skip to main content
survey

Multi-Robot Assembly Strategies and Metrics

Published:04 January 2018Publication History
Skip Abstract Section

Abstract

We present a survey of multi-robot assembly applications and methods and describe trends and general insights into the multi-robot assembly problem for industrial applications. We focus on fixtureless assembly strategies featuring two or more robotic systems. Such robotic systems include industrial robot arms, dexterous robotic hands, and autonomous mobile platforms, such as automated guided vehicles. In this survey, we identify the types of assemblies that are enabled by utilizing multiple robots, the algorithms that synchronize the motions of the robots to complete the assembly operations, and the metrics used to assess the quality and performance of the assemblies.

References

  1. ABB Automation Technologies BA, Robotics. Robotics Application Manual: Force Control for Assembly. SE-721 68. Vasteras, Sweden.Google ScholarGoogle Scholar
  2. K. Abd, K. Abdhary, and R. Marian. 2011. A scheduling framework for robotic flexible assembly cells. King Mongkut’s University of Technology North Bangkok: Int. J. Appl. Sci. Technol. 4, 1 (2011), 31--38.Google ScholarGoogle Scholar
  3. Tauseef Aized. 2009. Modelling and performance maximization of an integrated automated guided vehicle system using coloured Petri net and response surface methods. Comput. Industr. Eng. 57 (2009), 822--831. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Ji-Hun Bae. 2014a. Peg-in-Hole Assembly by Hand-Arm Coordination. Retrieved from https://www.youtube.com/watch?v=G-52JZVbBt8.Google ScholarGoogle Scholar
  5. Ji-Hun Bae. 2014b. Robotic Dual Hand-Arm Manipulation: Robotic Peg-in-Hole. (7 January, 2015 2014). Retrieved from https://www.youtube.com/watch?v=j5qcDDifzpk.Google ScholarGoogle Scholar
  6. Ji-Hun Bae, Sung-Woo Park, Jae-Han Park, Moon-Hong Baeg, Doik Kim, and Sang-Rok Oh. 2012. Development of a low cost anthropomorphic robot hand with high capability. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. 4776--4782. Google ScholarGoogle ScholarCross RefCross Ref
  7. Tucker Balch and Lynne E. Parker. 2002. Robot Teams: From Diversity to Polymorphism. AK Peters, Ltd.Google ScholarGoogle Scholar
  8. Simon Bøgh, Mads Hvilshøj, Morten Kristiansen, and Ole Madsen. 2011. Autonomous industrial mobile manipulation (AIMM): from research to industry. In Proceedings of the 42nd International Symposium on Robotics. 1--9.Google ScholarGoogle Scholar
  9. Adrienne Bolger, Matt Faulkner, David Stein, Lauren White, Seung kook Yun, and Daniela Rus. 2010. Experiments in decentralized robot construction with tool delivery and assembly robots. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. 5085--5092.Google ScholarGoogle ScholarCross RefCross Ref
  10. M. Bonert, L. H. Shu, and B. Benhabib. 2010. Motion planning for multi-robot assembly systems. Int. J. Comput. Integr. Manufact. 13, 4 (2010), 301--310. Google ScholarGoogle ScholarCross RefCross Ref
  11. Roger BostelMan, James Albus, Nicholas Dagalakis, and Adam Jacoff. 1996. RoboCrane [R] project: An advanced concept for large scale manufacturing. In Proceedings of the Association for Unmanned Vehicle Systems International (AUVSI’96). 509--522.Google ScholarGoogle Scholar
  12. Torgny Brogårdh. 2009. Robot control overview: An industrial perspective. Model. Ident. Control 30, 3 (2009), 167--180.Google ScholarGoogle ScholarCross RefCross Ref
  13. Michael E. Caine, Tomas Lozano-Pérez, and Warren P. Seering. 1989. Assembly strategies for chamferless parts. In Proceedings of the IEEE International Conference on Robotics and Automation. 472--477.Google ScholarGoogle Scholar
  14. Christian Carøe. 2012. Rotor Shaft Assembly Using the KUKA LWR. Retrieved from https://www.youtube.com/watch?v=bR77UhcS0z4.Google ScholarGoogle Scholar
  15. Christian Carøe, Mikkel Hvilshøj, and Casper Schou. 2012. Intuitive Programming of AIMM Robot. Thesis, Aalborg University, Aalborg, Denmark.Google ScholarGoogle Scholar
  16. Siddhart R. Chhatpar and Michael S. Branicky. 2001. Search strategies for peg-in-hole assemblies with position uncertainty. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. 1465--1470. Google ScholarGoogle ScholarCross RefCross Ref
  17. Benjamin Y. Choo, Stephen C. Adams, Brian A. Weiss, Jeremy A. Marvel, and Peter A. Beling. 2016. Adaptive multi-scale prognostics and health management for smart manufacturing systems. Int. J. Prognost. Health Manage. 7 (2016).Google ScholarGoogle Scholar
  18. Pierre Dauchez, Philippe Fraisse, and François Pierrot. 2005. A vision/position/force control approach for performing assembly tasks with a humanoid robot. In Proceedings of the 5th IEEE-RAS International Conference on Humanoid Robots. 277--282. Google ScholarGoogle ScholarCross RefCross Ref
  19. Dominique Deneux. 1999. Introduction to assembly features: An illustration synthesis methodology. J. Intell. Manufact. 10 (1999), 29--39. Google ScholarGoogle ScholarCross RefCross Ref
  20. M. A. Diftler, J. S. Mehling, M. E. Abdallah, N. A. Radford, L. B. Bridgwater, A. M. Sanders, R. S. Askew, D. M. Linn, J. D. Yamokoski, F. A. Permenter, B. K. Hargrave, R. Platt, R. T. Savely, and R. O. Ambrose. 2011. Robotnaut 2 - The first humanoid robot in space. In Proceedings of the IEEE International Conference on Robotics and Automation. 2178--2183.Google ScholarGoogle Scholar
  21. Gregory Dorais, R. Peter Bonasso, David Kortenkamp, Barney Pell, and Debra Schreckenghost. 1999. Adjustable autonomy for human-centered autonomous systems. In Proceedings of the 16th International Joint Conference on Artificial Intelligence Workshop on Adjustable Autonomy Systems. 16--35.Google ScholarGoogle Scholar
  22. Rajesh Doriya, Siddharth Mishra, and Swati Gupta. 2015. A brief survey and analysis of multi-robot communication and coordination. In Proceedings of the 2015 International Conference on Computing, Communication, and Automation (ICCCA’15). IEEE, 1014--1021. Google ScholarGoogle ScholarCross RefCross Ref
  23. Anthony Downs, Anthony Downs, William Harrison, William Harrison, Craig Schlenoff, and Craig Schlenoff. 2016. Test methods for robot agility in manufacturing. Industr. Robot: Int. J. 43, 5 (2016), 563--572. Google ScholarGoogle ScholarCross RefCross Ref
  24. S. Edwards and C. Lewis. 2012. Applying the robot operating system (ROS) to industrial applications. Proceedings of the IEEE International Conference on Robotics and Automation: ECHORD Workshop (2012).Google ScholarGoogle Scholar
  25. Joe Falco, Jeremy Marvel, and Elena Messina. 2013. Proceedings of the NISTIR-7940: Dexterous Manipulation for Manufacturing Applications Workshop. Report. National Institute of Standards and Technology.Google ScholarGoogle Scholar
  26. Hamed Fazlollahtabar, Borna Rezaie, and Hassan Kalantari. 2010. Mathematical programming approach to optimize material flow in an AGV-based flexible jobshop manufacturing system with performance analysis. Int. J. Adv. Manufact. Technol. 51 (2010), 1149--1158. Google ScholarGoogle ScholarCross RefCross Ref
  27. Yanqiong Fei and Xifang Zhao. 2003. An assembly process modeling and analysis for robotic multiple peg-in-hole. J. Intell. Robot. Syst. 36 (2003), 175--189. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Li-Chen Fu and Yung-Jen Hsu. 1993. Fully automated two-robot assembly cell. In Proceedings of the IEEE International Conference on Robotics and Automation. 332--338. Google ScholarGoogle ScholarCross RefCross Ref
  29. Seiji Furuno, Motoji Yamamoto, and Akira Mohri. 2003. Trajectory planning of mobile manipulator with stability considerations. In Proceedings of the IEEE International Conference on Robotics and Automation. 3403--3408. Google ScholarGoogle ScholarCross RefCross Ref
  30. A. Gayretli and H. S. Abdalla. 1999. A feature-based prototype system for the evaluation and optimization of manufacturing processes. In Proceedings of the 24th International Conference on Computer and Industrial Engineering, Vol. 37. 481--484.Google ScholarGoogle Scholar
  31. Suat Genc, Robert W. Messler Jr., and Gary A. Gabriele. 1998. A systematic approach to integral snap-fit attachment design. Res. Eng. Design 10 (1998), 84--93. Google ScholarGoogle ScholarCross RefCross Ref
  32. P. R. Glibert, D. Coupez, Y. M. Peng, and A. Delchambre. 1990. Scheduling of a multi-robot assembly cell. Comput. Integr. Manufact. Syst. 3, 4 (1990), 236--245. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Dave Gravel, Frank Maslar, George Zhang, Srini Nidamarthi, Heping Chen, and Tom Fuhlbrigge. 2008. Toward robotizing powertrain assembly. In Proceedings of the 7th World Congress on Intelligent Control and Automation. 541--546. Google ScholarGoogle ScholarCross RefCross Ref
  34. David P. Gravel and Wyatt S. Newman. 2001. Flexible robotic assembly efforts at ford motor company. In Proceedings of the 2001 IEEE International Symposium on Intelligent Control. 173--182. Google ScholarGoogle ScholarCross RefCross Ref
  35. Brad Hamner, Seth Koterba, Jane Shi, Reid Simmons, and Sanjiv Singh. 2010. An autonomous mobile manipulator for assembly tasks. Auton. Robots 28 (2010), 131--149. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Alwin Hoffmann. 2012. Factory 2020 - Final Version. Retrieved from https://www.youtube.com/watch?v=gf3673XkHCw.Google ScholarGoogle Scholar
  37. Alwin Hoffmann. 2014. SoftRobot. Retrieved from https://swt.informatik.uni-augsburg.de/softrobot/hauptseite/hauptseite.html.Google ScholarGoogle Scholar
  38. Norbert A. M. Hootsman, Steven Dubowsky, and Patrick Z. Mo. 1992. The experimental performance of a mobile manipulator control algorithm. In Proceedings of the IEEE International Conference on Robotics and Automation. 1948--1954. Google ScholarGoogle ScholarCross RefCross Ref
  39. Andreas Hörmann, W. Meier, and J. Schloen. 1989. A control architecture for an advanced fault-tolerant robot system. In Proceedings of the Intelligent Autonomous Systems 2, an International Conference. 576--585.Google ScholarGoogle Scholar
  40. Andreas Hörmann and Ulrich Rembold. 1991. Development of an advanced robot for autonomous assembly. In Proceedings of the IEEE International Conference on Robotics and Autonomous Systems. 2452--2457.Google ScholarGoogle ScholarCross RefCross Ref
  41. Satoshi Hoshino, Hiroya Seki, and Yuji Naka. 2008. Development of a flexible and agile multi-robot manufacturing system. In Proceedings of the 17th International Federation of Automatic Control World Congress. Google ScholarGoogle ScholarCross RefCross Ref
  42. Sheng-Fen Hsieh. 2003. Re-configurable dual-robot assembly system design, development and future directions. Industr. Robot: Int. J. 30, 3 (2003), 250--257. Google ScholarGoogle ScholarCross RefCross Ref
  43. ISO 9283 1998. ISO 9126 Manipulating Industrial Robots—Performance Criteria and Related Test Methods. Standard. International Organization for Standardization.Google ScholarGoogle Scholar
  44. Dennis Jarvis, Jacqueline Jarvis, Duncan McFarlane, Andrew Lucas, and Ralph Rönnquist. 2001. Implementing a multi-agent systems approach to collaborative autonomous manufacturing operations. In Proceedings of the Aerospace Conference, Vol. 6. 2803--2811. Google ScholarGoogle ScholarCross RefCross Ref
  45. Danny J. Johnson. 1999. Assembly cells versus assembly lines: Insights on performance improvements from simulation experiments and a case study. Supply Chain and Information Management Conference Papers, Posters and Proceedings (1999), 999--1001.Google ScholarGoogle Scholar
  46. Meir Kalech. 2012. Diagnosis of coordination failures: A matrix-based approach. Auton. Agents Multi-Agent Syst. 24, 1 (2012), 69--103. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Meir Kalech and Gal A. Kaminka. 2007. On the design of coordination diagnosis algorithms for teams of situated agents. Artific. Intell. 171, 8 (2007), 491--513. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Gal A. Kaminka, Dan Erusalimchik, and Sarit Kraus. 2010. Adaptive multi-robot coordination: A game-theoretic perspective. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA’10). IEEE, 328--334. Google ScholarGoogle ScholarCross RefCross Ref
  49. Kenji Kaneko, Fumio Kanehiro, Shuuji Kajita, Kazuhiko Yokoyama, Kazuhiko Akachi, Toshikazu Kawasaki, Shigehiko Ota, and Takakatsu Isozumi. 2002. Design of prototype humanoid robotics platform for HRP. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. 2431--2436. Google ScholarGoogle ScholarCross RefCross Ref
  50. Ozcan Kilincci. 2010. A petri net-based heuristic for simple assembly line balancing problem of type 2. Int. J. Adv. Manufact. Technol. 46 (2010), 329--338. Google ScholarGoogle ScholarCross RefCross Ref
  51. Ozcan Kilincci and G. Mirac Bayhan. 2008. A p-invariant-based algorithm for simple assembly line balancing problem of type-1. Int. J. Adv. Manufact. Technol. 37 (2008), 400--409. Google ScholarGoogle ScholarCross RefCross Ref
  52. Ross A. Knepper, Todd Layton, John Romanishin, and Daniela Rus. 2013. IkeaBot: An autonomous multi-robot coordinated furniture assembly system. In Proceedings of the IEEE International Conference on Robotics and Automation. Google ScholarGoogle ScholarCross RefCross Ref
  53. Soenke Kock, Timothy Vittor, Bjoern Matthias, Henrik Jerregard, Mats Källman, Ivan Lundberg, Roger Mellander, and Mikael Hedelind. 2011. Robot concept for scalable, flexible assembly automation: A technology study on a harmless dual-armed robot. In Proceedings of the IEEE International Symposium on Assembly and Manufacturing. 1--5. Google ScholarGoogle ScholarCross RefCross Ref
  54. G. Ayorkor Korsah, Anthony Stentz, and M. Bernardine Dias. 2013. A comprehensive taxonomy for multi-robot task allocation. Int. J. Robot. Res. 32, 12 (2013), 1495--1512. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. J. Krüger, T. K. Lien, and A. Verl. 2009. Cooperation of human and machines in assembly lines. CIRP Ann. Manufact. Technol. 58 (2009), 628--646.Google ScholarGoogle ScholarCross RefCross Ref
  56. Jaesung Kwon, Woosung Yang, Yosun Lee, Ji-Hun Bae, and Younghwan Oh. 2014. Biologically inspired control algorithm for an unified motion of whole robotic arm-hand system. In Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication. 398--404. Google ScholarGoogle ScholarCross RefCross Ref
  57. Jin-Kyu Lee and Tae-Eog Lee. 2010. Automata-based supervisory control logic design for a multi-robot assembly cell. Int. J. Comput. Integr. Manufact. 15, 4 (2010), 319--334. Google ScholarGoogle ScholarCross RefCross Ref
  58. Hsin-Te Liao and Ming C. Leu. 1998. Analysis of impact in robotic peg-in-hole assembly. Robotica 16, 3 (1998), 347--356. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Tim C. Lueth, Uwe M. Nassal, and Ulrich Rembold. 1995. Reliability and integrated capabilities of locomotion and manipulation for autonomous robot assembly. J. Robot. Auton. Syst. 14 (1995), 185--198. Google ScholarGoogle ScholarCross RefCross Ref
  60. Ole Madsen, Simon Bøgh, Casper Schou, Rasmus Skovgaard Andersen, Jens Skov Damgaard, Mikkel Rath Pedersen, and Volker Krüger. 2015. Integration of mobile manipulators in an industrial production. Industr. Robot: Int. J. 42, 1 (2015), 11--18. Google ScholarGoogle ScholarCross RefCross Ref
  61. Jeremy Marvel, Elena Messina, Brian Antonishek, Lisa Fronczek, and Karl Van Wyk. 2015. NISTIR 8093: Tools for Collaborative Robots within SME Workcells. Report. National Institute of Standards and Technology. Retrieved from http://dx.doi.org/10.6028/NIST.IR.8093. Google ScholarGoogle ScholarCross RefCross Ref
  62. Jeremy A. Marvel. 2010. Autonomous Learning for Robotic Assembly Applications. Dissertation, Case Western Reserve University, Cleveland, OH, USA.Google ScholarGoogle Scholar
  63. Jeremy A. Marvel and Joe Falco. 2012. NISTIR 7901: Best Practices and Performance Metrics Using Force Control for Robotic Assembly. Report. National Institute of Standards and Technology. Retrieved from http://dx.doi.org/10.6028/NIST.IR.7901. Google ScholarGoogle ScholarCross RefCross Ref
  64. Jeremy A. Marvel, Wyatt S. Newman, Dave P. Gravel, George Zhang, Jianjun Wang, and Tom Fuhlbrigge. 2008. Automated learning for paramter optimization of robotic assembly tasks utilizing genetic algorithms. In Proceedings of the IEEE International Conference on Robotics and Biomimetics. 179--184.Google ScholarGoogle Scholar
  65. Jeremy A. Marvel and Rick Norcross. 2017. Implementing speed and separation monitoring in collaborative robot workcells. Robot. Comput.-Integr. Manufact. 44 (2017), 144--155. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Roberto Micalizio and Pietro Torasso. 2014. Cooperative monitoring to diagnose multiagent plans.J. Artific. Intell. Res. (JAIR) 51 (2014), 1--70.Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Yaskawa Motoman. 2013. Yaskawa Motoman MH80 Robot Unloading Trucks. Retrieved from https://www.youtube.com/watch?v=8wngL0BnF_4.Google ScholarGoogle Scholar
  68. Tetsuya Mouri, Haruhisa Kawasaki, and Katsuya Umebayashi. 2005. Developments of new anthropomorphic robot hand and its master slave system. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. 3225--3230. Google ScholarGoogle ScholarCross RefCross Ref
  69. Wyatt S. Newman, Yonghong Zhao, and Yoh-Han Pao. 2001. Interpretation of force and moment signals for compliant peg-in-hole assembly. In Proceedings of the IEEE International Conference on Robotics and Automation. 571--576. Google ScholarGoogle ScholarCross RefCross Ref
  70. Harald Niederreiter. 1978. Quasi-monte carlo methods and pseudo-random numbers. Bull. Amer. Math. Soc. 84, 6 (1978), 957--1041. Google ScholarGoogle ScholarCross RefCross Ref
  71. Johan Niemann. 2013. Development of a Reconfigurable Assembly System with Enhanced Control Capabilities and Virtual Commissioning. Thesis, Central University of Technology, Free State, Bloemfontein, South Africa.Google ScholarGoogle Scholar
  72. Shimon Y. Nof and Zvi Drezner. 1993. The multiple-robot assembly plan problem. J. Intell. Robot. Syst. 5 (1993), 57--71. Google ScholarGoogle ScholarCross RefCross Ref
  73. Nikolaos Papakostas, George Michaelos, Stiris Makris, Dimitris Zouzias, and George Chryssolouris. 2011. Industrial applications with cooperaing robots for flexible assembly. Int. J. Comput. Integr. Manufact. 24, 7 (2011), 650--660. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Chanhun Park, Kyoungtaik Park, Dong IL Park, and Jin-Ho Kyung. 2009. Dual arm robot manipulator and its easy teaching system. In Proceedings of the IEEE International Symposium on Assembly and Manufacturing. 242--247.Google ScholarGoogle ScholarCross RefCross Ref
  75. Hyeonjun Park, Ji-Hun Bae, Jae-Han Park, Moon-Hong Baeg, and Jaeheung Park. 2013. ntuitive peg-in-hole assembly strategy with a compliant manipulator. In Proceedings of the 44th International Symposium on Robotics. 1--5.Google ScholarGoogle Scholar
  76. Rajendra Patel, Mikael Hedeling, and Pablo Lozan-Villegas. 2012. Enabling robots in small-part assembly lines: The “ROSETTA approach”—An industrial perspective. In Proceedings of the ROBOTIK 2012: 7th German Conference on Robotics. 1--5.Google ScholarGoogle Scholar
  77. Lars Petersson, David Austin, and Danica Kragic. 2000. High-level control of a mobile manipulator for door opening. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. 2333--2338. Google ScholarGoogle ScholarCross RefCross Ref
  78. Bui Trong Quan, Jian Huang, Minoru Harada, and Tetsuro Yabuta. 2006. Control of a macro-micro robot system using manipulability of the micro robot. JSME Int. J. Ser. C: Mech. Syst. Mach. Elem. Manufact. 49, 3 (2006), 897--904. Google ScholarGoogle ScholarCross RefCross Ref
  79. Carlos Rodríguez, Andrés Monta no, and Raúl Suárez. 2013. Manipulation tasks with a dual arm system including obstacles removing. In Proceedings of the IEEE 18th Conference on Emerging Technologies and Factory Automation. 1--7.Google ScholarGoogle ScholarCross RefCross Ref
  80. J. Rojas and Richard A. Peters II. 2012. Analysis of autonomous cooperative assembly using coordination schemes by heterogeneous robots using a control basis approach. Auton. Robots 32, 4 (2012), 369--383. DOI:http://dx.doi.org/10.1007/s10514-012-9274-3 Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Brian Rooks. 2001. AGVs find their way to greater flexibility. Assembly Automat. 21, 1 (2001), 38--43. Google ScholarGoogle ScholarCross RefCross Ref
  82. Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. 2014. Programmable self-assembly in a thousand-robot swarm. Science 345, 6198 (2014), 795--799. Google ScholarGoogle ScholarCross RefCross Ref
  83. Jean-Philippe Saut, Mokhtar Gharbi, Juan Cortéz, Daniel Sidobre, and Thierry Siméon. 2010. Planning pick-and-place tasks with two-handed regrasping. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. 4528--4533.Google ScholarGoogle Scholar
  84. Joseph M. Schimmels. 2002. Method and apparatus for assembling rigid parts. US patent US6408531 B1.Google ScholarGoogle Scholar
  85. Brennan Sellner, Frederik W Heger, Laura M Hiatt, Reid Simmons, and Sanjiv Singh. 2006. Coordinated multi-agent teams and sliding autonomy for large-scale assembly. In Special Issue Proc. IEEE Multi-Robot Syst. IEEE.Google ScholarGoogle Scholar
  86. M. A. Sequeira and A. H. Basson. 2009. Case study of a fixture-based reconfigurable assembly system. In Proceedings of the IEEE International Symposium on Assembly and Manufacturing. 387--392. Google ScholarGoogle ScholarCross RefCross Ref
  87. Andre Sharon, Neville Hogan, and David Hardt. 1993. The macro/micro manipulator: An improved architecture for robot control. Robot. Comput. Integr. Manufact. 10, 3 (1993), 209--222. Google ScholarGoogle ScholarCross RefCross Ref
  88. Ruhizan Liza Ahmad Shauri and Kenzo Nonami. 2011. Assembly manipulation of small objects by dual-arm manipulator. Assembly Automat. 31, 3 (2011), 263--274. Google ScholarGoogle ScholarCross RefCross Ref
  89. Jane Shi and Roland Menassa. 2010. Flexible robotic assembly in dynamic environments. In Proceedings of the 10th Performance Metrics for Intelligent Systems Workshop. 271--276. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. Michael Shneier and Roger Bostelman. 2014. NISTIR-8022: Literature Review of Mobile Robots for Manufacturing. Report. National Institute of Standards and Technology.Google ScholarGoogle Scholar
  91. Reid Simmons, Sanjiv Singh, David Hershberger, Josue Ramos, and Trey Smith. 2000. First results in the coordination of heterogeneous robots for large-scale assembly. In Proceedings of the 7th International Symposium on Experimental Robotics (ISER’00). 323--332.Google ScholarGoogle Scholar
  92. Ashley Stroupe, Terry Huntsberger, Avi Okon, Hrand Aghazarian, and Matthew Robinson. 2005. Behavior-based multi-robot collaboration for autonomous construction tasks. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. 1495--1500. Google ScholarGoogle ScholarCross RefCross Ref
  93. Liying Su, Lei Shi, Yucqing Yu, and Qixiao Xia. 2009. Bolt and screw assemblage throug collaborative kinematics operation of two modular robots based on the position feedback. In Proceedings of the IEEE International Conference on Information and Automation. 1574--1579.Google ScholarGoogle Scholar
  94. Thomas Sugar and Vijay Kumar. 2008. Control and Coordination of Multiple Mobile Robots in Manipulation and Material Handling Tasks. Vol. 250. 15--24.Google ScholarGoogle ScholarCross RefCross Ref
  95. Dong Sun and James K. Mills. 2002. Adaptive synchronized control for coordination of multirobot assembly tasks. IEEE Trans. Robot. Automat. 18, 4 (2002), 498--510. Google ScholarGoogle ScholarCross RefCross Ref
  96. Wheelift Systems. Custom Engineered AGV Systems for Heavy Assembly Operations. Retrieved from http://www.wheelift.com/agv_systems.html.Google ScholarGoogle Scholar
  97. Jun Takamatsu, Koichi Ogawara, Hiroshi Kimura, and Katsushi Ikeuchi. 2007. Recognizing assembly tasks through human demonstration. Int. J. Robot. Res. 26 (2007), 641--659. Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. Milind Tambe. 1997. Agent architectures for flexible. In Proceedings of the 14th National Conference on Artificial Intelligence (AI’07). AAAI press. 22--28.Google ScholarGoogle Scholar
  99. U. Thomas, S. Molkenstruck, R. Iser, and F. M. Wahl. 2007. Multi sensor fusion in robot assembly using particle filters. In Proceedings of the IEEE International Conference on Robotics and Automation. 3837--3843. Google ScholarGoogle ScholarCross RefCross Ref
  100. William Townsend. 2000. The barretthand grasper—Programmbly flexible part handling and assembly. Industr. Robot: Int. J. 27, 3 (2000), 181--188. Google ScholarGoogle ScholarCross RefCross Ref
  101. Hamid Ullah, Erik L. J. Bohez, and M. A. Irfan. 2006. Assembly features: Definition, classification, and instantiation. In Proceedings of the IEEE 2006 International Conference on Emerging Technologies. 617--623.Google ScholarGoogle Scholar
  102. H. van Dyke Parunak. 1999. Industrial and Practical Applications of DAI. MIT Press, Cambridge, MA,337--421.Google ScholarGoogle Scholar
  103. Winfried van Holland and Willem F. Bronsvoort. 2000. Assembly features in modeling and planning. Robot. Comput. Integr. Manufact. 16 (2000), 277--294. Google ScholarGoogle ScholarCross RefCross Ref
  104. Karl Van Wyk and Jeremy A. Marvel. 2017. Strategies for improving and evaluating robot registration performance. IEEE Trans. Auto. Sci. Eng. (2017).Google ScholarGoogle Scholar
  105. Dragoljub Šurdilovic, Francesco Grassini, and Maurizio De Bartolemei. 2001. Synthesis of impedance control for complex co-operating robot assembly task. In Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics. 1181--1186.Google ScholarGoogle ScholarCross RefCross Ref
  106. Patrick Waurzyniak. 2013. Aerospace automation picks up the pace. Manufact. Eng. 150, 3 (2013), 55--62.Google ScholarGoogle Scholar
  107. Daniel E. Whitney. 1982. Quasi-static assembly of compliantly supported rigid parts. J. Dynam. Syst. Measure. Control 104, 1 (1982), 65--77. Google ScholarGoogle ScholarCross RefCross Ref
  108. Charles Wick and Raymond F. Veilleux (Eds.). 1987 Tools and Manufacturing Engineers Handbook: Volume 4: Quality Control and Assembly (4th Ed.). Dearborn, MI, USA.Google ScholarGoogle Scholar
  109. Yanchun Xia, Yuehong Yin, and Zhaoneng Chen. 2005. Dynamic analysis for peg-in-hole assembly with contact deformation. Int. J. Adv. Manufact. Technol. 30, 1--2 (2005), 118--128.Google ScholarGoogle Scholar
  110. Y. Yamada, S. Nagamatsu, and Y. Sato. 1995. Development of multi-arm robots for automobile assembly. In Proceedings of the IEEE International Conference on Robotics and Automation. 2224--2229. Google ScholarGoogle ScholarCross RefCross Ref
  111. Zhi Yan, Nicolas Jouandeau, and Arab Ali Cherif. 2013. A survey and analysis of multi-robot coordination. Int. J. Adv. Robot. Syst. 10, 399 (2013), 1--18. Google ScholarGoogle ScholarCross RefCross Ref
  112. Peijiang Yuan. 2006. An adaptive feedback scheduling algorithm for robot assembly and real-time control systems. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. 2226--2231. Google ScholarGoogle ScholarCross RefCross Ref
  113. George Zhang, Arnold Bell, Hui Zhang, Jianmin He, Jianjun Wang, and Carlos Martinez. 2008. On-pendant robotic assembly parameter optimization. In Proceedings of the 7th World Congress on Intelligent Control and Automation. 547--552. Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Multi-Robot Assembly Strategies and Metrics

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Computing Surveys
            ACM Computing Surveys  Volume 51, Issue 1
            January 2019
            743 pages
            ISSN:0360-0300
            EISSN:1557-7341
            DOI:10.1145/3177787
            • Editor:
            • Sartaj Sahni
            Issue’s Table of Contents

            Copyright © 2018 Public Domain

            This paper is authored by an employee(s) of the United States Government and is in the public domain. Non-exclusive copying or redistribution is allowed, provided that the article citation is given and the authors and agency are clearly identified as its source.

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 4 January 2018
            • Accepted: 1 October 2017
            • Revised: 1 September 2017
            • Received: 1 December 2016
            Published in csur Volume 51, Issue 1

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • survey
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader