Skip to main content
Top
Published in: Acta Neuropathologica 5/2013

Open Access 01-05-2013 | Case Report

α-Synucleinopathy associated with G51D SNCA mutation: a link between Parkinson’s disease and multiple system atrophy?

Authors: Aoife P. Kiely, Yasmine T. Asi, Eleanna Kara, Patricia Limousin, Helen Ling, Patrick Lewis, Christos Proukakis, Niall Quinn, Andrew J. Lees, John Hardy, Tamas Revesz, Henry Houlden, Janice L. Holton

Published in: Acta Neuropathologica | Issue 5/2013

Login to get access

Abstract

We report a British family with young-onset Parkinson’s disease (PD) and a G51D SNCA mutation that segregates with the disease. Family history was consistent with autosomal dominant inheritance as both the father and sister of the proband developed levodopa-responsive parkinsonism with onset in their late thirties. Clinical features show similarity to those seen in families with SNCA triplication and to cases of A53T SNCA mutation. Post-mortem brain examination of the proband revealed atrophy affecting frontal and temporal lobes in addition to the caudate, putamen, globus pallidus and amygdala. There was severe loss of pigmentation in the substantia nigra and pallor of the locus coeruleus. Neuronal loss was most marked in frontal and temporal cortices, hippocampal CA2/3 subregions, substantia nigra, locus coeruleus and dorsal motor nucleus of the vagus. The cellular pathology included widespread and frequent neuronal α-synuclein immunoreactive inclusions of variable morphology and oligodendroglial inclusions similar to the glial cytoplasmic inclusions of multiple system atrophy (MSA). Both inclusion types were ubiquitin and p62 positive and were labelled with phosphorylation-dependent anti-α-synuclein antibodies In addition, TDP-43 immunoreactive inclusions were observed in limbic regions and in the striatum. Together the data show clinical and neuropathological similarities to both the A53T SNCA mutation and multiplication cases. The cellular neuropathological features of this case share some characteristics of both PD and MSA with additional unique striatal and neocortical pathology. Greater understanding of the disease mechanism underlying the G51D mutation could aid in understanding of α-synuclein biology and its impact on disease phenotype.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ahmed Z, Asi YT, Sailer A et al (2012) The neuropathology, pathophysiology and genetics of multiple system atrophy. Neuropathol Appl Neurobiol 38:4–24PubMedCrossRef Ahmed Z, Asi YT, Sailer A et al (2012) The neuropathology, pathophysiology and genetics of multiple system atrophy. Neuropathol Appl Neurobiol 38:4–24PubMedCrossRef
2.
go back to reference Al-Chalabi A, Durr A, Wood NW et al (2009) Genetic variants of the alpha-synuclein gene SNCA are associated with multiple system atrophy. PLoS One 4:e7114PubMedCrossRef Al-Chalabi A, Durr A, Wood NW et al (2009) Genetic variants of the alpha-synuclein gene SNCA are associated with multiple system atrophy. PLoS One 4:e7114PubMedCrossRef
3.
go back to reference Amador-Ortiz C, Lin W-L, Ahmed Z et al (2007) TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann Neurol 61:435–445PubMedCrossRef Amador-Ortiz C, Lin W-L, Ahmed Z et al (2007) TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann Neurol 61:435–445PubMedCrossRef
4.
go back to reference Armstrong RA, Cairns NJ, Lantos PL (2006) Multiple system atrophy (MSA): topographic distribution of the alpha-synuclein-associated pathological changes. Parkinsonism Relat Disord 12:356–362PubMedCrossRef Armstrong RA, Cairns NJ, Lantos PL (2006) Multiple system atrophy (MSA): topographic distribution of the alpha-synuclein-associated pathological changes. Parkinsonism Relat Disord 12:356–362PubMedCrossRef
5.
go back to reference Athanassiadou A, Voutsinas G, L Psiouri et al (1999) Genetic analysis of families with Parkinson disease that carry the Ala53Thr mutation in the gene encoding alpha-synuclein. Am J Hum Genet 65:555–558PubMedCrossRef Athanassiadou A, Voutsinas G, L Psiouri et al (1999) Genetic analysis of families with Parkinson disease that carry the Ala53Thr mutation in the gene encoding alpha-synuclein. Am J Hum Genet 65:555–558PubMedCrossRef
6.
go back to reference Braak H, Braak E (1995) Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 16:271–278PubMedCrossRef Braak H, Braak E (1995) Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 16:271–278PubMedCrossRef
8.
go back to reference Braak H, Tredici KD, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211PubMedCrossRef Braak H, Tredici KD, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211PubMedCrossRef
9.
go back to reference Brandmeir N, Geser F, Kwong L et al (2008) Severe subcortical TDP-43 pathology in sporadic frontotemporal lobar degeneration with motor neuron disease. Acta Neuropathol 115:123–131PubMedCrossRef Brandmeir N, Geser F, Kwong L et al (2008) Severe subcortical TDP-43 pathology in sporadic frontotemporal lobar degeneration with motor neuron disease. Acta Neuropathol 115:123–131PubMedCrossRef
10.
go back to reference Chartier-Harlin M-C, Kachergus J, Roumier C et al (2004) α-Synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364:1167–1169PubMedCrossRef Chartier-Harlin M-C, Kachergus J, Roumier C et al (2004) α-Synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364:1167–1169PubMedCrossRef
11.
go back to reference Chen L, Periquet M, Wang X et al (2009) Tyrosine and serine phosphorylation of α-synuclein have opposing effects on neurotoxicity and soluble oligomer formation. J Clin Invest 119:3257–3265PubMedCrossRef Chen L, Periquet M, Wang X et al (2009) Tyrosine and serine phosphorylation of α-synuclein have opposing effects on neurotoxicity and soluble oligomer formation. J Clin Invest 119:3257–3265PubMedCrossRef
12.
go back to reference Choi J, Woo M, Ma H-I et al (2008) Analysis of PARK genes in a Korean cohort of early-onset Parkinson disease. Neurogenetics 9:263–269PubMedCrossRef Choi J, Woo M, Ma H-I et al (2008) Analysis of PARK genes in a Korean cohort of early-onset Parkinson disease. Neurogenetics 9:263–269PubMedCrossRef
13.
go back to reference Choi W, Zibaee S, Jakes R et al (2004) Mutation E46K increases phospholipid binding and assembly into filaments of human α-synuclein. FEBS Lett 576:363–368PubMedCrossRef Choi W, Zibaee S, Jakes R et al (2004) Mutation E46K increases phospholipid binding and assembly into filaments of human α-synuclein. FEBS Lett 576:363–368PubMedCrossRef
14.
go back to reference Clinton LK, Blurton-Jones M, Myczek K, Trojanowski JQ, LaFerla FM (2010) Synergistic interactions between Aβ, tau, and α-synuclein: acceleration of neuropathology and cognitive decline. J Neurosci 30:7281–7289PubMedCrossRef Clinton LK, Blurton-Jones M, Myczek K, Trojanowski JQ, LaFerla FM (2010) Synergistic interactions between Aβ, tau, and α-synuclein: acceleration of neuropathology and cognitive decline. J Neurosci 30:7281–7289PubMedCrossRef
15.
go back to reference Compta Y, Parkkinen L, O’Sullivan SS et al (2011) Lewy- and Alzheimer-type pathologies in Parkinson’s disease dementia: which is more important? Brain 134:1493–1505PubMedCrossRef Compta Y, Parkkinen L, O’Sullivan SS et al (2011) Lewy- and Alzheimer-type pathologies in Parkinson’s disease dementia: which is more important? Brain 134:1493–1505PubMedCrossRef
16.
go back to reference Devine MJ, Gwinn K, Singleton A, Hardy J (2011) Parkinson’s disease and α-synuclein expression. Mov Disord 26:2160–2168PubMedCrossRef Devine MJ, Gwinn K, Singleton A, Hardy J (2011) Parkinson’s disease and α-synuclein expression. Mov Disord 26:2160–2168PubMedCrossRef
17.
go back to reference Dickson D, Schmidt M, Lee V, Zhao M-L, Yen S, Trojanowski J (1994) Immunoreactivity profile of hippocampal CA2/3 neurites in diffuse Lewy body disease. Acta Neuropathol 87:269–276PubMedCrossRef Dickson D, Schmidt M, Lee V, Zhao M-L, Yen S, Trojanowski J (1994) Immunoreactivity profile of hippocampal CA2/3 neurites in diffuse Lewy body disease. Acta Neuropathol 87:269–276PubMedCrossRef
18.
go back to reference Dickson DW, Ruan D, Crystal H et al (1991) Hippocampal degeneration differentiates diffuse Lewy body disease (DLBD) from Alzheimer’s disease: light and electron microscopic immunocytochemistry of CA2-3 neurites specific to DLBD. Neurology 41:1402–1409PubMedCrossRef Dickson DW, Ruan D, Crystal H et al (1991) Hippocampal degeneration differentiates diffuse Lewy body disease (DLBD) from Alzheimer’s disease: light and electron microscopic immunocytochemistry of CA2-3 neurites specific to DLBD. Neurology 41:1402–1409PubMedCrossRef
19.
go back to reference Duda J, Giasson B, Mabon M et al (2002) Concurrence of alpha-synuclein and tau brain pathology in the Contursi kindred. Acta Neuropathol 104:7–11PubMedCrossRef Duda J, Giasson B, Mabon M et al (2002) Concurrence of alpha-synuclein and tau brain pathology in the Contursi kindred. Acta Neuropathol 104:7–11PubMedCrossRef
20.
go back to reference Eliezer D, Kutluay E, Bussell R Jr, Browne G (2001) Conformational properties of α-synuclein in its free and lipid-associated states. J Mol Biol 307:1061–1073PubMedCrossRef Eliezer D, Kutluay E, Bussell R Jr, Browne G (2001) Conformational properties of α-synuclein in its free and lipid-associated states. J Mol Biol 307:1061–1073PubMedCrossRef
21.
go back to reference Farrer M, Kachergus J, Forno L et al (2004) Comparison of kindreds with parkinsonism and α-synuclein genomic multiplications. Ann Neurol 55:174–179PubMedCrossRef Farrer M, Kachergus J, Forno L et al (2004) Comparison of kindreds with parkinsonism and α-synuclein genomic multiplications. Ann Neurol 55:174–179PubMedCrossRef
22.
go back to reference Fuchs J, Nilsson C, Kachergus J et al (2007) Phenotypic variation in a large Swedish pedigree due to SNCA duplication and triplication. Neurology 68:916–922PubMedCrossRef Fuchs J, Nilsson C, Kachergus J et al (2007) Phenotypic variation in a large Swedish pedigree due to SNCA duplication and triplication. Neurology 68:916–922PubMedCrossRef
23.
go back to reference Fujiwara H, Hasegawa M, Dohmae N et al (2002) alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4:160–164PubMedCrossRef Fujiwara H, Hasegawa M, Dohmae N et al (2002) alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4:160–164PubMedCrossRef
24.
go back to reference Geser F, Malunda JA, Hurtig HI et al (2011) TDP-43 pathology occurs infrequently in multiple system atrophy. Neuropathol Appl Neurobiol 37:358–365PubMedCrossRef Geser F, Malunda JA, Hurtig HI et al (2011) TDP-43 pathology occurs infrequently in multiple system atrophy. Neuropathol Appl Neurobiol 37:358–365PubMedCrossRef
25.
go back to reference Giasson B, Lee V, Trojanowski J (2003) Interactions of amyloidogenic proteins. Neuromolecular Med 4:49–58PubMedCrossRef Giasson B, Lee V, Trojanowski J (2003) Interactions of amyloidogenic proteins. Neuromolecular Med 4:49–58PubMedCrossRef
26.
go back to reference Golbe LI, Di Iorio G, Bonavita V, Miller DC, Duvoisin RC (1990) A large kindred with autosomal dominant Parkinson’s disease. Ann Neurol 27:276–282PubMedCrossRef Golbe LI, Di Iorio G, Bonavita V, Miller DC, Duvoisin RC (1990) A large kindred with autosomal dominant Parkinson’s disease. Ann Neurol 27:276–282PubMedCrossRef
27.
go back to reference Gwinn-Hardy K, Mehta ND, Farrer M et al (2000) Distinctive neuropathology revealed by alpha-synuclein antibodies in hereditary parkinsonism and dementia linked to chromosome 4p. Acta Neuropathol 99:663–672PubMedCrossRef Gwinn-Hardy K, Mehta ND, Farrer M et al (2000) Distinctive neuropathology revealed by alpha-synuclein antibodies in hereditary parkinsonism and dementia linked to chromosome 4p. Acta Neuropathol 99:663–672PubMedCrossRef
28.
go back to reference Halliday G, Holton J, Revesz T, Dickson D (2011) Neuropathology underlying clinical variability in patients with synucleinopathies. Acta Neuropathol 122:187–204PubMedCrossRef Halliday G, Holton J, Revesz T, Dickson D (2011) Neuropathology underlying clinical variability in patients with synucleinopathies. Acta Neuropathol 122:187–204PubMedCrossRef
29.
go back to reference Hejjaoui M, Butterfield S, Fauvet B et al (2012) Elucidating the role of C-terminal post-translational modifications using protein semisynthesis strategies: α-synuclein phosphorylation at tyrosine 125. J Am Chem Soc 134:5196–5210PubMedCrossRef Hejjaoui M, Butterfield S, Fauvet B et al (2012) Elucidating the role of C-terminal post-translational modifications using protein semisynthesis strategies: α-synuclein phosphorylation at tyrosine 125. J Am Chem Soc 134:5196–5210PubMedCrossRef
30.
go back to reference Higashi S, Iseki E, Yamamoto R et al (2007) Concurrence of TDP-43, tau and α-synuclein pathology in brains of Alzheimer’s disease and dementia with Lewy bodies. Brain Res 1184:284–294PubMedCrossRef Higashi S, Iseki E, Yamamoto R et al (2007) Concurrence of TDP-43, tau and α-synuclein pathology in brains of Alzheimer’s disease and dementia with Lewy bodies. Brain Res 1184:284–294PubMedCrossRef
31.
go back to reference Ibáñez P, Bonnet AM, Débarges B et al (2004) Causal relation between α-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364:1169–1171PubMedCrossRef Ibáñez P, Bonnet AM, Débarges B et al (2004) Causal relation between α-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364:1169–1171PubMedCrossRef
32.
go back to reference Ikeuchi T, Kakita A, Shiga A et al (2008) Patients homozygous and heterozygous for SNCA duplication in a family with parkinsonism and dementia. Arch Neurol 65:514–519PubMedCrossRef Ikeuchi T, Kakita A, Shiga A et al (2008) Patients homozygous and heterozygous for SNCA duplication in a family with parkinsonism and dementia. Arch Neurol 65:514–519PubMedCrossRef
33.
go back to reference Inoue M, Yagishita S, Ryo M, Hasegawa K, Amano N, Matsushita M (1997) The distribution and dynamic density of oligodendroglial cytoplasmic inclusions (GCIs) in multiple system atrophy: a correlation between the density of GCIs and the degree of involvement of striatonigral and olivopontocerebellar systems. Acta Neuropathol 93:585–591PubMedCrossRef Inoue M, Yagishita S, Ryo M, Hasegawa K, Amano N, Matsushita M (1997) The distribution and dynamic density of oligodendroglial cytoplasmic inclusions (GCIs) in multiple system atrophy: a correlation between the density of GCIs and the degree of involvement of striatonigral and olivopontocerebellar systems. Acta Neuropathol 93:585–591PubMedCrossRef
34.
go back to reference Irizarry MC, Growdon W, Gomez-Isla T et al (1998) Nigral and cortical Lewy bodies and dystrophic nigral neurites in Parkinson’s disease and cortical Lewy body disease contain alpha-synuclein immunoreactivity. J Neuropathol Exp Neurol 57:334–337PubMedCrossRef Irizarry MC, Growdon W, Gomez-Isla T et al (1998) Nigral and cortical Lewy bodies and dystrophic nigral neurites in Parkinson’s disease and cortical Lewy body disease contain alpha-synuclein immunoreactivity. J Neuropathol Exp Neurol 57:334–337PubMedCrossRef
35.
go back to reference Iseki E (2004) Dementia with Lewy bodies: reclassification of pathological subtypes and boundary with Parkinson’s disease or Alzheimer’s disease. Neuropathology 24:72–78PubMedCrossRef Iseki E (2004) Dementia with Lewy bodies: reclassification of pathological subtypes and boundary with Parkinson’s disease or Alzheimer’s disease. Neuropathology 24:72–78PubMedCrossRef
36.
go back to reference Jellinger KA (2012) Neuropathology of sporadic Parkinson’s disease: evaluation and changes of concepts. Mov Disord 27:8–30PubMedCrossRef Jellinger KA (2012) Neuropathology of sporadic Parkinson’s disease: evaluation and changes of concepts. Mov Disord 27:8–30PubMedCrossRef
37.
go back to reference Jo E, McLaurin J, Yip CM, St. George-Hyslop P, Fraser PE (2000) α-Synuclein membrane interactions and lipid specificity. J Biol Chem 275:34328–34334PubMedCrossRef Jo E, McLaurin J, Yip CM, St. George-Hyslop P, Fraser PE (2000) α-Synuclein membrane interactions and lipid specificity. J Biol Chem 275:34328–34334PubMedCrossRef
38.
go back to reference Joelving FC, Billeskov R, Christensen JR, West M, Pakkenberg B (2006) Hippocampal neuron and glial cell numbers in Parkinson’s disease—a stereological study. Hippocampus 16:826–833PubMedCrossRef Joelving FC, Billeskov R, Christensen JR, West M, Pakkenberg B (2006) Hippocampal neuron and glial cell numbers in Parkinson’s disease—a stereological study. Hippocampus 16:826–833PubMedCrossRef
39.
go back to reference Kahle PJ, Neumann M, Ozmen L et al (2002) Hyperphosphorylation and insolubility of alpha-synuclein in transgenic mouse oligodendrocytes. EMBO Rep 3:583–588PubMedCrossRef Kahle PJ, Neumann M, Ozmen L et al (2002) Hyperphosphorylation and insolubility of alpha-synuclein in transgenic mouse oligodendrocytes. EMBO Rep 3:583–588PubMedCrossRef
40.
go back to reference Kanazawa T, Adachi E, Orimo S, Nakamura A, Mizusawa H, Uchihara T (2012) Pale neurites, premature α-synuclein aggregates with centripetal extension from axon collaterals. Brain Pathol 22:67–78PubMedCrossRef Kanazawa T, Adachi E, Orimo S, Nakamura A, Mizusawa H, Uchihara T (2012) Pale neurites, premature α-synuclein aggregates with centripetal extension from axon collaterals. Brain Pathol 22:67–78PubMedCrossRef
41.
go back to reference Kanazawa T, Uchihara T, Takahashi A, Nakamura A, Orimo S, Mizusawa H (2008) Three-layered structure shared between Lewy bodies and Lewy neurites—three-dimensional reconstruction of triple-labeled sections. Brain Pathol 18:415–422PubMedCrossRef Kanazawa T, Uchihara T, Takahashi A, Nakamura A, Orimo S, Mizusawa H (2008) Three-layered structure shared between Lewy bodies and Lewy neurites—three-dimensional reconstruction of triple-labeled sections. Brain Pathol 18:415–422PubMedCrossRef
42.
go back to reference Ki CS, Stavrou EF, Davanos N et al (2007) The Ala53Thr mutation in the α-synuclein gene in a Korean family with Parkinson disease. Clin Genet 71:471–473PubMedCrossRef Ki CS, Stavrou EF, Davanos N et al (2007) The Ala53Thr mutation in the α-synuclein gene in a Korean family with Parkinson disease. Clin Genet 71:471–473PubMedCrossRef
43.
go back to reference Kruger R, Kuhn W, Muller T et al (1998) Ala30Pro mutation in the gene encoding [alpha]-synuclein in Parkinson’s disease. Nat Genet 18:106–108PubMedCrossRef Kruger R, Kuhn W, Muller T et al (1998) Ala30Pro mutation in the gene encoding [alpha]-synuclein in Parkinson’s disease. Nat Genet 18:106–108PubMedCrossRef
44.
go back to reference Kuusisto E, Parkkinen L, Alafuzoff I (2003) Morphogenesis of Lewy bodies: dissimilar incorporation of alpha-synuclein, ubiquitin, and p62. J Neuropathol Exp Neurol 62:1241–1253PubMed Kuusisto E, Parkkinen L, Alafuzoff I (2003) Morphogenesis of Lewy bodies: dissimilar incorporation of alpha-synuclein, ubiquitin, and p62. J Neuropathol Exp Neurol 62:1241–1253PubMed
45.
go back to reference Lasagna-Reeves CA, Castillo-Carranza DL, Guerrero-Muñoz MJ, Jackson GR, Kayed R (2010) Preparation and characterization of neurotoxic tau oligomers. Biochemistry (Mosc) 49:10039–10041CrossRef Lasagna-Reeves CA, Castillo-Carranza DL, Guerrero-Muñoz MJ, Jackson GR, Kayed R (2010) Preparation and characterization of neurotoxic tau oligomers. Biochemistry (Mosc) 49:10039–10041CrossRef
46.
go back to reference Lee VMY, Giasson BI, Trojanowski JQ (2004) More than just two peas in a pod: common amyloidogenic properties of tau and α-synuclein in neurodegenerative diseases. Trends Neurosci 27:129–134PubMedCrossRef Lee VMY, Giasson BI, Trojanowski JQ (2004) More than just two peas in a pod: common amyloidogenic properties of tau and α-synuclein in neurodegenerative diseases. Trends Neurosci 27:129–134PubMedCrossRef
47.
go back to reference Lemkau LR, Comellas G, Kloepper KD, Woods WS, George JM, Rienstra CM (2012) Mutant protein A30P α-synuclein adopts wild-type fibril structure, despite slower fibrillation kinetics. J Biol Chem 287:11526–11532PubMedCrossRef Lemkau LR, Comellas G, Kloepper KD, Woods WS, George JM, Rienstra CM (2012) Mutant protein A30P α-synuclein adopts wild-type fibril structure, despite slower fibrillation kinetics. J Biol Chem 287:11526–11532PubMedCrossRef
48.
go back to reference Markopoulou K, Dickson D, McComb R et al (2008) Clinical, neuropathological and genotypic variability in SNCA A53T familial Parkinson’s disease. Acta Neuropathol 116:25–35PubMedCrossRef Markopoulou K, Dickson D, McComb R et al (2008) Clinical, neuropathological and genotypic variability in SNCA A53T familial Parkinson’s disease. Acta Neuropathol 116:25–35PubMedCrossRef
49.
go back to reference Michell AW, Barker RA, Raha-Chowdhury R, Raha SK (2005) A case of late onset sporadic Parkinson’s disease with an A53T mutation in α-synuclein. J Neurol Neurosurg Psychiatry 76:596–597PubMedCrossRef Michell AW, Barker RA, Raha-Chowdhury R, Raha SK (2005) A case of late onset sporadic Parkinson’s disease with an A53T mutation in α-synuclein. J Neurol Neurosurg Psychiatry 76:596–597PubMedCrossRef
50.
go back to reference Mizutani T, Inose T, Nakajima S et al (1997) Familial parkinsonism and dementia with ballooned neurons, argyrophilic neuronal inclusions, atypical neurofibrillary tangles, tau-negative astrocytic fibrillary tangles, and Lewy bodies. Acta Neuropathol 95:15–27CrossRef Mizutani T, Inose T, Nakajima S et al (1997) Familial parkinsonism and dementia with ballooned neurons, argyrophilic neuronal inclusions, atypical neurofibrillary tangles, tau-negative astrocytic fibrillary tangles, and Lewy bodies. Acta Neuropathol 95:15–27CrossRef
51.
go back to reference Mizutani T, Mitsui J, Ozawa T et al (2009) Familial parkinsonism and dementia with ballooned neurons, argyrophilic neuronal inclusions, atypical neurofibrillary tangles, tau-negative astrocytic fibrillary tangles, and Lewy bodies—further observations. In: Clinicopathological conference on dementia with Lewy bodies and Parkinson’s disease dementia: symposium 5. News from neuropathology of DLB and PDD 08.03.2009–10.03.2009 Mizutani T, Mitsui J, Ozawa T et al (2009) Familial parkinsonism and dementia with ballooned neurons, argyrophilic neuronal inclusions, atypical neurofibrillary tangles, tau-negative astrocytic fibrillary tangles, and Lewy bodies—further observations. In: Clinicopathological conference on dementia with Lewy bodies and Parkinson’s disease dementia: symposium 5. News from neuropathology of DLB and PDD 08.03.2009–10.03.2009
52.
go back to reference Mori F, Tanji K, Zhang H, Kakita A, Takahashi H, Wakabayashi K (2008) α-Synuclein pathology in the neostriatum in Parkinson’s disease. Acta Neuropathol 115:453–459PubMedCrossRef Mori F, Tanji K, Zhang H, Kakita A, Takahashi H, Wakabayashi K (2008) α-Synuclein pathology in the neostriatum in Parkinson’s disease. Acta Neuropathol 115:453–459PubMedCrossRef
53.
go back to reference Nakashima-Yasuda H, Uryu K, Robinson J et al (2007) Co-morbidity of TDP-43 proteinopathy in Lewy body related diseases. Acta Neuropathol 114:221–229PubMedCrossRef Nakashima-Yasuda H, Uryu K, Robinson J et al (2007) Co-morbidity of TDP-43 proteinopathy in Lewy body related diseases. Acta Neuropathol 114:221–229PubMedCrossRef
54.
go back to reference Negro A, Brunati AM, Donella-Deana A, Massimino ML, Pinna LA (2002) Multiple phosphorylation of α-synuclein by protein tyrosine kinase Syk prevents eosin-induced aggregation. FASEB J 16:210–212PubMed Negro A, Brunati AM, Donella-Deana A, Massimino ML, Pinna LA (2002) Multiple phosphorylation of α-synuclein by protein tyrosine kinase Syk prevents eosin-induced aggregation. FASEB J 16:210–212PubMed
55.
go back to reference Nishioka K, Hayashi S, Farrer MJ et al (2006) Clinical heterogeneity of α-synuclein gene duplication in Parkinson’s disease. Ann Neurol 59:298–309PubMedCrossRef Nishioka K, Hayashi S, Farrer MJ et al (2006) Clinical heterogeneity of α-synuclein gene duplication in Parkinson’s disease. Ann Neurol 59:298–309PubMedCrossRef
56.
go back to reference Nuytemans K, Meeus B, Crosiers D et al (2009) Relative contribution of simple mutations vs. copy number variations in five Parkinson disease genes in the Belgian population. Hum Mutat 30:1054–1061PubMedCrossRef Nuytemans K, Meeus B, Crosiers D et al (2009) Relative contribution of simple mutations vs. copy number variations in five Parkinson disease genes in the Belgian population. Hum Mutat 30:1054–1061PubMedCrossRef
57.
go back to reference Obi T, Nishioka K, Ross OA et al (2008) Clincopathologic study of a SNCA gene duplication patient with Parkinson disease and dementia. Neurology 70:238–241PubMedCrossRef Obi T, Nishioka K, Ross OA et al (2008) Clincopathologic study of a SNCA gene duplication patient with Parkinson disease and dementia. Neurology 70:238–241PubMedCrossRef
58.
go back to reference Ozawa T, Paviour D, Quinn NP et al (2004) The spectrum of pathological involvement of the striatonigral and olivopontocerebellar systems in multiple system atrophy: clinicopathological correlations. Brain 127:2657–2671PubMedCrossRef Ozawa T, Paviour D, Quinn NP et al (2004) The spectrum of pathological involvement of the striatonigral and olivopontocerebellar systems in multiple system atrophy: clinicopathological correlations. Brain 127:2657–2671PubMedCrossRef
59.
go back to reference Papadimitriou A, Veletza V, Hadjigeorgiou GM, Patrikiou A, Hirano M, Anastasopoulos I (1999) Mutated α-synuclein gene in two Greek kindreds with familial PD: incomplete penetrance? Neurology 52:651PubMedCrossRef Papadimitriou A, Veletza V, Hadjigeorgiou GM, Patrikiou A, Hirano M, Anastasopoulos I (1999) Mutated α-synuclein gene in two Greek kindreds with familial PD: incomplete penetrance? Neurology 52:651PubMedCrossRef
60.
go back to reference Papp MI, Kahn JE, Lantos PL (1989) Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager syndrome). J Neurol Sci 94:79–100PubMedCrossRef Papp MI, Kahn JE, Lantos PL (1989) Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager syndrome). J Neurol Sci 94:79–100PubMedCrossRef
61.
go back to reference Polymeropoulos M, Lavedan C, Leroy E et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047PubMedCrossRef Polymeropoulos M, Lavedan C, Leroy E et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047PubMedCrossRef
62.
go back to reference Polymeropoulos MH, Higgins JJ, Golbe LI et al (1996) Mapping of a gene for Parkinson’s disease to chromosome 4q21-q23. Science 274:1197–1199PubMedCrossRef Polymeropoulos MH, Higgins JJ, Golbe LI et al (1996) Mapping of a gene for Parkinson’s disease to chromosome 4q21-q23. Science 274:1197–1199PubMedCrossRef
63.
go back to reference Pountney DL, Treweek TM, Chataway T et al (2005) Alpha B-crystallin is a major component of glial cytoplasmic inclusions in multiple system atrophy. Neurotox Res 7:77–85PubMedCrossRef Pountney DL, Treweek TM, Chataway T et al (2005) Alpha B-crystallin is a major component of glial cytoplasmic inclusions in multiple system atrophy. Neurotox Res 7:77–85PubMedCrossRef
64.
go back to reference Probst A, Taylor K, Tolnay M (2007) Hippocampal sclerosis dementia: a reappraisal. Acta Neuropathol 114:335–345PubMedCrossRef Probst A, Taylor K, Tolnay M (2007) Hippocampal sclerosis dementia: a reappraisal. Acta Neuropathol 114:335–345PubMedCrossRef
65.
go back to reference Proukakis C, Dudzik CG, Breier T et al (2012) A novel alpha-synuclein missense mutation in Parkinson’s disease. Neurology (in press) Proukakis C, Dudzik CG, Breier T et al (2012) A novel alpha-synuclein missense mutation in Parkinson’s disease. Neurology (in press)
66.
go back to reference Puschmann A, Ross OA, Vilariño-Güell C et al (2009) A Swedish family with de novo α-synuclein A53T mutation: evidence for early cortical dysfunction. Parkinsonism Relat Disord 15:627–632PubMedCrossRef Puschmann A, Ross OA, Vilariño-Güell C et al (2009) A Swedish family with de novo α-synuclein A53T mutation: evidence for early cortical dysfunction. Parkinsonism Relat Disord 15:627–632PubMedCrossRef
67.
68.
go back to reference Rhoades E, Ramlall TF, Webb WW, Eliezer D (2006) Quantification of α-synuclein binding to lipid vesicles using fluorescence correlation spectroscopy. Biophys J 90:4692–4700PubMedCrossRef Rhoades E, Ramlall TF, Webb WW, Eliezer D (2006) Quantification of α-synuclein binding to lipid vesicles using fluorescence correlation spectroscopy. Biophys J 90:4692–4700PubMedCrossRef
69.
go back to reference Riedel M, Goldbaum O, Richter-Landsberg C (2009) α-Synuclein promotes the recruitment of tau to protein inclusions in oligodendroglial cells: effects of oxidative and proteolytic stress. J Mol Neurosci 39:226–234PubMedCrossRef Riedel M, Goldbaum O, Richter-Landsberg C (2009) α-Synuclein promotes the recruitment of tau to protein inclusions in oligodendroglial cells: effects of oxidative and proteolytic stress. J Mol Neurosci 39:226–234PubMedCrossRef
70.
go back to reference Ross OA, Vilarino-Guell C, Wszolek ZK, Farrer MJ, Dickson DW (2010) Reply to: SNCA variants are associated with increased risk of multiple system atrophy. Ann Neurol 67:414–415PubMedCrossRef Ross OA, Vilarino-Guell C, Wszolek ZK, Farrer MJ, Dickson DW (2010) Reply to: SNCA variants are associated with increased risk of multiple system atrophy. Ann Neurol 67:414–415PubMedCrossRef
71.
go back to reference Scholz SW, Houlden H, Schulte C et al (2009) SNCA variants are associated with increased risk for multiple system atrophy. Ann Neurol 65:610–614PubMedCrossRef Scholz SW, Houlden H, Schulte C et al (2009) SNCA variants are associated with increased risk for multiple system atrophy. Ann Neurol 65:610–614PubMedCrossRef
72.
go back to reference Seidel K, Schöls L, Nuber S et al (2010) First appraisal of brain pathology owing to A30P mutant alpha-synuclein. Ann Neurol 67:684–689PubMedCrossRef Seidel K, Schöls L, Nuber S et al (2010) First appraisal of brain pathology owing to A30P mutant alpha-synuclein. Ann Neurol 67:684–689PubMedCrossRef
73.
go back to reference Shibuya K, Nagatomo H, Iwabuchi K, Inoue M, Yagishita S, Itoh Y (2000) Asymmetrical temporal lobe atrophy with massive neuronal inclusions in multiple system atrophy. J Neurol Sci 179:50–58PubMedCrossRef Shibuya K, Nagatomo H, Iwabuchi K, Inoue M, Yagishita S, Itoh Y (2000) Asymmetrical temporal lobe atrophy with massive neuronal inclusions in multiple system atrophy. J Neurol Sci 179:50–58PubMedCrossRef
74.
go back to reference Sikorska B, Papierz W, Preusser M, Liberski PP, Budka H (2007) Synucleinopathy with features of both multiple system atrophy and dementia with Lewy bodies. Neuropathol Appl Neurobiol 33:126–129PubMed Sikorska B, Papierz W, Preusser M, Liberski PP, Budka H (2007) Synucleinopathy with features of both multiple system atrophy and dementia with Lewy bodies. Neuropathol Appl Neurobiol 33:126–129PubMed
75.
go back to reference Singleton AB, Farrer M, Johnson J et al (2003) α-Synuclein locus triplication causes Parkinson’s disease. Science 302:841PubMedCrossRef Singleton AB, Farrer M, Johnson J et al (2003) α-Synuclein locus triplication causes Parkinson’s disease. Science 302:841PubMedCrossRef
76.
go back to reference Solano SM, Miller DW, Augood SJ, Young AB, Penney JB (2000) Expression of α-synuclein, parkin, and ubiquitin carboxy-terminal hydrolase L1 mRNA in human brain: genes associated with familial Parkinson’s disease. Ann Neurol 47:201–210PubMedCrossRef Solano SM, Miller DW, Augood SJ, Young AB, Penney JB (2000) Expression of α-synuclein, parkin, and ubiquitin carboxy-terminal hydrolase L1 mRNA in human brain: genes associated with familial Parkinson’s disease. Ann Neurol 47:201–210PubMedCrossRef
77.
go back to reference Spira PJ, Sharpe DM, Halliday G, Cavanagh J, Nicholson GA (2001) Clinical and pathological features of a parkinsonian syndrome in a family with an Ala53Thr α-synuclein mutation. Ann Neurol 49:313–319PubMedCrossRef Spira PJ, Sharpe DM, Halliday G, Cavanagh J, Nicholson GA (2001) Clinical and pathological features of a parkinsonian syndrome in a family with an Ala53Thr α-synuclein mutation. Ann Neurol 49:313–319PubMedCrossRef
78.
go back to reference Takeda A, Arai N, Komori T, Kato S, Oda M (1997) Neuronal inclusions in the dentate fascia in patients with multiple system atrophy. Neurosci Lett 227:157–160PubMedCrossRef Takeda A, Arai N, Komori T, Kato S, Oda M (1997) Neuronal inclusions in the dentate fascia in patients with multiple system atrophy. Neurosci Lett 227:157–160PubMedCrossRef
79.
go back to reference Trojanowski JQ, Revesz T (2007) Proposed neuropathological criteria for the post mortem diagnosis of multiple system atrophy. Neuropathol Appl Neurobiol 33:615–620PubMedCrossRef Trojanowski JQ, Revesz T (2007) Proposed neuropathological criteria for the post mortem diagnosis of multiple system atrophy. Neuropathol Appl Neurobiol 33:615–620PubMedCrossRef
80.
go back to reference Ulmer TS, Bax A, Cole NB, Nussbaum RL (2005) Structure and dynamics of micelle-bound human α-synuclein. J Biol Chem 280:9595–9603PubMedCrossRef Ulmer TS, Bax A, Cole NB, Nussbaum RL (2005) Structure and dynamics of micelle-bound human α-synuclein. J Biol Chem 280:9595–9603PubMedCrossRef
81.
go back to reference Wakabayashi K, Hayashi S, Yoshimoto M, Kudo H, Takahashi H (2000) NACP/α-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson’s disease brains. Acta Neuropathol 99:14–20PubMedCrossRef Wakabayashi K, Hayashi S, Yoshimoto M, Kudo H, Takahashi H (2000) NACP/α-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson’s disease brains. Acta Neuropathol 99:14–20PubMedCrossRef
82.
go back to reference Waxman EA, Giasson BI (2008) Specificity and regulation of casein kinase-mediated phosphorylation of alpha-synuclein. J Neuropathol Exp Neurol 67:402–416PubMedCrossRef Waxman EA, Giasson BI (2008) Specificity and regulation of casein kinase-mediated phosphorylation of alpha-synuclein. J Neuropathol Exp Neurol 67:402–416PubMedCrossRef
83.
go back to reference Yun JY, Lee WW, Lee JY, Kim HJ, Park SS, Jeon BS (2010) SNCA variants and multiple system atrophy. Ann Neurol 67:554–555PubMedCrossRef Yun JY, Lee WW, Lee JY, Kim HJ, Park SS, Jeon BS (2010) SNCA variants and multiple system atrophy. Ann Neurol 67:554–555PubMedCrossRef
84.
go back to reference Zarranz JJ, Alegre J, Gómez-Esteban JC et al (2004) The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55:164–173PubMedCrossRef Zarranz JJ, Alegre J, Gómez-Esteban JC et al (2004) The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55:164–173PubMedCrossRef
Metadata
Title
α-Synucleinopathy associated with G51D SNCA mutation: a link between Parkinson’s disease and multiple system atrophy?
Authors
Aoife P. Kiely
Yasmine T. Asi
Eleanna Kara
Patricia Limousin
Helen Ling
Patrick Lewis
Christos Proukakis
Niall Quinn
Andrew J. Lees
John Hardy
Tamas Revesz
Henry Houlden
Janice L. Holton
Publication date
01-05-2013
Publisher
Springer-Verlag
Published in
Acta Neuropathologica / Issue 5/2013
Print ISSN: 0001-6322
Electronic ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-013-1096-7

Other articles of this Issue 5/2013

Acta Neuropathologica 5/2013 Go to the issue

Thanks to referees

Thanks to referees