skip to main content
survey

Machine Learning for Survival Analysis: A Survey

Published:27 February 2019Publication History
Skip Abstract Section

Abstract

Survival analysis is a subfield of statistics where the goal is to analyze and model data where the outcome is the time until an event of interest occurs. One of the main challenges in this context is the presence of instances whose event outcomes become unobservable after a certain time point or when some instances do not experience any event during the monitoring period. This so-called censoring can be handled most effectively using survival analysis techniques. Traditionally, statistical approaches have been widely developed in the literature to overcome the issue of censoring. In addition, many machine learning algorithms have been adapted to deal with such censored data and tackle other challenging problems that arise in real-world data. In this survey, we provide a comprehensive and structured review of the statistical methods typically used and the machine learning techniques developed for survival analysis, along with a detailed taxonomy of the existing methods. We also discuss several topics that are closely related to survival analysis and describe several successful applications in a variety of real-world application domains. We hope that this article will give readers a more comprehensive understanding of recent advances in survival analysis and offer some guidelines for applying these approaches to solve new problems arising in applications involving censored data.

Skip Supplemental Material Section

Supplemental Material

References

  1. Odd Aalen. 1978. Nonparametric inference for a family of counting processes. The Annals of Statistics 6, 4 (1978), 701--726.Google ScholarGoogle ScholarCross RefCross Ref
  2. Paul D Allison. 2010. Survival Analysis Using SAS: A Practical Guide. Sas Institute. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Sattar Ameri, Mahtab J Fard, Ratna B Chinnam, and Chandan K Reddy. 2016. Survival analysis based framework for early prediction of student dropouts. In Proceedings of ACM International Conference on Conference on Information and Knowledge Management. ACM, IN, 903--912. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Per Kragh Andersen, Ornulf Borgan, Richard D. Gill, and Niels Keiding. 2012. Statistical Models Based on Counting Processes. Springer Science 8 Business Media.Google ScholarGoogle Scholar
  5. A. V. Antonov, M. Krestyaninova, R. A. Knight, I. Rodchenkov, G. Melino, and N. A. Barlev. 2014. PPISURV: A novel bioinformatics tool for uncovering the hidden role of specific genes in cancer survival outcome. Oncogene 33, 13 (2014), 1621--1628.Google ScholarGoogle ScholarCross RefCross Ref
  6. Nihal Ata and M. Tekin Sözer. 2007. Cox regression models with nonproportional hazards applied to lung cancer survival data. Hacettepe Journal of Mathematics and Statistics 36, 2 (2007), 157--167.Google ScholarGoogle Scholar
  7. Francis Bach, Rodolphe Jenatton, Julien Mairal, and Guillaume Obozinski. 2012. Structured sparsity through convex optimization. Statistical Sciences 27, 4 (2012), 450--468.Google ScholarGoogle ScholarCross RefCross Ref
  8. Bart Baesens, Tony Van Gestel, Maria Stepanova, Dirk Van den Poel, and Jan Vanthienen. 2005. Neural network survival analysis for personal loan data. Journal of the Operational Research Society 56, 9 (2005), 1089--1098.Google ScholarGoogle ScholarCross RefCross Ref
  9. Nicola Barbieri, Fabrizio Silvestri, and Mounia Lalmas. 2016. Improving post-click user engagement on native ads via survival analysis. In Proceedings of the 25th International Conference on World Wide Web. International World Wide Web Conference Committee, Montreal, 761--770. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. David G. Beer, Sharon L. R. Kardia, Chiang-Ching Huang, Thomas J. Giordano, Albert M. Levin, David E. Misek, Lin Lin, Guoan Chen, Tarek G. Gharib, Dafydd G. Thomas, et al. 2002. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nature Medicine 8, 8 (2002), 816--824.Google ScholarGoogle ScholarCross RefCross Ref
  11. Riccardo Bellazzi and Blaz Zupan. 2008. Predictive data mining in clinical medicine: Current issues and guidelines. International Journal of Medical Informatics 77, 2 (2008), 81--97.Google ScholarGoogle ScholarCross RefCross Ref
  12. Paul D. Berger and Nada I. Nasr. 1998. Customer lifetime value: Marketing models and applications. Journal of Interactive Marketing 12, 1 (1998), 17--30.Google ScholarGoogle ScholarCross RefCross Ref
  13. Elia Biganzoli, Patrizia Boracchi, Luigi Mariani, and Ettore Marubini. 1998. Feed forward neural networks for the analysis of censored survival data: A partial logistic regression approach. Statistics in Medicine 17, 10 (1998), 1169--1186.Google ScholarGoogle ScholarCross RefCross Ref
  14. Harald Binder and Martin Schumacher. 2008. Allowing for mandatory covariates in boosting estimation of sparse high-dimensional survival models. BMC Bioinformatics 9, 1 (2008), 1--10.Google ScholarGoogle ScholarCross RefCross Ref
  15. Imad Bou-Hamad, Denis Larocque, Hatem Ben-Ameur, et al. 2011. A review of survival trees. Statistics Surveys 5 (2011), 44--71.Google ScholarGoogle ScholarCross RefCross Ref
  16. Leo Breiman. 1996. Bagging predictors. Machine Learning 24, 2 (1996), 123--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Leo Breiman. 2001. Random forests. Machine Learning 45, 1 (2001), 5--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Norman E. Breslow. 1972. Discussion of the paper by D. R. Cox. Journalof the Royal Statistical Society B 34 (1972), 216--217.Google ScholarGoogle Scholar
  19. Glenn W. Brier. 1950. Verification of forecasts expressed in terms of probability. Monthly Weather Review 78, 1 (1950), 1--3.Google ScholarGoogle ScholarCross RefCross Ref
  20. Stephen F. Brown, Alan J. Branford, and William Moran. 1997. On the use of artificial neural networks for the analysis of survival data. IEEE Transactions on Neural Networks 8, 5 (1997), 1071--1077. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Jonathan Buckley and Ian James. 1979. Linear regression with censored data. Biometrika 66, 3 (1979), 429--436.Google ScholarGoogle ScholarCross RefCross Ref
  22. Peter Bühlmann and Torsten Hothorn. 2007. Boosting algorithms: Regularization, prediction and model fitting. Statistical Sciences 22, 4 (2007), 477--505.Google ScholarGoogle ScholarCross RefCross Ref
  23. Harry B. Burke, Philip H. Goodman, David B. Rosen, Donald E. Henson, John N. Weinstein, Frank E. Harrell, Jeffrey R. Marks, David P. Winchester, and David G. Bostwick. 1997. Artificial neural networks improve the accuracy of cancer survival prediction. Cancer 79, 4 (1997), 857--862.Google ScholarGoogle ScholarCross RefCross Ref
  24. Ching-Fan Chung, Peter Schmidt, and Ana D. Witte. 1991. Survival analysis: A survey. Journal of Quantitative Criminology 7, 1 (1991), 59--98.Google ScholarGoogle ScholarCross RefCross Ref
  25. A. Ciampi, R. S. Bush, M. Gospodarowicz, and J. E. Till. 1981. An approach to classifying prognostic factors related to survival experience for non-Hodgkin’s lymphoma patients: Based on a series of 982 patients: 1967--1975. Cancer 47, 3 (1981), 621--627.Google ScholarGoogle ScholarCross RefCross Ref
  26. A. Ciampi, C-H. Chang, S. Hogg, and S. McKinney. 1987. Recursive partition: A versatile method for exploratory-data analysis in biostatistics. In Biostatistics, I. B. MacNeill, G. J. Umphrey, A. Donner, and V. K. Jandhyala (Eds.). Springer, 23--50.Google ScholarGoogle Scholar
  27. Antonio Ciampi, Johanne Thiffault, Jean-Pierre Nakache, and Bernard Asselain. 1986. Stratification by stepwise regression, correspondence analysis and recursive partition: A comparison of three methods of analysis for survival data with covariates. Computational Statistics 8 Data Analysis 4, 3 (1986), 185--204. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Joseph A. Cruz and David S. Wishart. 2006. Applications of machine learning in cancer prediction and prognosis. Cancer Informatics 2 (2006).Google ScholarGoogle Scholar
  29. Sidney J. Cutler and Fred Ederer. 1958. Maximum utilization of the life table method in analyzing survival. Journal of Chronic Diseases 8, 6 (1958), 699--712.Google ScholarGoogle ScholarCross RefCross Ref
  30. Cox R. David. 1972. Regression models and life tables. Journal of the Royal Statistical Society 34, 2 (1972), 187--220.Google ScholarGoogle Scholar
  31. Cox R. David. 1975. Partial likelihood. Biometrika 62, 2 (1975), 269--276.Google ScholarGoogle ScholarCross RefCross Ref
  32. Roger B. Davis and James R. Anderson. 1989. Exponential survival trees. Statistics in Medicine 8, 8 (1989), 947--961.Google ScholarGoogle ScholarCross RefCross Ref
  33. Dursun Delen, Glenn Walker, and Amit Kadam. 2005. Predicting breast cancer survivability: A comparison of three data mining methods. Artificial Intelligence in Medicine 34, 2 (2005), 113--127. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Thomas G. Dietterich. 2000. Ensemble methods in machine learning. In Proceedings of the International Workshop on Multiple Classifier Systems. Springer, 1--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Olive J. Dunn and Virginia A. Clark. 2009. Basic Statistics: A Primer for the Biomedical Sciences. John Wiley 8 Sons.Google ScholarGoogle Scholar
  36. David Faraggi and Richard Simon. 1995. A neural network model for survival data. Statistics in Medicine 14, 1 (1995), 73--82.Google ScholarGoogle ScholarCross RefCross Ref
  37. Mahtab J. Fard, Ping Wang, Sanjay Chawla, and Chandan K. Reddy. 2016. A bayesian perspective on early stage event prediction in longitudinal data. IEEE Transactions on Knowledge and Data Engineering 28, 12 (2016), 3126--3139. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Jerome Friedman, Trevor Hastie, and Robert Tibshirani. 2001. The Elements of Statistical Learning. Vol. 1. Springer series in statistics. Springer.Google ScholarGoogle Scholar
  39. Jerome Friedman, Trevor Hastie, and Robert Tibshirani. 2008. Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9, 3 (2008), 432--441.Google ScholarGoogle ScholarCross RefCross Ref
  40. Nir Friedman, Dan Geiger, and Moises Goldszmidt. 1997. Bayesian network classifiers. Machine Learning 29, 2 (1997), 131--163. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Dani Gamerman and Mike West. 1987. An application of dynamic survival models in unemployment studies. The Statistician (1987), 269--274.Google ScholarGoogle Scholar
  42. Louis Gordon and Richard A. Olshen. 1985. Tree-structured survival analysis. Cancer Treatment Reports 69, 10 (1985), 1065--1069.Google ScholarGoogle Scholar
  43. Erika Graf, Claudia Schmoor, Willi Sauerbrei, and Martin Schumacher. 1999. Assessment and comparison of prognostic classification schemes for survival data. Statistics in Medicine 18, 17-18 (1999), 2529--2545.Google ScholarGoogle ScholarCross RefCross Ref
  44. Sariel Har-Peled, Dan Roth, and Dav Zimak. 2002. Constraint classification: A new approach to multiclass classification. In Algorithmic Learning Theory, N. Cesa-Bianchi, M. Numao, and R. Reischuk (Eds.). Springer, 365--379. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Frank E. Harrell, Robert M. Califf, David B. Pryor, Kerry L. Lee, and Robert A. Rosati. 1982. Evaluating the yield of medical tests. Journal of the American Medical Association 247, 18 (1982), 2543--2546.Google ScholarGoogle ScholarCross RefCross Ref
  46. Frank E. Harrell, Kerry L. Lee, Robert M. Califf, David B. Pryor, and Robert A. Rosati. 1984. Regression modelling strategies for improved prognostic prediction. Statistics in Medicine 3, 2 (1984), 143--152.Google ScholarGoogle ScholarCross RefCross Ref
  47. Patrick J. Heagerty and Yingye Zheng. 2005. Survival model predictive accuracy and ROC curves. Biometrics 61, 1 (2005), 92--105.Google ScholarGoogle ScholarCross RefCross Ref
  48. Arthur E. Hoerl and Robert W. Kennard. 1970. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12, 1 (1970), 55--67.Google ScholarGoogle ScholarCross RefCross Ref
  49. Torsten Hothorn, Peter Bühlmann, Sandrine Dudoit, Annette Molinaro, and Mark J. Van Der Laan. 2006. Survival ensembles. Biostatistics 7, 3 (2006), 355--373.Google ScholarGoogle ScholarCross RefCross Ref
  50. Torsten Hothorn, Berthold Lausen, Axel Benner, and Martin Radespiel-Tröger. 2004. Bagging survival trees. Statistics in Medicine 23, 1 (2004), 77--91.Google ScholarGoogle ScholarCross RefCross Ref
  51. Hemant Ishwaran, Udaya B. Kogalur, Eugene H. Blackstone, and Michael S. Lauer. 2008. Random survival forests. The Annals of Applied Statistics 2, 3 (2008), 841--860.Google ScholarGoogle ScholarCross RefCross Ref
  52. Hemant Ishwaran, Udaya B. Kogalur, Xi Chen, and Andy J. Minn. 2011. Random survival forests for high-dimensional data. Statistical Analysis and Data Mining 4, 1 (2011), 115--132. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. How Jing and Alexander J. Smola. 2017. Neural survival recommender. In Proceedings of the 10th ACM International Conference on Web Search and Data Mining. ACM, Cambridge, 515--524. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. John D. Kalbfleisch and Ross L. Prentice. 2011. The Statistical Analysis of Failure Time Data. Vol. 360. John Wiley 8 Sons.Google ScholarGoogle Scholar
  55. Edward L. Kaplan and Paul Meier. 1958. Nonparametric estimation from incomplete observations. Journal of the American Statistical Association 53, 282 (1958), 457--481.Google ScholarGoogle ScholarCross RefCross Ref
  56. Jared Katzman, Uri Shaham, Jonathan Bates, Alexander Cloninger, Tingting Jiang, and Yuval Kluger. 2016. Deep survival: A deep Cox proportional hazards network. arXiv preprint arXiv:1606.00931 (2016).Google ScholarGoogle Scholar
  57. Carl T. Kelley. 1999. Iterative Methods for Optimization. Vol. 18. SIAM.Google ScholarGoogle Scholar
  58. Faisal M. Khan and Valentina B. Zubek. 2008. Support vector regression for censored data (SVRc): A novel tool for survival analysis. In Proceedings of the IEEE International Conference on Data Mining (ICDM). IEEE, Pisa, 863--868. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Farkhondeh Kiaee, Hamid Sheikhzadeh, and Samaneh Eftekhari Mahabadi. 2016. Relevance vector machine for survival analysis. IEEE Transactions on Neural Networks and Learning Systems 27, 3 (2016), 648--660.Google ScholarGoogle ScholarCross RefCross Ref
  60. Nicholas M. Kiefer. 1988. Economic duration data and hazard functions. Journal of Economic Literature 26, 2 (1988), 646--679.Google ScholarGoogle Scholar
  61. John P. Klein and Melvin L. Moeschberger. 2005. Survival Analysis: Techniques for Censored and Truncated Data. Springer Science 8 Business Media.Google ScholarGoogle Scholar
  62. David G. Kleinbaum and Mitchel Klein. 2006. Survival Analysis: A Self-learning Text. Springer Science 8 Business Media.Google ScholarGoogle Scholar
  63. Igor Kononenko. 1993. Inductive and Bayesian learning in medical diagnosis. Applied Artificial Intelligence an International Journal 7, 4 (1993), 317--337.Google ScholarGoogle Scholar
  64. Konstantina Kourou, Themis P. Exarchos, Konstantinos P. Exarchos, Michalis V. Karamouzis, and Dimitrios I. Fotiadis. 2015. Machine learning applications in cancer prognosis and prediction. Computational and Structural Biotechnology Journal 13 (2015), 8--17.Google ScholarGoogle ScholarCross RefCross Ref
  65. Minjung Kyung, Jeff Gill, Malay Ghosh, George Casella, et al. 2010. Penalized regression, standard errors, and Bayesian lassos. Bayesian Analysis 5, 2 (2010), 369--411.Google ScholarGoogle ScholarCross RefCross Ref
  66. Michael LeBlanc and John Crowley. 1992. Relative risk trees for censored survival data. Biometrics 48, 2 (1992), 411--425.Google ScholarGoogle ScholarCross RefCross Ref
  67. Elisa T. Lee and John Wang. 2003. Statistical Methods for Survival Data Analysis. Vol. 476. John Wiley 8 Sons. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Yan Li, Vineeth Rakesh, and Chandan K. Reddy. 2016a. Project success prediction in crowdfunding environments. In Proceedings of the 9th ACM International Conference on Web Search and Data Mining. ACM, San Francisco, California, 247--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Yan Li, Bhanukiran Vinzamuri, and Chandan K. Reddy. 2016b. Regularized weighted linear regression for high-dimensional censored data. In Proceedings of SIAM International Conference on Data Mining. SIAM, Miami, FL, 45--53.Google ScholarGoogle Scholar
  70. Yan Li, Jie Wang, Jieping Ye, and Chandan K. Reddy. 2016d. A multi-task learning formulation for survival analysis. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, San Francisco, CA, 1715--1724. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Yan Li, Lu Wang, Jie Wang, Jieping Ye, and Chandan K. Reddy. 2016c. Transfer learning for survival analysis via efficient L2,1-norm regularized Cox regression. In Proceedings of the IEEE International Conference on Data Mining (ICDM). IEEE, Barcelona, 231--240.Google ScholarGoogle Scholar
  72. Yan Li, Kevin S. Xu, and Chandan K. Reddy. 2016e. Regularized parametric regression for high-dimensional survival analysis. In Proceedings of the 2016 SIAM International Conference on Data Mining. SIAM, Miami, FL, 765--773.Google ScholarGoogle Scholar
  73. Knut Liestbl, Per Kragh Andersen, and Ulrich Andersen. 1994. Survival analysis and neural nets. Statistics in Medicine 13, 12 (1994), 1189--1200.Google ScholarGoogle ScholarCross RefCross Ref
  74. Paulo J. G. Lisboa, H. Wong, P. Harris, and Ric Swindell. 2003. A bayesian neural network approach for modelling censored data with an application to prognosis after surgery for breast cancer. Artificial Intelligence in Medicine 28, 1 (2003), 1--25. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Michael R. Lyu. 1996. Handbook of Software Reliability Engineering. Vol. 222. IEEE computer society press CA. Google ScholarGoogle Scholar
  76. David J. C. MacKay. 1995. Probable networks and plausible predictions-a review of practical bayesian methods for supervised neural networks. Network: Computation in Neural Systems 6, 3 (1995), 469--505.Google ScholarGoogle ScholarCross RefCross Ref
  77. D. R. Mani, James Drew, Andrew Betz, and Piew Datta. 1999. Statistics and data mining techniques for lifetime value modeling. In Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, San Diego, CA, 94--103. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. L. Mariani, D. Coradini, E. Biganzoli, P. Boracchi, E. Marubini, S. Pilotti, B. Salvadori, R. Silvestrini, U. Veronesi, R. Zucali, et al. 1997. Prognostic factors for metachronous contralateral breast cancer: A comparison of the linear Cox regression model and its artificial neural network extension. Breast Cancer Research and Treatment 44, 2 (1997), 167--178.Google ScholarGoogle ScholarCross RefCross Ref
  79. Ettore Marubini and Maria Grazia Valsecchi. 2004. Analysing Survival Data from Clinical Trials and Observational Studies. Vol. 15. John Wiley 8 Sons.Google ScholarGoogle Scholar
  80. Rupert Miller and Jerry Halpern. 1982. Regression with Censored Data. Biometrika 69, 3 (1982), 521--531.Google ScholarGoogle ScholarCross RefCross Ref
  81. Rupert G. Miller Jr. 2011. Survival Analysis. Vol. 66. John Wiley 8 Sons.Google ScholarGoogle Scholar
  82. Mohammad Modarres, Mark P. Kaminskiy, and Vasiliy Krivtsov. 2009. Reliability Engineering and Risk Analysis: A Practical Guide. CRC press.Google ScholarGoogle Scholar
  83. Paul A. Murtaugh, Leslie D. Burns, and Jill Schuster. 1999. Predicting the retention of university students. Research in Higher Education 40, 3 (1999), 355--371.Google ScholarGoogle ScholarCross RefCross Ref
  84. Wayne Nelson. 1972. Theory and applications of hazard plotting for censored failure data. Technometrics 14, 4 (1972), 945--966.Google ScholarGoogle ScholarCross RefCross Ref
  85. Sinno J. Pan and Qiang Yang. 2010. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering 22, 10 (2010), 1345--1359. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Michael J. Pencina and Ralph B. D’Agostino. 2004. Overall C as a measure of discrimination in survival analysis: Model specific population value and confidence interval estimation. Statistics in Medicine 23, 13 (2004), 2109--2123.Google ScholarGoogle ScholarCross RefCross Ref
  87. Margaret S. Pepe. 2003. The Statistical Evaluation of Medical Tests for Classification and Prediction. Oxford University Press.Google ScholarGoogle Scholar
  88. James L. Powell. 1994. Estimation of Semiparametric Models. Handbook of Econometrics 4 (1994), 2443--2521.Google ScholarGoogle ScholarCross RefCross Ref
  89. Adrian Raftery, David Madigan, and Chris T. Volinsky. 1995. Accounting for model uncertainty in survival analysis improves predictive performance. Bayesian Statistics 5, 323--349.Google ScholarGoogle Scholar
  90. Adrian E. Raftery. 1995. Bayesian model selection in social research. Sociological Methodology 25 (1995), 111--163.Google ScholarGoogle ScholarCross RefCross Ref
  91. Vineeth Rakesh, Jaegul Choo, and Chandan K. Reddy. 2015. Project recommendation using heterogeneous traits in crowdfunding. In Proceedings of the 9th International AAAI Conference on Web and Social Media. AAAI Press, Oxford, 337--346.Google ScholarGoogle Scholar
  92. Vineeth Rakesh, Wang-Chien Lee, and Chandan K. Reddy. 2016. Probabilistic group recommendation model for crowdfunding domains. In Proceedings of the 9th ACM International Conference on Web Search and Data Mining. ACM, San Francisco, California, 257--266. Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. Rajesh Ranganath, Adler Perotte, Noémie Elhadad, and David Blei. 2016. Deep survival analysis. arXiv preprint arXiv:1608.02158 (2016).Google ScholarGoogle Scholar
  94. Chandan K. Reddy and Yan Li. 2015. A review of clinical prediction models. Healthcare Data Analytics 36 (2015), 343--378.Google ScholarGoogle Scholar
  95. Matthew Richardson, Ewa Dominowska, and Robert Ragno. 2007. Predicting clicks: Estimating the click-through rate for new ads. In Proceedings of the 16th International Conference on World Wide Web. ACM, Banff, Alberta, 521--530. Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. Frank Rosenblatt. 1958. The perceptron: A probabilistic model for information storage and organization in the brain.Psychological Review 65, 6 (1958), 386--408.Google ScholarGoogle Scholar
  97. Saharon Rosset, Einat Neumann, Uri Eick, and Nurit Vatnik. 2003. Customer lifetime value models for decision support. Data mining and knowledge discovery 7, 3 (2003), 321--339. Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. S. Rasoul Safavian and David Landgrebe. 1991. A survey of decision tree classifier methodology. IEEE Transactions on Systems, Man, and Cybernetics 21, 3 (1991), 660--674.Google ScholarGoogle ScholarCross RefCross Ref
  99. Mark R. Segal. 1988. Regression trees for censored data. Biometrics 44, 1 (1988), 35--47.Google ScholarGoogle ScholarCross RefCross Ref
  100. Pannagadatta K. Shivaswamy, Wei Chu, and Martin Jansche. 2007. A support vector approach to censored targets. In Proceedings of the IEEE International Conference on Data Mining (ICDM). IEEE, Omaha, Nebraska, 655--660. Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. Noah Simon, Jerome Friedman, Trevor Hastie, Rob Tibshirani, et al. 2011. Regularization paths for Coxs proportional hazards model via coordinate descent. Journal of Statistical Software 39, 5 (2011), 1--13.Google ScholarGoogle ScholarCross RefCross Ref
  102. Alex J. Smola and Bernhard Schölkopf. 1998. Learning with Kernels. https://mitpress.mit.edu/books/learning-kernels.Google ScholarGoogle Scholar
  103. Alex J. Smola and Bernhard Schölkopf. 2004. A tutorial on support vector regression. Statistics and Computing 14, 3 (2004), 199--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. Harald Steck, Balaji Krishnapuram, Cary Dehing-oberije, Philippe Lambin, and Vikas C Raykar. 2008. On ranking in survival analysis: Bounds on the concordance index. In Advances in Neural Information Processing Systems. Whistler, British Columbia, 1209--1216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. Robert Tibshirani. 1996. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58, 1 (1996), 267--288.Google ScholarGoogle ScholarCross RefCross Ref
  106. Robert Tibshirani. 1997. The lasso method for variable selection in the Cox model. Statistics in Medicine 16, 4 (1997), 385--395.Google ScholarGoogle ScholarCross RefCross Ref
  107. Robert Tibshirani, Michael Saunders, Saharon Rosset, Ji Zhu, and Keith Knight. 2005. Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67, 1 (2005), 91--108.Google ScholarGoogle ScholarCross RefCross Ref
  108. James Tobin. 1958. Estimation of relationships for limited dependent variables. Econometrica: Journal of the Econometric Society 26, 1 (1958), 24--36.Google ScholarGoogle ScholarCross RefCross Ref
  109. Belle Van, Kristiaan Pelckmans, Huffel S. Van, and Johan A. K. Suykens. 2011. Support vector methods for survival analysis: A comparison between ranking and regression approaches. Artificial Intelligence in Medicine 53, 2 (2011), 107--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. Belle V. Van, Kristiaan Pelckmans, Johan A. K. Suykens, and S. Van Huffel. 2007. Support vector machines for survival analysis. In Proceedings of the 3rd International Conference on Computational Intelligence in Medicine and Healthcare (CIMED’07). Plymouth, 1--8.Google ScholarGoogle Scholar
  111. Hans C. van Houwelingen and Hein Putter. 2011. Dynamic Prediction in Clinical Survival Analysis. CRC Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. Pierre J. M. Verweij and Hans C. Van Houwelingen. 1994. Penalized likelihood in Cox regression. Statistics in Medicine 13, 23-24 (1994), 2427--2436.Google ScholarGoogle ScholarCross RefCross Ref
  113. Bhanukiran Vinzamuri, Yan Li, and Chandan K. Reddy. 2014. Active learning based survival regression for censored data. In Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management. ACM, Shanghai, 241--250. Google ScholarGoogle ScholarDigital LibraryDigital Library
  114. Bhanukiran Vinzamuri, Yan Li, and Chandan K. Reddy. 2017. Pre-processing censored survival data using inverse covariance matrix based calibration. Transactions on Knowledge and Data Engineering 29, 10 (2017), 2111--2124.Google ScholarGoogle ScholarDigital LibraryDigital Library
  115. Bhanukiran Vinzamuri and Chandan K. Reddy. 2013. Cox regression with correlation based regularization for electronic health records. In Proceedings of the IEEE International Conference on Data Mining (ICDM). IEEE, Dallas, TX, 757--766.Google ScholarGoogle Scholar
  116. Sijian Wang, Bin Nan, Ji Zhu, and David G. Beer. 2008. Doubly penalized Buckley--James method for survival data with high-dimensional covariates. Biometrics 64, 1 (2008), 132--140.Google ScholarGoogle ScholarCross RefCross Ref
  117. Achmad Widodo and Bo-Suk Yang. 2011. Application of relevance vector machine and survival probability to machine degradation assessment. Expert Systems with Applications 38, 3 (2011), 2592--2599. Google ScholarGoogle ScholarDigital LibraryDigital Library
  118. Guolei Yang, Ying Cai, and Chandan K. Reddy. 2018. Spatio-temporal check-in time prediction with recurrent neural network based survival analysis. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI). ACM, Stockholm, 2203--2211. Google ScholarGoogle ScholarDigital LibraryDigital Library
  119. Sen Yang, Lei Yuan, Ying-Cheng Lai, Xiaotong Shen, Peter Wonka, and Jieping Ye. 2012. Feature grouping and selection over an undirected graph. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, Beijing, 922--930. Google ScholarGoogle ScholarDigital LibraryDigital Library
  120. Jiawen Yao, Xinliang Zhu, Feiyun Zhu, and Junzhou Huang. 2017. Deep correlational learning for survival prediction from multi-modality data. In Medical Image Computing and Computer-Assisted Intervention (MICCAI’17), Maxime Descoteaux, Lena Maier-Hein, Alfred Franz, Pierre Jannin, D. Louis Collins, and Simon Duchesne (Eds.). Springer International Publishing, 406--414.Google ScholarGoogle Scholar
  121. Jieping Ye and Jun Liu. 2012. Sparse methods for biomedical data. ACM SIGKDD Explorations Newsletter 14, 1 (2012), 4--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  122. Peifeng Yin, Ping Luo, Wang-Chien Lee, and Min Wang. 2013. Silence is also evidence: Interpreting dwell time for recommendation from psychological perspective. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, Chicago, IL, 989--997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  123. Valarie A. Zeithaml, Katherine N. Lemon, and Roland T. Rust. 2001. Driving Customer Equity: How Customer Lifetime Value Is Reshaping Corporate Strategy. Simon and Schuster.Google ScholarGoogle Scholar
  124. Hao H. Zhang and Wenbin Lu. 2007. Adaptive Lasso for Cox’s proportional hazards model. Biometrika 94, 3 (2007), 691--703.Google ScholarGoogle ScholarCross RefCross Ref
  125. Hui Zou and Trevor Hastie. 2005. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67, 2 (2005), 301--320.Google ScholarGoogle ScholarCross RefCross Ref
  126. Blaž Zupan, Janez Demšar, Michael W. Kattan, Robert J. Beck, and Ivan Bratko. 2000. Machine learning for survival analysis: A case study on recurrence of prostate cancer. Artificial Intelligence in Medicine 20, 1 (2000), 59--75. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Machine Learning for Survival Analysis: A Survey

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Computing Surveys
          ACM Computing Surveys  Volume 51, Issue 6
          November 2019
          786 pages
          ISSN:0360-0300
          EISSN:1557-7341
          DOI:10.1145/3303862
          • Editor:
          • Sartaj Sahni
          Issue’s Table of Contents

          Copyright © 2019 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 27 February 2019
          • Accepted: 1 April 2018
          • Revised: 1 December 2017
          • Received: 1 November 2016
          Published in csur Volume 51, Issue 6

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • survey
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format