci. 2021;24:312–25.PubMedPubMedCentralCrossRef
53.
go back to reference Pernas L, Scorrano L. Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu Rev Physiol. 2016;78:505–31.PubMedCrossRef Pernas L, Scorrano L. Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu Rev Physiol. 2016;78:505–31.PubMedCrossRef
Metadata
Title
β-arrestin1 regulates astrocytic reactivity via Drp1-dependent mitochondrial fission: implications in postoperative delirium
Authors
Fuzhou Hua
Hong Zhu
Wen Yu
Qingcui Zheng
Lieliang Zhang
Weidong Liang
Yue Lin
Fan Xiao
Pengcheng Yi
Yanhong Xiong
Yao Dong
Hua Li
Lanran Fang
Hailin Liu
Jun Ying
Xifeng Wang
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2023
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-023-02794-x

Other articles of this Issue 1/2023

Journal of Neuroinflammation 1/2023 Go to the issue