skip to main content
article

Efficient simulation of large bodies of water by coupling two and three dimensional techniques

Published:01 July 2006Publication History
Skip Abstract Section

Abstract

We present a new method for the efficient simulation of large bodies of water, especially effective when three-dimensional surface effects are important. Similar to a traditional two-dimensional height field approach, most of the water volume is represented by tall cells which are assumed to have linear pressure profiles. In order to avoid the limitations typically associated with a height field approach, we simulate the entire top surface of the water volume with a state of the art, fully three-dimensional Navier-Stokes free surface solver. Our philosophy is to use the best available method near the interface (in the three-dimensional region) and to coarsen the mesh away from the interface for efficiency. We coarsen with tall, thin cells (as opposed to octrees or AMR), because they maintain good resolution horizontally allowing for accurate representation of bottom topography.

Skip Supplemental Material Section

Supplemental Material

p805-irving-high.mov

mov

46 MB

p805-irving-low.mov

mov

17.3 MB

References

  1. Adalsteinsson, D., and Sethian, J. 1995. A fast level set method for propagating interfaces. J. Comput. Phys. 118, 269--277. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Baraff, D., Witkin, A., Kass, M., and Anderson, J. 2003. Physically based modeling (a little fluid dynamics for graphics). In SIGGRAPH Course Notes, ACM.Google ScholarGoogle Scholar
  3. Baxter, W., and Lin, M. 2004. Haptic interaction with fluid media. In Proc. of Graph. Interface, 81--88. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Baxter, W., Liu, Y., and Lin, M. 2004. A viscous paint model for interactive applications. In Proc. of Comput. Anim. and Social Agents, vol. 15, 433--441. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Baxter, W., Wendt, J., and Lin, M. 2004. Impasto: A realistic, interactive model for paint. In Proc. of Non-Photorealistic Anim. and Rendering, 45--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Breen, D., Fedkiw, R., Museth, K., Osher, S., Sapiro, G., and Whitaker, R. 2004. Level sets and PDE methods for computer graphics. In SIGGRAPH Course Notes, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bridson, R. 2003. Computational Aspects of Dynamic Surfaces. PhD thesis, Stanford University. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Carlson, M., Mucha, P. J., and Turk, G. 2004. Rigid fluid: Animating the interplay between rigid bodies and fluid. ACM Trans. Graph. (SIGGRAPH Proc.) 23, 377--384. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chen, J., and Lobo, N. 1994. Toward interactive-rate simulation of fluids with moving obstacles using the navier-stokes equations. Comput. Graph. and Image Processing 57, 107--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Curless, B., and Levoy, M. 1996. A volumetric method for building complex models from range images. Comput. Graph. (SIGGRAPH Proc.), 303--312. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 3, 736--744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Fedkiw, R., Stam, J., and Jensen, H. 2001. Visual simulation of smoke. In Proc. of ACM SIGGRAPH 2001, 15--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Foster, N., and Fedkiw, R. 2001. Practical animation of liquids. In Proc. of ACM SIGGRAPH 2001, 23--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Foster, N., and Metaxas, D. 1996. Realistic animation of liquids. Graph. Models and Image Processing 58, 471--483. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Foster, N., and Metaxas, D. 1997. Controlling fluid animation. In Comput. Graph. Int., 178--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Foster, N., and Metaxas, D. 1997. Modeling the motion of a hot, turbulent gas. In Proc. of SIGGRAPH 97, 181--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Fournier, A., and Reeves, W. T. 1986. A simple model of ocean waves. In Comput. Graph. (Proc. of SIGGRAPH 86), vol. 20, 75--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Goktekin, T. G., Bargteil, A. W., and O'Brien, J. F. 2004. A method for animating viscoelastic fluids. ACM Trans. Graph. (SIGGRAPH Proc.) 23, 463--467. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Guendelman, E., Selle, A., Losasso, F., and Fedkiw, R. 2005. Coupling water and smoke to thin deformable and rigid shells. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 973--981. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Hinsinger, D., Neyret, F., and Cani, M.-P. 2002. Interactive animation of ocean waves. In ACM SIGGRAPH Symp. on Comput. Anim., 161--166. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Hong, J.-M., and Kim, C.-H. 2005. Discontinuous fluids. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 915--919. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Houston, B., Wiebe, M., and Batty, C. 2004. RLE sparse level sets. In SIGGRAPH 2004 Sketches & Applications, ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Houston, B., Nielsen, M., Batty, C., Nilsson, O., and Museth, K. 2005. Gigantic deformable surfaces. In SIGGRAPH 2005 Sketches & Applications, ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Houston, B., Nielsen, M., Batty, C., Nilsson, O., and Museth, K. 2006. Hierarchical RLE level set: A compact and versatile deformable surface representation. ACM Trans. Graph. 25, 1, 1--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Iversen, J., and Sakaguchi, R. 2004. Growing up with fluid simulation on "The Day After Tomorrow". In SIGGRAPH 2004 Sketches & Applications, ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Kass, M., and Miller, G. 1990. Rapid, stable fluid dynamics for computer graphics. In Comput. Graph. (Proc. of SIGGRAPH 90), vol. 24, 49--57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. ACM Trans. Graph. (SIGGRAPH Proc.) 23, 457--462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Losasso, F., Fedkiw, R., and Osher, S. 2006. Spatially Adaptive Techniques for Level Set Methods and Incompressible Flow. Computers and Fluids (in press).Google ScholarGoogle Scholar
  29. Mastin, G., Watterberg, P., and Mareda, J. 1987. Fourier synthesis of ocean scenes. IEEE Comput. Graph. Appl. 7, 3, 16--23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. McNamara, A., Treuille, A., Popović, Z., and Stam, J. 2004. Fluid control using the adjoint method. ACM Trans. Graph. (SIGGRAPH Proc.), 449--456. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Mihalef, V., Metaxas, D., and Sussman, M. 2004. Animation and control of breaking waves. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 315--324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Neyret, F., and Praizelin, N. 2001. Phenomenological simulation of brooks. In Comput. Anim. and Sim. '01, Proc. Eurographics Wrkshp., 53--64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Nielsen, M., and Museth, K. 2005. Dynamic tubular grid: An efficient data structure and algorithms for high resolution level sets. Accepted to SIAM J. Scientific Comput. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. O'Brien, J. F., and Hodgins, J. K. 1995. Dynamic simulation of splashing fluids. In Comput. Anim. '95, 198--205. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Peachey, D. R. 1986. Modeling waves and surf. In Comput. Graph. (Proc. of SIGGRAPH 86), vol. 20, 65--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Peng, D., Merriman, B., Osher, S., Zhao, H., and Kang, M. 1999. A PDE-based fast local level set method. J. Comput. Phys. 155, 410--438. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Selle, A., Rasmussen, N., and Fedkiw, R. 2005. A vortex particle method for smoke, water and explosions. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 910--914. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Shi, L., and Yu, Y. 2005. Taming liquids for rapidly changing targets. In Proc. of the ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 229--236. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Stam, J. 1999. Stable fluids. In Proc. of SIGGRAPH 99, 121--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Takahashi, T., Fujii, H., Kunimatsu, A., Hiwada, K., Saito, T., Tanaka, K., and Ueki, H. 2003. Realistic animation of fluid with splash and foam. Comp. Graph. Forum (Eurographics Proc.) 22, 3, 391--400.Google ScholarGoogle ScholarCross RefCross Ref
  41. Tessendorf, J. 2002. Simulating Ocean Water. In SIGGRAPH 2002 Course Notes #9 (Simulating Nature: Realistic and Interactive Techniques), ACM Press.Google ScholarGoogle Scholar
  42. Thon, S., and Ghazanfarpour, D. 2001. A semi-physical model of running waters. Comput. Graph. Forum (Proc. Eurographics) 19, 53--59.Google ScholarGoogle Scholar
  43. Thon, S., Dischler, J.-M., and Ghazanfarpour, D. 2000. Ocean waves synthesis using a spectrum-based turbulence function. In Comput. Graph. Int., 65--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Ts'o, P. Y., and Barsky, B. A. 1987. Modeling and rendering waves: Wave-tracing using beta-splines and reflective and refractive texture mapping. ACM Trans. Graph. 6, 3, 191--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Wang, H., Mucha, P., and Turk, G. 2005. Water drops on surfaces. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 921--929. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Whitaker, R. T. 1998. A level-set approach to 3d reconstruction from range data. Int. J. Comput. Vision 29, 3, 203--231. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Wiebe, M., and Houston, B. 2004. The tar monster: Creating a character with fluid simulation. In SIGGRAPH 2004 Sketches & Applications, ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 965--971. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Efficient simulation of large bodies of water by coupling two and three dimensional techniques

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 25, Issue 3
          July 2006
          742 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/1141911
          Issue’s Table of Contents

          Copyright © 2006 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 1 July 2006
          Published in tog Volume 25, Issue 3

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader