skip to main content
10.1145/2939672.2939764acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article
Public Access
Honorable Mention

Predicting Matchups and Preferences in Context

Published:13 August 2016Publication History

ABSTRACT

We present a general probabilistic framework for predicting the outcome of pairwise matchups (e.g. two-player sport matches) and pairwise preferences (e.g. product preferences), both of which have widespread applications ranging from matchmaking in computer games to recommendation in e-commerce. Unlike existing models for these tasks, our model not only learns representations of the items in a more expressive latent vector space, but also models how context modifies matchup and preference outcomes. For example, the context "weather" may alter the winning probability in a tennis match, or the fact that the user is on a mobile device may alter his preferences among restaurants. More generally, the model is capable of handling any symmetric game/comparison problem that can be described by vectorized player/item and game/context features. We provide a comprehensive evaluation of its predictive performance with real datasets from both domains to show its ability to predict preference and game outcomes more accurately than existing models. Furthermore, we demonstrate on synthetic datasets the expressiveness of the model when compared against theoretical limits.

Skip Supplemental Material Section

Supplemental Material

kdd2016_chen_predicting_matchups_01-acm.mp4

mp4

301.5 MB

References

  1. Wikipedia page on elo rating system. https://en.wikipedia.org/wiki/Elo_rating_system.Google ScholarGoogle Scholar
  2. R. P. Adams, G. E. Dahl, and I. Murray. Incorporating side information in probabilistic matrix factorization with gaussian processes. arXiv preprint arXiv:1003.4944, 2010.Google ScholarGoogle Scholar
  3. G. Adomavicius, R. Sankaranarayanan, S. Sen, and A. Tuzhilin. Incorporating contextual information in recommender systems using a multidimensional approach. ACM Transactions on Information Systems (TOIS), 23(1):103--145, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. D. Agarwal and B.-C. Chen. Regression-based latent factor models. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 19--28. ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. L. Baltrunas and F. Ricci. Context-based splitting of item ratings in collaborative filtering. In Proceedings of the third ACM conference on Recommender systems, pages 245--248. ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. C. M. Bishop. Pattern recognition and machine learning. springer, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. R. A. Bradley and M. E. Terry. Rank analysis of incomplete block designs: I. the method of paired comparisons. Biometrika, pages 324--345, 1952.Google ScholarGoogle ScholarCross RefCross Ref
  8. M. Cattelan et al. Models for paired comparison data: A review with emphasis on dependent data. Statistical Science, 27(3):412--433, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  9. D. Causeur and F. Husson. A 2-dimensional extension of the bradley--terry model for paired comparisons. Journal of statistical planning and inference, 135(2):245--259, 2005.Google ScholarGoogle Scholar
  10. S. Chen and T. Joachims. Modeling intransitivity in matchup and comparison data. In Proceedings of The 9th ACM International Conference on Web Search and Data Mining (WSDM). ACM, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. W. Chu and Z. Ghahramani. Preference learning with gaussian processes. In Proceedings of the 22nd international conference on Machine learning, pages 137--144. ACM, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. W. W. Cohen, R. E. Schapire, and Y. Singer. Learning to order things. In Advances in Neural Information Processing Systems 10: Proceedings of the 1997 Conference, volume 10, page 451. MIT Press, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. P. Dangauthier, R. Herbrich, T. Minka, T. Graepel, et al. Trueskill through time: Revisiting the history of chess. In NIPS, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. O. Delalleau, E. Contal, E. Thibodeau-Laufer, R. C. Ferrari, Y. Bengio, and F. Zhang. Beyond skill rating: Advanced matchmaking in ghost recon online. Computational Intelligence and AI in Games, IEEE Transactions on, 4(3):167--177, 2012.Google ScholarGoogle Scholar
  15. J. Fürnkranz and E. Hüllermeier. Preference learning. Springer, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. W. V. Gehrlein. The probability of intransitivity of pairwise comparisons in individual preference. Mathematical social sciences, 17(1):67--75, 1989.Google ScholarGoogle Scholar
  17. M. E. Glickman. A comprehensive guide to chess ratings. American Chess Journal, 3:59--102, 1995.Google ScholarGoogle Scholar
  18. R. Herbrich, T. Minka, and T. Graepel. Trueskill™: A bayesian skill rating system. In Advances in Neural Information Processing Systems, pages 569--576, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. T.-K. Huang, C.-J. Lin, and R. C. Weng. Ranking individuals by group comparisons. In Proceedings of the 23rd international conference on Machine learning, pages 425--432. ACM, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. Huber, J. W. Payne, and C. Puto. Adding asymmetrically dominated alternatives: Violations of regularity and the similarity hypothesis. Journal of consumer research, pages 90--98, 1982.Google ScholarGoogle Scholar
  21. D. R. Hunter. Mm algorithms for generalized bradley-terry models. Annals of Statistics, pages 384--406, 2004.Google ScholarGoogle Scholar
  22. T. Joachims et al. Evaluating retrieval performance using clickthrough data., 2003.Google ScholarGoogle Scholar
  23. T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay. Accurately interpreting clickthrough data as implicit feedback. In Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval, pages 154--161. ACM, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. D. Jurafsky and J. H. Martin. Speech & language processing. Pearson Education India, 2000.Google ScholarGoogle Scholar
  25. A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver. Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering. In Proceedings of the fourth ACM conference on Recommender systems, pages 79--86. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. P. Linares. Are inconsistent decisions better? an experiment with pairwise comparisons. European Journal of Operational Research, 193(2):492--498, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  27. R. D. Luce. Individual Choice Behavior a Theoretical Analysis. john Wiley and Sons, 1959.Google ScholarGoogle Scholar
  28. K. O. May. Intransitivity, utility, and the aggregation of preference patterns. Econometrica: Journal of the Econometric Society, pages 1--13, 1954.Google ScholarGoogle Scholar
  29. I. McHale and A. Morton. A bradley-terry type model for forecasting tennis match results. International Journal of Forecasting, 27(2):619--630, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  30. J. E. Menke and T. R. Martinez. A bradley--terry artificial neural network model for individual ratings in group competitions. Neural computing and Applications, 17(2):175--186, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. T. V. Nguyen, A. Karatzoglou, and L. Baltrunas. Gaussian process factorization machines for context-aware recommendations. In Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval, pages 63--72. ACM, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. S. Nikolenko and A. Sirotkin. A new bayesian rating system for team competitions. In Proceedings of the 28th International Conference on Machine Learning (ICML-11), pages 601--608, 2011.Google ScholarGoogle Scholar
  33. C. Ono, Y. Takishima, Y. Motomura, and H. Asoh. Context-aware preference model based on a study of difference between real and supposed situation data. UMAP, 9:102--113, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. F. Radlinski and T. Joachims. Query chains: learning to rank from implicit feedback. In Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining, pages 239--248. ACM, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. X. Ramirez-Garcia and M. García-Valdez. Post-filtering for a restaurant context-aware recommender system. In O. Castillo, P. Melin, W. Pedrycz, and J. Kacprzyk, editors, Recent Advances on Hybrid Approaches for Designing Intelligent Systems, volume 547 of Studies in Computational Intelligence, pages 695--707. Springer International Publishing, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  36. S. Rendle, Z. Gantner, C. Freudenthaler, and L. Schmidt-Thieme. Fast context-aware recommendations with factorization machines. In Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval, pages 635--644. ACM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. P. Resnick and H. R. Varian. Recommender systems. Communications of the ACM, 40(3):56--58, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors. Cognitive modeling, 5:3, 1988.Google ScholarGoogle Scholar
  39. Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, A. Hanjalic, and N. Oliver. Tfmap: Optimizing map for top-n context-aware recommendation. In Proceedings of the 35th international ACM SIGIR conference on Research and development in information retrieval, pages 155--164. ACM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. I. Simonson and A. Tversky. Choice in context: Tradeoff contrast and extremeness aversion. JMR, Journal of Marketing Research, 29(3):281, 1992.Google ScholarGoogle ScholarCross RefCross Ref
  41. D. H. Stern, R. Herbrich, and T. Graepel. Matchbox: large scale online bayesian recommendations. In Proceedings of the 18th international conference on World wide web, pages 111--120. ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. L. L. Thurstone. A law of comparative judgment. Psychological review, 34(4):273, 1927.Google ScholarGoogle ScholarCross RefCross Ref
  43. S. Usami. Individual differences multidimensional bradley-terry model using reversible jump markov chain monte carlo algorithm. Behaviormetrika, 37(2):135--155, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  44. G. N. Yannakakis, M. Maragoudakis, and J. Hallam. Preference learning for cognitive modeling: a case study on entertainment preferences. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 39(6):1165--1175, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. L. Zhang, J. Wu, Z.-C. Wang, and C.-J. Wang. A factor-based model for context-sensitive skill rating systems. In Tools with Artificial Intelligence (ICTAI), 2010 22nd IEEE International Conference on, volume 2, pages 249--255. IEEE, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Y. Zheng, B. Mobasher, and R. Burke. Carskit: A java-based context-aware recommendation engine. In Proceedings of the 15th IEEE International Conference on Data Mining Workshops. IEEE, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Predicting Matchups and Preferences in Context

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            KDD '16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
            August 2016
            2176 pages
            ISBN:9781450342322
            DOI:10.1145/2939672

            Copyright © 2016 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 13 August 2016

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

            Acceptance Rates

            KDD '16 Paper Acceptance Rate66of1,115submissions,6%Overall Acceptance Rate1,133of8,635submissions,13%

            Upcoming Conference

            KDD '24

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader