We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Modulating nitric oxide signaling in the CNS for Alzheimer’s disease therapy

    Qin Zhihui

    Department of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612–7231, USA.

    Published Online:https://doi.org/10.4155/fmc.13.111

    Nitric oxide (NO)/solube GC (sGC)/cGMP signaling is important for modulating synaptic transmission and plasticity in the hippocampus and cerebral cortex, which are critical for learning and memory. Physiological concentrations of NO also elicit anti-apoptotic/prosurvival effects against various neurotoxic challenges and brain insults through multiple mechanisms. Depression of the NO/sGC pathway is a feature of Alzheimer’s disease (AD), attributed to amyloid-β neuropathology, and altered expression and activity of NOS, sGC and PDE enzymes. Different classes of NO-releasing hybrid drugs, including nomethiazoles, NO-NSAIDs and NO-acetylcholinesterase inhibitors were designed to deliver low concentrations of exogenous NO to the CNS while targeting other underlying disease mechanisms, such as excitotoxicity, neuro-inflammation and acetylcholine deficiency, respectively. Incorporating a NO-donating moiety may also reduce gastrointestinal and liver toxicity of the parent drugs. Progress has also been made in targeting downstream sGC and PDE enzymes. The PDE9 inhibitor PF-04447943 has completed Phase II clinical trials for AD. The search for effective NO-donating hybrid drugs, CNS-targeting sGC stimulators/activators and selective PDE inhibitors is an important goal for pharmacotherapy that manipulates NO biochemical pathways involved in cognitive function and neuroprotection. Rigorous preclinical validation of target engagement, and optimization of pharmacokinetic and toxicity profiles are likely to advance more drug candidates into clinical trials for mild cognitive impairment and early stage AD.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • Thies W, Bleiler L. 2011 Alzheimer’s disease facts and figures. Alzheimers Dement.7(2),208–244 (2011).
    • Citron M. Alzheimer’s disease: strategies for disease modification. Nat. Rev. Drug Discov.9(5),387–398 (2010).▪ A comprehensive review on the development of disease-modifying approaches for Alzheimer’s disease (AD) treatment, with a focus on anti-amyloid strategies.
    • Lleo A, Greenberg SM, Growdon JH. Current pharmacotherapy for Alzheimer’s disease. Annu. Rev. Med.57,513–533 (2006).
    • Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science297(5580),353–356 (2002).
    • Selkoe DJ. Resolving controversies on the path to Alzheimer’s therapeutics. Nat. Med.17(9),1060–1065 (2011).▪ A perspective summarized principal discoveries in AD research since 1960 and the sequence of steps in the discovery of disease-modifying treatments for AD.
    • Brody DL, Holtzman DM. Active and passive immunotherapy for neurodegenerative disorders. Annu. Rev. Neurosci.31,175–193 (2008).
    • Jacobsen JS, Comery TA, Martone RL et al. Enhanced clearance of Aβ in brain by sustaining the plasmin proteolysis cascade. Proc. Natl. Acad. Sci. USA105(25),8754–8759 (2008).
    • Imbimbo BP, Peretto I. Semagacestat, a γ-secretase inhibitor for the potential treatment of Alzheimer’s disease. Curr. Opin. Investig. Drugs10(7),721–730 (2009).
    • Martone RL, Zhou H, Atchison K et al. Begacestat (GSI-953): a novel, selective thiophene sulfonamide inhibitor of amyloid precursor protein γ-secretase for the treatment of Alzheimer’s disease. J. Pharmacol. Exp. Ther.331(2),598–608 (2009).
    • 10  McLaurin J, Kierstead ME, Brown ME et al. Cyclohexanehexol inhibitors of Aβ aggregation prevent and reverse Alzheimer phenotype in a mouse model. Nat. Med.12(7),801–808 (2006).
    • 11  Gervais F, Paquette J, Morissette C et al. Targeting soluble Aβ peptide with tramiprosate for the treatment of brain amyloidosis. Neurobiol. Aging28(4),537–547 (2007).
    • 12  Imbimbo BP. Why Did tarenflurbil fail in Alzheimer’s disease? J. Alzheimers Dis.17(4),757–760 (2009).
    • 13  Sabbagh MN. Drug development for Alzheimer’s disease: where are we now and where are we headed? Am. J. Geriatr. Pharmacother.7(3),167–185 (2009).
    • 14  Extance A. Alzheimer’s failure raises questions about disease-modifying strategies. Nat. Rev. Drug Discov.9(10),749–751 (2010).
    • 15  Cummings J. What can be inferred from the interruption of the semagacestat trial for treatment of Alzheimer’s disease? Biol. Psychiatry68(10),876–878 (2010).
    • 16  Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M. Alzheimer’s disease: clinical trials and drug development. Lancet Neurol.9(7),702–716 (2010).
    • 17  Puzzo D, Vitolo O, Trinchese F, Jacob JP, Palmeri A, Arancio O. Amyloid-β peptide inhibits activation of the nitric oxide/cGMP/cAMP-responsive element-binding protein pathway during hippocampal synaptic plasticity. J. Neurosci.25(29),6887–6897 (2005).▪▪ The paper reported that Aβ downregulates nitrous oxide (NO)/cGMP/PKG/CREB pathway, and proposed enhancement of NO/cGMP signaling might be a therapeutic approach for AD and another neurodegenerative diseases with elevated production of Aβ.
    • 18  Thatcher GR, Bennett BM, Reynolds JN. Nitric oxide mimetic molecules as therapeutic agents in Alzheimer’s disease. Curr. Alzheimer Res.2(2),171–182 (2005).▪▪ A comprehensive earlier review indicated that NO mimetics may provide a combined neuroprotective and cognition-enabling approach for AD therapy.
    • 19  Puzzo D, Staniszewski A, Deng SX et al. Phosphodiesterase 5 inhibition improves synaptic function, memory, and amyloid-β load in an Alzheimer’s disease mouse model. J. Neurosci.29(25),8075–8086 (2009).
    • 20  Guix FX, Uribesalgo I, Coma M, Munoz FJ. The physiology and pathophysiology of nitric oxide in the brain. Prog. Neurobiol.76(2),126–152 (2005).
    • 21  Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AM. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat. Rev. Neurosci.8(10),766–775 (2007).▪ A comprehensive review of NO functions in CNS.
    • 22  Prast H, Philippu A. Nitric oxide as modulator of neuronal function. Prog. Neurobiol.64(1),51–68 (2001).
    • 23  Hawkins RD. NO honey, I don’t remember. Neuron16(3),465–467 (1996).
    • 24  Garthwaite J. Glutamate, nitric oxide and cell–cell signalling in the nervous system. Trends Neurosci.14(2),60–67 (1991).
    • 25  Lu YF, Kandel ER, Hawkins RD. Nitric oxide signaling contributes to late-phase LTP and CREB phosphorylation in the hippocampus. J. Neurosci.19(23),10250–10261 (1999).
    • 26  Josselyn SA, Nguyen PV. CREB, synapses and memory disorders: past progress and future challenges. Curr. Drug Targets CNS Neurol. Disord.4(5),481–497 (2005).
    • 27  Silva AJ, Kogan JH, Frankland PW, Kida S. CREB and memory. Annu. Rev. Neurosci.21,127–148 (1998).
    • 28  Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature361(6407),31–39 (1993).
    • 29  Arancio O, Kandel ER, Hawkins RD. Activity-dependent long-term enhancement of transmitter release by presynaptic 3´,5´-cyclic GMP in cultured hippocampal neurons. Nature376(6535),74–80 (1995).
    • 30  Arancio O, Kiebler M, Lee CJ et al. Nitric oxide acts directly in the presynaptic neuron to produce long-term potentiation in cultured hippocampal neurons. Cell87(6),1025–1035 (1996).
    • 31  Arancio O, Antonova I, Gambaryan S et al. Presynaptic role of cGMP-dependent protein kinase during long-lasting potentiation. J. Neurosci.21(1),143–149 (2001).
    • 32  Venturini G, Colasanti M, Persichini T et al. β-amyloid inhibits NOS activity by subtracting NADPH availability. FASEB J.16(14),1970–1972 (2002).
    • 33  Baltrons MA, Pedraza CE, Heneka MT, Garcia A. β-amyloid peptides decrease soluble guanylyl cyclase expression in astroglial cells. Neurobiol. Dis.10(2),139–149 (2002).
    • 34  Bonkale WL, Winblad B, Ravid R, Cowburn RF. Reduced nitric oxide responsive soluble guanylyl cyclase activity in the superior temporal cortex of patients with Alzheimer’s disease. Neurosci. Lett.187(1),5–8 (1995).
    • 35  Suhara T, Magrane J, Rosen K et al. Aβ42 generation is toxic to endothelial cells and inhibits eNOS function through an Akt/GSK-3beta signaling-dependent mechanism. Neurobiol. Aging24(3),437–451 (2003).
    • 36  Miller TW, Isenberg JS, Shih HB, Wang Y, Roberts DD. Amyloid-β inhibits NO-cGMP signaling in a CD36- and CD47-dependent manner. PLoS ONE5(12),e15686 (2011).
    • 37  Greenberg ME, Ziff EB, Greene LA. Stimulation of neuronal acetylcholine receptors induces rapid gene transcription. Science234(4772),80–83 (1986).
    • 38  Montminy MR, Bilezikjian LM. Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature328(6126),175–178 (1987).
    • 39  Bito H, Deisseroth K, Tsien RW. CREB phosphorylation and dephosphorylation: a Ca2+- and stimulus duration-dependent switch for hippocampal gene expression. Cell87(7),1203–1214 (1996).
    • 40  Alberini CM. Transcription factors in long-term memory and synaptic plasticity. Physiol. Rev.89(1),121–145 (2009).
    • 41  Zheng Z, Sabirzhanov B, Keifer J. Oligomeric amyloid-β inhibits the proteolytic conversion of brain-derived neurotrophic factor (BDNF), AMPA receptor trafficking, and classical conditioning. J. Biol. Chem.285(45),34708–34717 (2010).
    • 42  Ma QL, Harris-White ME, Ubeda OJ et al. Evidence of Aβ- and transgene-dependent defects in ERK-CREB signaling in Alzheimer’s models. J. Neurochem.103(4),1594–1607 (2007).
    • 43  Espana J, Valero J, Minano-Molina AJ et al. β-Amyloid disrupts activity-dependent gene transcription required for memory through the CREB coactivator CRTC1. J. Neurosci.30(28),9402–9410 (2010).
    • 44  Saura CA, Valero J. The role of CREB signaling in Alzheimer’s disease and other cognitive disorders. Rev. Neurosci.22(2),153–169 (2011).
    • 45  Riccio A, Alvania RS, Lonze BE et al. A nitric oxide signaling pathway controls CREB-mediated gene expression in neurons. Mol. Cell21(2),283–294 (2006).
    • 46  Puzzo D, Palmeri A, Arancio O. Involvement of the nitric oxide pathway in synaptic dysfunction following amyloid elevation in Alzheimer’s disease. Rev. Neurosci.17(5),497–523 (2006).
    • 47  Paul C, Stratil C, Hofmann F, Kleppisch T. cGMP-dependent protein kinase type I promotes CREB/CRE-mediated gene expression in neurons of the lateral amygdala. Neurosci. Lett.473(2),82–86 (2010).
    • 48  Zhuo M, Hu Y, Schultz C, Kandel ER, Hawkins RD. Role of guanylyl cyclase and cGMP-dependent protein kinase in long-term potentiation. Nature368(6472),635–639 (1994).
    • 49  Shahani N, Sawa A. Protein S-nitrosylation: role for nitric oxide signaling in neuronal death. Biochim. Biophys. Acta1820(6),736–742 (2012).
    • 50  Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev.87(1),315–424 (2007).
    • 51  Sultana R, Poon HF, Cai J et al. Identification of nitrated proteins in Alzheimer’s disease brain using a redox proteomics approach. Neurobiol. Dis.22(1),76–87 (2006).
    • 52  Castegna A, Thongboonkerd V, Klein JB, Lynn B, Markesbery WR, Butterfield DA. Proteomic identification of nitrated proteins in Alzheimer’s disease brain. J. Neurochem.85(6),1394–1401 (2003).
    • 53  Austin SA, Santhanam AV, Katusic ZS. Endothelial nitric oxide modulates expression and processing of amyloid precursor protein. Circ. Res.107(12),1498–1502 (2010).
    • 54  Chu Y, Heistad DD. No answer to Alzheimer’s disease? Circ. Res.107(12),1400–1402 (2010).
    • 55  Ciani E, Guidi S, Bartesaghi R, Contestabile A. Nitric oxide regulates cGMP-dependent cAMP-responsive element binding protein phosphorylation and Bcl-2 expression in cerebellar neurons: implication for a survival role of nitric oxide. J. Neurochem.82(5),1282–1289 (2002).
    • 56  Ha KS, Kim KM, Kwon YG et al. Nitric oxide prevents 6-hydroxydopamine-induced apoptosis in PC12 cells through cGMP-dependent PI3 kinase/Akt activation. FASEB J.17(9),1036–1047 (2003).
    • 57  Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N. Engl. J. Med.330(9),613–622 (1994).
    • 58  Choi YB, Tenneti L, Le DA et al. Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation. Nat. Neurosci.3(1),15–21 (2000).
    • 59  Melino G, Bernassola F, Knight RA, Corasaniti MT, Nistico G, Finazzi-Agro A. S-nitrosylation regulates apoptosis. Nature388(6641),432–433 (1997).
    • 60  Mannick JB, Schonhoff C, Papeta N et al.S-Nitrosylation of mitochondrial caspases. J. Cell. Biol.154(6),1111–1116 (2001).
    • 61  Tenneti L, D’Emilia DM, Lipton SA. Suppression of neuronal apoptosis by S-nitrosylation of caspases. Neurosci. Lett.236(3),139–142 (1997).
    • 62  Zhou P, Qian L, Iadecola C. Nitric oxide inhibits caspase activation and apoptotic morphology but does not rescue neuronal death. J. Cereb. Blood Flow Metab.25(3),348–357 (2005).
    • 63  Fahnestock M, Marchese M, Head E et al. BDNF increases with behavioral enrichment and an antioxidant diet in the aged dog. Neurobiol. Aging33(3),546–554 (2010).
    • 64  Lazarov O, Robinson J, Tang YP et al. Environmental enrichment reduces Aβ levels and amyloid deposition in transgenic mice. Cell120(5),701–713 (2005).
    • 65  Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science298(5594),789–791 (2002).
    • 66  Domek-Lopacinska KU, Strosznajder JB. Cyclic GMP and nitric oxide synthase in aging and Alzheimer’s disease. Mol. Neurobiol.41(2–3),129–137 (2010).
    • 67  Thatcher GR, Bennett BM, Dringenberg HC, Reynolds JN. Novel nitrates as NO mimetics directed at Alzheimer’s disease. J. Alzheimers Dis.6(6 Suppl.),S75–84 (2004).
    • 68  Bennett BM, Reynolds JN, Prusky GT, Douglas RM, Sutherland RJ, Thatcher GRJ. Cognitive deficits in rats after forebrain cholinergic depletion are reversed by a novel NO mimetic nitrate ester. Neuropsychopharmacology32(3),505–513 (2007).
    • 69  Wirtz-Brugger F, Giovanni A. Guanosine 3´,5´-cyclic monophosphate mediated inhibition of cell death induced by nerve growth factor withdrawal and β-amyloid: protective effects of propentofylline. Neuroscience99(4),737–750 (2000).
    • 70  Paris D, Town T, Parker T, Humphrey J, Mullan M. β-amyloid vasoactivity and proinflammation in microglia can be blocked by cGMP-elevating agents. Ann. NY. Acad. Sci.903,446–450 (2000).
    • 71  Reynolds JN, Bennett BM, Boegman RJ et al. Neuroprotection against ischemic brain injury conferred by a novel nitrate ester. Bioorg. Med. Chem. Lett.12(20),2863–2866 (2002).
    • 72  Smith S, Dringenberg HC, Bennett BM, Thatcher GR, Reynolds JN. A novel nitrate ester reverses the cognitive impairment caused by scopolamine in the Morris water maze. Neuroreport11(17),3883–3886 (2000).
    • 73  Cavalli A, Bolognesi ML, Minarini A et al. Multi-target-directed ligands to combat neurodegenerative diseases. J. Med. Chem.51(3),347–372 (2008).
    • 74  DiFabio J, Ji Y, Vasiliou V, Thatcher GRJ, Bennett BM. Role of mitochondrial aldehyde dehydrogenase in nitrate tolerance. Mol. Pharmacol.64(5),1109–1116 (2003).
    • 75  D’Souza Y, Ji Y, Bennett B. Effect of overexpression of human aldehyde dehydrogenase 2 in LLC-PK1 cells on glyceryl trinitrate biotransformation and cGMP accumulation. Br. J. Pharmacol.168(4),978–987 (2013).
    • 76  Thatcher GRJ, Nicolescu AC, Bennett BM, Toader V. Nitrates and NO release: contemporary aspects in biological and medicinal chemistry. Free Radic. Biol. Med.37(8),1122–1143 (2004).
    • 77  Lundberg JO, Gladwin MT, Ahluwalia A et al. Nitrate and nitrite in biology, nutrition and therapeutics. Nat. Chem. Biol.5(12),865–869 (2009).
    • 78  Harkany T, Abraham I, Timmerman W et al. β-amyloid neurotoxicity is mediated by a glutamate-triggered excitotoxic cascade in rat nucleus basalis. Eur. J. Neurosci.12(8),2735–2745 (2000).
    • 79  Louzada PR, Paula Lima AC, Mendonca-Silva DL, Noel F, De Mello FG, Ferreira ST. Taurine prevents the neurotoxicity of β-amyloid and glutamate receptor agonists: activation of GABA receptors and possible implications for Alzheimer’s disease and other neurological disorders. FASEB J.18(3),511–518 (2004).
    • 80  Lin X, Jun-Tian Z. Neuroprotection by D-securinine against neurotoxicity induced by β-amyloid (25–35). Neurol. Res.26(7),792–796 (2004).
    • 81  Lee BY, Ban JY, Seong YH. Chronic stimulation of GABAA receptor with muscimol reduces amyloid beta protein (25–35)-induced neurotoxicity in cultured rat cortical cells. Neurosci. Res.52(4),347–356 (2005).
    • 82  Marcade M, Bourdin J, Loiseau N et al. Etazolate, a neuroprotective drug linking GABAA receptor pharmacology to amyloid precursor protein processing. J. Neurochem.106(1),392–404 (2008).
    • 83  Limon A, Reyes-Ruiz JM, Miledi R. Loss of functional GABAA receptors in the Alzheimer diseased brain. Proc. Natl. Acad. Sci. USA109(25),10071–10076 (2012).
    • 84  Vellas B, Sol O, Snyder PJ et al. EHT0202 in Alzheimer’s disease: a 3-month, randomized, placebo-controlled, double-blind study. Curr. Alzheimer Res.8(2),203–212 (2011).
    • 85  Nelson RM, Hainsworth AH, Lambert DG et al. Neuroprotective efficacy of AR-A008055, a clomethiazole analogue, in a global model of acute ischaemic stroke and its effect on ischaemia-induced glutamate and GABA efflux in vitro. Neuropharmacology41(2),159–166 (2001).
    • 86  Green AR, Hainsworth AH, Misra A et al. The interaction of AR-A008055 and its enantiomers with the GABAA receptor complex and their sedative, muscle relaxant and anticonvulsant activity. Neuropharmacology41(2),167–174 (2001).
    • 87  Colado MI, O’Shea E, Esteban B, Green AR. Studies on the neuroprotective effect of the enantiomers of AR-A008055, a compound structurally related to clomethiazole, on MDMA (‘ecstasy’)-induced neurodegeneration in rat brain. Psychopharmacology (Berl.)157(1),82–88 (2001).
    • 88  Harmon D, Coleman E, Marshall C, Lan W, Shorten G. The effect of clomethiazole on plasma concentrations of interleukin-6, -8, -1β, tumor necrosis factor-α, and neutrophil adhesion molecule expression during experimental extracorporeal circulation. Anesth. Analg.97(1),13–18 (2003).
    • 89  Clarkson AN, Liu H, Rahman R, Jackson DM, Appleton I, Kerr DS. Clomethiazole: mechanisms underlying lasting neuroprotection following hypoxia-ischemia. FASEB J.19(8),1036–1038 (2005).
    • 90  Wilby MJ, Hutchinson PJ. The pharmacology of chlormethiazole: a potential neuroprotective agent? CNS Drug Rev.10(4),281–294 (2004).
    • 91  Clarkson AN, Clarkson J, Jackson DM, Sammut IA. Mitochondrial involvement in transhemispheric diaschisis following hypoxia-ischemia: clomethiazole-mediated amelioration. Neuroscience144(2),547–561 (2007).
    • 92  Gilby KL, Sydserff SG, Robertson HA. Differential neuroprotective effects for three GABA-potentiating compounds in a model of hypoxia-ischemia. Brain Res.1035(2),196–205 (2005).
    • 93  Green AR, Hainsworth AH, Jackson DM. GABA potentiation: a logical pharmacological approach for the treatment of acute ischaemic stroke. Neuropharmacology39(9),1483–1494 (2000).
    • 94  Shi JQ, Shen W, Chen J et al. Anti-TNF-α reduces amyloid plaques and tau phosphorylation and induces CD11c-positive dendritic-like cell in the APP/PS1 transgenic mouse brains. Brain Res.1368,239–247 (2011).
    • 95  Alvarez A, Cacabelos R, Sanpedro C, Garcia-Fantini M, Aleixandre M. Serum TNF-α levels are increased and correlate negatively with free IGF-I in Alzheimer disease. Neurobiol. Aging28(4),533–536 (2007).
    • 96  McAlpine FE, Lee JK, Harms AS et al. Inhibition of soluble TNF signaling in a mouse model of Alzheimer’s disease prevents pre-plaque amyloid-associated neuropathology. Neurobiol. Dis.34(1),163–177 (2009).
    • 97  Abdul-Hay S, Schiefer IT, Chandrasena RE et al. NO-SSRIs: nitric oxide chimera drugs incorporating a selective serotonin reuptake inhibitor. ACS Med. Chem. Lett.2(9),656–661 (2011).
    • 98  Caraci F, Copani A, Nicoletti F, Drago F. Depression and Alzheimer’s disease: neurobiological links and common pharmacological targets. Eur. J. Pharmacol.626(1),64–71 (2010).
    • 99  Sierksma AS, van den Hove DL, Steinbusch HW, Prickaerts J. Major depression, cognitive dysfunction and Alzheimer’s disease: is there a link? Eur. J. Pharmacol.626(1),72–82 (2010).
    • 100  Qin Z, Luo J, VandeVrede L et al. Design and synthesis of neuroprotective methylthiazoles and modification as NO-chimeras for neurodegenerative therapy. J. Med. Chem.55(15),6784–6801 (2012).
    • 101  Eikelenboom P, Veerhuis R, Scheper W, Rozemuller AJ, van Gool WA, Hoozemans JJ. The significance of neuroinflammation in understanding Alzheimer’s disease. J. Neural. Transm.113(11),1685–1695 (2006).
    • 102  Arnaud L, Robakis NK, Figueiredo-Pereira ME. It may take inflammation, phosphorylation and ubiquitination to ‘tangle’ in Alzheimer’s disease. Neurodegener. Dis.3(6),313–319 (2006).
    • 103  Lleo A, Galea E, Sastre M. Molecular targets of non-steroidal anti-inflammatory drugs in neurodegenerative diseases. Cell. Mol. Life Sci.64(11),1403–1418 (2007).
    • 104  Weggen S, Eriksen JL, Das P et al. A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature414(6860),212–216 (2001).
    • 105  Lim GP, Yang F, Chu T et al. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J. Neurosci.20(15),5709–5714 (2000).
    • 106  Jantzen PT, Connor KE, DiCarlo G et al. Microglial activation and β-amyloid deposit reduction caused by a nitric oxide-releasing nonsteroidal anti-inflammatory drug in amyloid precursor protein plus presenilin-1 transgenic mice. J. Neurosci.22(6),2246–2254 (2002).
    • 107  Yan Q, Zhang J, Liu H et al. Anti-inflammatory drug therapy alters β-amyloid processing and deposition in an animal model of Alzheimer’s disease. J. Neurosci.23(20),7504–7509 (2003).
    • 108  Sastre M, Dewachter I, Rossner S et al. Nonsteroidal anti-inflammatory drugs repress β-secretase gene promoter activity by the activation of PPARγ. Proc. Natl. Acad. Sci. USA103(2),443–448 (2006).
    • 109  Zhou Y, Su Y, Li B et al. Nonsteroidal anti-inflammatory drugs can lower amyloidogenic Aβ42 by inhibiting Rho. Science302(5648),1215–1217 (2003).
    • 110  You X, Zhang YW, Chen Y et al. Retinoid X receptor-α mediates (R)-flurbiprofen’s effect on the levels of Alzheimer’s β-amyloid. J. Neurochem111(1),142–149 (2009).
    • 111  Abdul-Hay SO, Edirisinghe P, Thatcher GR. Selective modulation of amyloid-beta peptide degradation by flurbiprofen, fenofibrate, and related compounds regulates Abeta levels. J. Neurochem.111(3),683–695 (2009).
    • 112  Abdul-Hay SO, Luo J, Ashghodom RT, Thatcher GR. NO-flurbiprofen reduces amyloid-β, is neuroprotective in cell culture, and enhances cognition in response to cholinergic blockade. J. Neurochem.111(3),766-776 (2009).
    • 113  Schiefer IT, Abdul-Hay S, Wang H, Vanni M, Qin Z, Thatcher GR. Inhibition of amyloidogenesis by nonsteroidal anti-inflammatory drugs and their hybrid nitrates. J. Med. Chem.54(7),2293–2306 (2011).
    • 114  Kukar TL, Ladd TB, Bann MA et al. Substrate-targeting γ-secretase modulators. Nature453(7197),925–929 (2008).
    • 115  Beher D, Clarke EE, Wrigley JD et al. Selected non-steroidal anti-inflammatory drugs and their derivatives target γ-secretase at a novel site. Evidence for an allosteric mechanism. J. Biol. Chem.279(42),43419–43426 (2004).
    • 116  Lleo A, Berezovska O, Herl L et al. Nonsteroidal anti-inflammatory drugs lower Aβ42 and change presenilin 1 conformation. Nat. Med.10(10),1065–1066 (2004).
    • 117  Choi SH, Aid S, Caracciolo L et al. Cyclooxygenase-1 inhibition reduces amyloid pathology and improves memory deficits in a mouse model of Alzheimer’s disease. J. Neurochem.124(1),59–68 (2013).
    • 118  James DS. The multisystem adverse effects of NSAID therapy. J. Am. Osteopath. Assoc.99(11 Suppl.),S1–S7 (1999).
    • 119  Laine L. The gastrointestinal effects of nonselective NSAIDs and COX-2-selective inhibitors. Semin. Arthritis Rheum.32(3 Suppl. 1),25–32 (2002).
    • 120  Aisen PS, Schafer KA, Grundman M et al. Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA289(21),2819–2826 (2003).
    • 121  Aisen PS, Thal LJ, Ferris SH et al. Rofecoxib in patients with mild cognitive impairment: further analyses of data from a randomized, double-blind, trial. Curr. Alzheimer Res.5(1),73–82 (2008).
    • 122  Soininen H, West C, Robbins J, Niculescu L. Long-term efficacy and safety of celecoxib in Alzheimer’s disease. Dement. Geriatr. Cogn. Disord.23(1),8–21 (2007).
    • 123  Kukar T, Murphy MP, Eriksen JL et al. Diverse compounds mimic Alzheimer disease-causing mutations by augmenting Aβ42 production. Nat. Med.11(5),545–550 (2005).
    • 124  Green RC, Schneider LS, Amato DA et al. Effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease: a randomized controlled trial. JAMA302(23),2557–2564 (2009).
    • 125  Marder K. Tarenflurbil in patients with mild Alzheimer’s disease. Curr. Neurol. Neurosci. Rep.10(5),336–337 (2010).
    • 126  Lanas A. Role of nitric oxide in the gastrointestinal tract. Arthritis Res. Ther.10Suppl 2,S4 (2008).
    • 127  Calatayud S, Barrachina D, Esplugues JV. Nitric oxide: relation to integrity, injury, and healing of the gastric mucosa. Microsc. Res. Tech.53(5),325–335 (2001).
    • 128  Koc Kucukguzel SG. Medicinal chemistry and anti-inflammatory activity of nitric oxide-releasing NSAI drugs. Mini-Rev. Med. Chem.9(5),611–619 (2009).
    • 129  Velazquez CA, Chen QH, Citro ML, Keefer LK, Knaus EE. Second-generation aspirin and indomethacin prodrugs possessing an O2-(acetoxymethyl)-1-(2-carboxypyrrolidin-1-yl)diazenium-1,2-diolate nitric oxide donor moiety: design, synthesis, biological evaluation, and nitric oxide release studies. J. Med. Chem.51(6),1954–1961 (2008).
    • 130  de Carvalho PS, Marostica M, Gambero A, Pedrazzoli J Jr. Synthesis and pharmacological characterization of a novel nitric oxide-releasing diclofenac derivative containing a benzofuroxan moiety. Eur. J. Med. Chem.45(6),2489–2493 (2010).
    • 131  Huang Z, Velazquez CA, Abdellatif KR et al. Ethanesulfohydroxamic acid ester prodrugs of nonsteroidal anti-inflammatory drugs (NSAIDs): synthesis, nitric oxide and nitroxyl release, cyclooxygenase inhibition, anti-inflammatory, and ulcerogenicity index studies. J. Med. Chem.54(5),1356–1364 (2011).
    • 132  Bandarage UK, Chen L, Fang X et al. Nitrosothiol esters of diclofenac: synthesis and pharmacological characterization as gastrointestinal-sparing prodrugs. J. Med. Chem.43(21),4005–4016 (2000).
    • 133  Bolla M, Almirante N, Benedini F. Therapeutic potential of nitrate esters of commonly used drugs. Curr. Top Med. Chem.5(7),707–720 (2005).
    • 134  Ongini E, Bolla M. Nitric oxide based nonsteroidal anti-inflammatory agents. Drug Discov. Today3,395–400 (2006).
    • 135  Eriksen JL, Sagi SA, Smith TE et al. NSAIDs and enantiomers of flurbiprofen target γ-secretase and lower Aβ 42 in vivo. J. Clin. Invest.112(3),440–449 (2003).
    • 136  Wallace JL, Muscara MN, de Nucci G et al. Gastric tolerability and prolonged prostaglandin inhibition in the brain with a nitric oxide-releasing flurbiprofen derivative, NCX-2216 [3-[4-(2-fluoro-alpha-methyl-[1,1´-biphenyl]-4-acetyloxy)-3-methoxyphenyl]-2-prop enoic acid 4-nitrooxy butyl ester]. J. Pharmacol. Exp. Ther.309(2),626–633 (2004).
    • 137  van Groen T, Kadish I. Transgenic AD model mice, effects of potential anti-AD treatments on inflammation and pathology. Brain Res. Brain Res. Rev.48(2),370–378 (2005).
    • 138  Prosperi C, Scali C, Barba M et al. Comparison between flurbiprofen and its nitric oxide-releasing derivatives HCT-1026 and NCX-2216 on Aβ1–42-induced brain inflammation and neuronal damage in the rat. Int. J. Immunopathol. Pharmacol.17(3),317–330 (2004).
    • 139  Christensen DD. Changing the course of Alzheimer’s disease: anti-amyloid disease-modifying treatments on the horizon. Prim. Care Companion J. Clin. Psychiatry9(1),32–41 (2007).
    • 140  Peretto I, Radaelli S, Parini C et al. Synthesis and biological activity of flurbiprofen analogues as selective inhibitors of β-amyloid1–42 secretion. J. Med. Chem.48(18),5705–5720 (2005).
    • 141  Imbimbo BP, Giardino L, Sivilia S et al. CHF5074, a novel γ-secretase modulator, restores hippocampal neurogenesis potential and reverses contextual memory deficit in a transgenic mouse model of Alzheimer’s disease. J. Alzheimers Dis.20(1),159–173 (2010).
    • 142  Lee YJ, Han SB, Nam SY, Oh KW, Hong JT. Inflammation and Alzheimer’s disease. Arch. Pharm. Res.33(10),1539–1556 (2010).
    • 143  Ballard CG. Advances in the treatment of Alzheimer’s disease: benefits of dual cholinesterase inhibition. Eur. Neurol.47(1),64–70 (2002).
    • 144  Kopf SR, Benton RS, Kalfin R, Giovannini MG, Pepeu G. NO synthesis inhibition decreases cortical ACh release and impairs retention of a conditioned response. Brain Res.894(1),141–144 (2001).
    • 145  Crismon ML. Tacrine: first drug approved for Alzheimer’s disease. Ann. Pharmacother.28(6),744–751 (1994).
    • 146  Fang L, Appenroth D, Decker M et al. Synthesis and biological evaluation of NO-donor-tacrine hybrids as hepatoprotective anti-Alzheimer drug candidates. J. Med. Chem.51(4),713–716 (2008).
    • 147  Fang L, Appenroth D, Decker M et al. NO-donating tacrine hybrid compounds improve scopolamine-induced cognition impairment and show less hepatotoxicity. J. Med. Chem.51(24),7666–7669 (2008).
    • 148  Gracon SI, Knapp MJ, Berghoff WG et al. Safety of tacrine: clinical trials, treatment IND, and postmarketing experience. Alzheimer Dis. Assoc. Disord.12(2),93–101 (1998).
    • 149  Futter LE, al-Swayeh OA, Moore PK. A comparison of the effect of nitroparacetamol and paracetamol on liver injury. Br. J. Pharmacol.132(1),10–12 (2001).
    • 150  Chen Y, Sun J, Fang L et al. Tacrine–ferulic acid–nitric oxide (NO) donor trihybrids as potent, multifunctional acetyl- and butyrylcholinesterase inhibitors. J. Med. Chem.55(9),4309–4321 (2012).
    • 151  Evgenov OV, Pacher P, Schmidt PM, Hasko G, Schmidt HH, Stasch JP. NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential. Nat. Rev. Drug Discov.5(9),755–768 (2006).
    • 152  Munzel T, Daiber A, Mulsch A. Explaining the phenomenon of nitrate tolerance. Circ. Res.97(7),618–628 (2005).
    • 153  Li Y, Zhang D, Jin W et al. Mitochondrial aldehyde dehydrogenase-2 (ALDH2) Glu504Lys polymorphism contributes to the variation in efficacy of sublingual nitroglycerin. J. Clin. Invest.116(2),506–511 (2006).
    • 154  Dikalov S, Fink B, Skatchkov M, Stalleicken D, Bassenge E. Formation of reactive oxygen species by pentaerithrityltetranitrate and glyceryl trinitrate in vitro and development of nitrate tolerance. J. Pharmacol. Exp. Ther.286(2),938–944 (1998).
    • 155  Hoenicka M, Becker EM, Apeler H et al. Purified soluble guanylyl cyclase expressed in a baculovirus/Sf9 system: stimulation by YC-1, nitric oxide, and carbon monoxide. J. Mol. Med. (Berl.)77(1),14–23 (1999).
    • 156  Artz JD, Toader V, Zavorin SI, Bennett BM, Thatcher GR. In vitro activation of soluble guanylyl cyclase and nitric oxide release: a comparison of NO donors and NO mimetics. Biochemistry40(31),9256–9264 (2001).
    • 157  Russwurm M, Mergia E, Mullershausen F, Koesling D. Inhibition of deactivation of NO-sensitive guanylyl cyclase accounts for the sensitizing effect of YC-1. J. Biol. Chem.277(28),24883–24888 (2002).
    • 158  Friebe A, Mullershausen F, Smolenski A, Walter U, Schultz G, Koesling D. YC-1 potentiates nitric oxide- and carbon monoxide-induced cyclic GMP effects in human platelets. Mol. Pharmacol.54(6),962–967 (1998).
    • 159  Chien WL, Liang KC, Teng CM, Kuo SC, Lee FY, Fu WM. Enhancement of long-term potentiation by a potent nitric oxide-guanylyl cyclase activator, 3-(5-hydroxymethyl-2-furyl)-1-benzyl-indazole. Mol. Pharmacol.63(6),1322–1328 (2003).
    • 160  Chien WL, Liang KC, Teng CM, Kuo SC, Lee FY, Fu WM. Enhancement of learning behaviour by a potent nitric oxide-guanylate cyclase activator YC-1. Eur. J. Neurosci.21(6),1679–1688 (2005).
    • 161  Chien WL, Liang KC, Fu WM. Enhancement of active shuttle avoidance response by the NO-cGMP-PKG activator YC-1. Eur. J. Pharmacol.590(1–3),233–240 (2008).
    • 162  Yang X, Wang Y, Luo J, Liu S, Yang Z. Protective effects of YC-1 against glutamate induced PC12 cell apoptosis. Cell Mol. Neurobiol.31(2),303–311 (2011).
    • 163  Conti M, Beavo J. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu. Rev. Biochem.76,481–511 (2007).
    • 164  Bender AT, Beavo JA. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol. Rev.58(3),488–520 (2006).
    • 165  Reneerkens OA, Rutten K, Steinbusch HW, Blokland A, Prickaerts J. Selective phosphodiesterase inhibitors: a promising target for cognition enhancement. Psychopharmacology (Berl.)202(1–3),419–443 (2009).
    • 166  Menniti FS, Faraci WS, Schmidt CJ. Phosphodiesterases in the CNS: targets for drug development. Nat. Rev. Drug Discov.5(8),660–670 (2006).
    • 167  Bales KR, Plath N, Svenstrup N, Menniti FS. Phosphodiesterase inhibition to target the synaptic dysfunction in Alzheimer’s disease. Top. Med. Chem.6,57–59 (2010).
    • 168  Setter SM, Iltz JL, Fincham JE, Campbell RK, Baker DE. Phosphodiesterase 5 inhibitors for erectile dysfunction. Ann. Pharmacother.39(7–8),1286–1295 (2005).
    • 169  Devan BD, Sierra-Mercado D, Jr., Jimenez M et al. Phosphodiesterase inhibition by sildenafil citrate attenuates the learning impairment induced by blockade of cholinergic muscarinic receptors in rats. Pharmacol. Biochem. Behav.79(4),691–699 (2004).
    • 170  Rutten K, Basile JL, Prickaerts J, Blokland A, Vivian JA. Selective PDE inhibitors rolipram and sildenafil improve object retrieval performance in adult cynomolgus macaques. Psychopharmacology (Berl.)196(4),643–648 (2008).
    • 171  Prickaerts J, van Staveren WC, Sik A et al. Effects of two selective phosphodiesterase type 5 inhibitors, sildenafil and vardenafil, on object recognition memory and hippocampal cyclic GMP levels in the rat. Neuroscience113(2),351–361 (2002).
    • 172  Prickaerts J, Sik A, van Staveren WC et al. Phosphodiesterase type 5 inhibition improves early memory consolidation of object information. Neurochem. Int.45(6),915–928 (2004).
    • 173  Cuadrado-Tejedor M, Hervias I, Ricobaraza A et al. Sildenafil restores cognitive function without affecting beta-amyloid burden in a mouse model of Alzheimer’s disease. Br. J. Pharmacol.164(8),2029–2041 (2011).
    • 174  Orejana L, Barros-Minones L, Jordan J, Puerta E, Aguirre N. Sildenafil ameliorates cognitive deficits and tau pathology in a senescence-accelerated mouse model. Neurobiol. Aging33(3), 625 e611–e620 (2012).
    • 175  Palmeri A, Privitera L, Giunta S, Loreto C, Puzzo D. Inhibition of phosphodiesterase-5 rescues age-related impairment of synaptic plasticity and memory. Behav. Brain Res.240,11–20 (2013).
    • 176  Fiorito J, Saeed F, Zhang H et al. Synthesis of quinoline derivatives: discovery of a potent and selective phosphodiesterase 5 inhibitor for the treatment of Alzheimer’s disease. Eur. J. Med. Chem.60,285-294 (2013).
    • 177  Fisher DA, Smith JF, Pillar JS, St Denis SH, Cheng JB. Isolation and characterization of PDE9A, a novel human cGMP-specific phosphodiesterase. J. Biol. Chem.273(25),15559–15564 (1998).
    • 178  Andreeva SG, Dikkes P, Epstein PM, Rosenberg PA. Expression of cGMP-specific phosphodiesterase 9A mRNA in the rat brain. J. Neurosci.21(22),9068–9076 (2001).
    • 179  van Staveren WC, Glick J, Markerink-van Ittersum M et al. Cloning and localization of the cGMP-specific phosphodiesterase type 9 in the rat brain. J. Neurocytol.31(8–9),729–741 (2002).
    • 180  Reyes-Irisarri E, Markerink-Van Ittersum M, Mengod G, de Vente J. Expression of the cGMP-specific phosphodiesterases 2 and 9 in normal and Alzheimer’s disease human brains. Eur. J. Neurosci.25(11),3332–3338 (2007).
    • 181  Menniti F, Kleiman R, Schmidt C. PDE9A-mediated regulation of cGMP: impact on synaptic plasticity. Schizophrenia Res.102,38–39 (2008).
    • 182  Schmidt CJ, Harms J, Tingley FD et al. PDE9A-mediated regulation of cGMP: developing a biomarker for a novel therapy for Alzheimer’s disease. Alzheimers Dement.5(4),P331 (2009).
    • 183  Wunder F, Tersteegen A, Rebmann A, Erb C, Fahrig T, Hendrix M. Characterization of the first potent and selective PDE9 inhibitor using a cGMP reporter cell line. Mol. Pharmacol.68(6),1775–1781 (2005).
    • 184  van der Staay FJ, Rutten K, Barfacker L et al. The novel selective PDE9 inhibitor BAY 73–6691 improves learning and memory in rodents. Neuropharmacology55(5),908–918 (2008).
    • 185  Verhoest PR, Fonseca KR, Hou X et al. Design and discovery of 6-[(3S,4S)-4-methyl-1-(pyrimidin-2-ylmethyl)pyrrolidin-3-yl]-1-(tetrahydro-2H-pyr an-4-yl)-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one (PF-04447943), a selective brain penetrant PDE9A inhibitor for the treatment of cognitive disorders. J. Med. Chem.55(21),9045–9054 (2012).
    • 186  Hutson PH, Finger EN, Magliaro BC et al. The selective phosphodiesterase 9 (PDE9) inhibitor PF-04447943 (6-[(3S,4S)-4-methyl-1-(pyrimidin-2-ylmethyl)pyrrolidin-3-yl]-1-(tetrahydro-2H-py ran-4-yl)-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one) enhances synaptic plasticity and cognitive function in rodents. Neuropharmacology61(4),665–676 (2011).
    • 187  Meng F, Hou J, Shao YX et al. Structure-based discovery of highly selective phosphodiesterase-9A inhibitors and implications for inhibitor design. J. Med. Chem.55(19),8549–8558 (2012).
    • 188  Vardigan JD, Converso A, Hutson PH, Uslaner JM. The selective phosphodiesterase 9 (PDE9) inhibitor PF-04447943 attenuates a scopolamine-induced deficit in a novel rodent attention task. J. Neurogenet.25(4),120–126 (2011).
    • 189  Nicholas T, Evans R, Styren S et al. PF-04447943, a novel PDE9A inhibitor, increases cGMP levels in cerebrospinal fluid: translation from non-clinical species to healthy human volunteers. Alzheimers Dement.5(4),P330–P331 (2009).
    • 190  Nicholas T, Le V, Qiu R et al. Safety and pharmacokinetics of PF-04447943, a PDE9A inhibitor, in single and multiple dose Phase I studies in healthy volunteers. Alzheimers Dement.6,S135 (2010).
    • 191  Schwam E, Evans R, Nicholas T et al. PF-04447943: a Phase II controlled clinical trial of a selective PDE9A inhbitor in Alzheimer’s disease. Alzheimers Dement.7(4),S695 (2011).
    • 192  Wager TT, Chandrasekaran RY, Hou X et al. Defining desirable central nervous system drug space through the alignment of molecular properties, in vitro ADME, and safety attributes. ACS Chem. Neurosci.1(6),420–434 (2010).
    • 193  Wager TT, Hou X, Verhoest PR, Villalobos A. Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chem. Neurosci.1(6),435–449 (2010).