We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Published Online:https://doi.org/10.4155/fmc.11.136

Microsomal prostaglandin E synthase-1 (mPGES-1) is the terminal synthase responsible for the synthesis of the pro-tumorigenic prostaglandin E2 (PGE2). mPGES-1 is overexpressed in a wide variety of cancers. Since its discovery in 1997 by Bengt Samuelsson and collaborators, the enzyme has been the object of over 200 peer-reviewed articles. Although today mPGES-1 is considered a validated and promising therapeutic target for anticancer drug discovery, challenges in inhibitor design and selectivity are such that up to this date there are only a few published records of small-molecule inhibitors targeting the enzyme and exhibiting some in vivo anticancer activity. This review summarizes the structures, and the in vitro and in vivo activities of these novel mPGES-1 inhibitors. Challenges that have been encountered are also discussed.

Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

Bibliography

  • Hara S, Kamei D, Sasaki Y, Tanemoto A, Nakatani Y, Murakami M. Prostaglandin E synthases: understanding their pathophysiological roles through mouse genetic models. Biochimie92(6),651–659 (2010).
  • Nakanishi M, Montrose DC, Clark P et al. Genetic deletion of mPGES-1 suppresses intestinal tumorigenesis. Cancer Res.68(9),3251–3259 (2008).▪▪ First evidence of a role for mPGES-1 knockout in colorectal carcinogenesis.
  • Radmark O, Samuelsson B. Microsomal prostaglandin E synthase-1 and 5-lipoxygenase: potential drug targets in cancer. J. Intern. Med.268(1),5–14 (2010).
  • Samuelsson B, Morgenstern R, Jakobsson PJ. Membrane prostaglandin E synthase-1: a novel therapeutic target. Pharmacol. Rev.59(3),207–224 (2007).
  • Van Rees BP, Sivula A, Thoren S et al. Expression of microsomal prostaglandin E synthase-1 in intestinal type gastric adenocarcinoma and in gastric cancer cell lines. Int. J. Cancer107(4),551–556 (2003).
  • Jakobsson PJ, Thoren S, Morgenstern R, Samuelsson B. Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proc. Natl Acad. Sci. USA96(13),7220–7225 (1999).▪▪ First report published on the identification and characterization of microsomal glutathione-dependent prostaglandin E2 synthase. First suggestion for microsomal prostaglandin E synthase-1 as a novel target for drug development in the area of inflammation and cancer.
  • Jegerschold C, Pawelzik SC, Purhonen P et al. Structural basis for induced formation of the inflammatory mediator prostaglandin E2. Proc. Natl Acad. Sci. USA105(32),11110–11115 (2008).
  • Xing L, Kurumbail RG, Frazier RB et al. Homo-timeric structural model of human microsomal prostaglandin E synthase-1 and characterization of its substrate/inhibitor binding interactions. J. Comput. Aided Mol. Des.23(1),13–24 (2009).
  • Hetu PO, Ouellet M, Falgueyret JP et al. Photo-crosslinking of proteins in intact cells reveals a dimeric structure of cyclooxygenase-2 and an inhibitor-sensitive oligomeric structure of microsomal prostaglandin E2 synthase-1. Arch. Biochem. Biophys.477(1),155–162 (2008).
  • 10  Murakami M, Naraba H, Tanioka T et al. Regulation of prostaglandin E2 biosynthesis by inducible membrane-associated prostaglandin E2 synthase that acts in concert with cyclooxygenase-2. J. Biol. Chem.275(42),32783–32792 (2000).
  • 11  Hammarberg T, Hamberg M, Wetterholm A, Hansson H, Samuelsson B, Haeggstrom JZ. Mutation of a critical arginine in microsomal prostaglandin E synthase-1 shifts the isomerase activity to a reductase activity that converts prostaglandin H2 into prostaglandin F2α. J. Biol. Chem.284(1),301–305 (2009).
  • 12  Hamza A, Tong M, Abdulhameed MD et al. Understanding microscopic binding of human microsomal prostaglandin E synthase-1 (mPGES-1) trimer with substrate PGH2 and cofactor GSH: insights from computational alanine scanning and site-directed mutagenesis. J. Phys. Chem. B114(16),5605–5616 (2010).
  • 13  Watanabe K, Kurihara K, Tokunaga Y, Hayaishi O. Two types of microsomal prostaglandin E synthase: glutathione-dependent and -independent prostaglandin E synthases. Biochem. Biophys. Res. Comm.235(1),148–152 (1997).
  • 14  Yamada T, Komoto J, Watanabe K, Ohmiya Y, Takusagawa F. Crystal structure and possible catalytic mechanism of microsomal prostaglandin E synthase type 2 (mPGES-2). J. Mol. Biol.348(5),1163–1176 (2005).
  • 15  Tanioka T, Nakatani Y, Semmyo N, Murakami M, Kudo I. Molecular identification of cytosolic prostaglandin E2 synthase that is functionally coupled with cyclooxygenase-1 in immediate prostaglandin E2 biosynthesis. J. Biol. Chem.275(42),32775–32782 (2000).
  • 16  Murakami M, Kudo I. Recent advances in molecular biology and physiology of the prostaglandin E2-biosynthetic pathway. Prog. Lipid Res.43(1),3–35 (2004).
  • 17  Murakami M, Nakashima K, Kamei D et al. Cellular prostaglandin E2 production by membrane-bound prostaglandin E synthase-2 via both cyclooxygenases-1 and -2. J. Biol. Chem.278(39),37937–37947 (2003).
  • 18  Jania LA, Chandrasekharan S, Backlund MG et al. Microsomal prostaglandin E synthase-2 is not essential for in vivo prostaglandin E2 biosynthesis. Prostaglandins Other Lipid Mediat.88(3–4),73–81 (2009).
  • 19  Weaver AJ, Sullivan WP, Felts SJ, Owen BA, Toft DO. Crystal structure and activity of human p23, a heat shock protein 90 co-chaperone. J. Biol. Chem.275(30),23045–23052 (2000).
  • 20  Kobayashi T, Nakatani Y, Tanioka T et al. Regulation of cytosolic prostaglandin E synthase by phosphorylation. Biochem. J.381(Pt 1),59–69 (2004).
  • 21  Tanikawa N, Ohmiya Y, Ohkubo H et al. Identification and characterization of a novel type of membrane-associated prostaglandin E synthase. Biochem. Biophys. Res. Comm.291(4),884–889 (2002).
  • 22  Nakatani Y, Hokonohara Y, Kakuta S, Sudo K, Iwakura Y, Kudo I. Knockout mice lacking cPGES/p23, a constitutively expressed PGE2 synthetic enzyme, are peri-natally lethal. Biochem. Biophys. Res. Comm.362(2),387–392 (2007).
  • 23  Cha YI, Solnica-Krezel L, Dubois RN. Fishing for prostanoids: deciphering the developmental functions of cyclooxygenase-derived prostaglandins. Dev. Biol.289(2),263–272 (2006).
  • 24  Uematsu S, Matsumoto M, Takeda K, Akira S. Lipopolysaccharide-dependent prostaglandin E(2) production is regulated by the glutathione-dependent prostaglandin E(2) synthase gene induced by the Toll-like receptor 4/MyD88/NF-IL6 pathway. J. Immunol.168(11),5811–5816 (2002).
  • 25  Trebino CE, Stock JL, Gibbons CP et al. Impaired inflammatory and pain responses in mice lacking an inducible prostaglandin E synthase. Proc. Natl Acad. Sci. USA100(15),9044–9049 (2003).▪▪ Demonstration for a role of mPGES-1 in both acute and chronic PGE2-dependent experimental models of inflammation.
  • 26  Thoren S, Jakobsson PJ. Coordinate up- and down-regulation of glutathione-dependent prostaglandin E synthase and cyclooxygenase-2 in A549 cells. Inhibition by NS-398 and leukotriene C4. Eur. J. Biochem.267(21),6428–6434 (2000).
  • 27  Stichtenoth DO, Thoren S, Bian H, Peters-Golden M, Jakobsson PJ, Crofford LJ. Microsomal prostaglandin E synthase is regulated by proinflammatory cytokines and glucocorticoids in primary rheumatoid synovial cells. J. Immunol.167(1),469–474 (2001).
  • 28  Mustafa M, Wondimu B, Yucel-Lindberg T, Kats-Hallstrom AT, Jonsson AS, Modeer T. Triclosan reduces microsomal prostaglandin E synthase-1 expression in human gingival fibroblasts. J. Clin. Periodontol.32(1),6–11 (2005).
  • 29  Yucel-Lindberg T, Hallstrom T, Kats A, Mustafa M, Modeer T. Induction of microsomal prostaglandin E synthase-1 in human gingival fibroblasts. Inflammation28(2),89–95 (2004).
  • 30  Naraba H, Yokoyama C, Tago N et al. Transcriptional regulation of the membrane-associated prostaglandin E2 synthase gene. Essential role of the transcription factor Egr-1. J. Biol. Chem.277(32),28601–28608 (2002).
  • 31  Kamei D, Murakami M, Nakatani Y, Ishikawa Y, Ishii T, Kudo I. Potential role of microsomal prostaglandin E synthase-1 in tumorigenesis. J. Biol. Chem.278(21),19396–19405 (2003).▪▪ Co-expression of COX-2 and mPGES-1 in HEK293 cells leads to tumorigenicity of these cells into mice. First demonstration of a role for mPGES-1 in tumorigenesis.
  • 32  Saha S, Engstrom L, Mackerlova L, Jakobsson PJ, Blomqvist A. Impaired febrile responses to immune challenge in mice deficient in microsomal prostaglandin E synthase-1. Am. J. Physiol. Regul. Integr. Comp. Physiol.288(5),R1100–R1107 (2005).
  • 33  Kamei D, Yamakawa K, Takegoshi Y et al. Reduced pain hypersensitivity and inflammation in mice lacking microsomal prostaglandin E synthase-1. J. Biol. Chem.279(32),33684–33695 (2004).
  • 34  Von Rahden BH, Stein HJ, Hartl SA et al. Expression of prostaglandin E synthase in Barrett’s cancer. Dis. Esophagus21(4),304–308 (2008).
  • 35  Nardone G, Rocco A, Vaira D et al. Expression of COX-2, mPGE-synthase1, MDR-1 (P-gp), and Bcl-xL: a molecular pathway of H pylori-related gastric carcinogenesis. J. Pathol.202(3),305–312 (2004).
  • 36  Jang TJ. Expression of proteins related to prostaglandin E2 biosynthesis is increased in human gastric cancer and during gastric carcinogenesis. Virchows Arch.445(6),564–571 (2004).
  • 37  Gudis K, Tatsuguchi A, Wada K et al. Clinical significance of prostaglandin E synthase expression in gastric cancer tissue. Hum. Pathol.38(12),1826–1835 (2007).
  • 38  Rocco A, Caruso R, Toracchio S et al. Gastric adenomas: relationship between clinicopathological findings, Helicobacter pylori infection, APC mutations and COX-2 expression. Ann. Oncol.17(Suppl. 7),103–108 (2006).
  • 39  Yoshimatsu K, Golijanin D, Paty PB et al. Inducible microsomal prostaglandin E synthase is overexpressed in colorectal adenomas and cancer. Clin. Cancer Res.7(12),3971–3976 (2001).
  • 40  Lim SC, Cho H, Lee TB et al. Impacts of cytosolic phospholipase A2, 15-prostaglandin dehydrogenase, and cyclooxygenase-2 expressions on tumor progression in colorectal cancer. Yonsei Med. J.51(5),692–699 (2010).
  • 41  Takii Y, Abiru S, Fujioka H et al. Expression of microsomal prostaglandin E synthase-1 in human hepatocelluar carcinoma. Liver Int.27(7),989–996 (2007).
  • 42  Nonaka K, Fujioka H, Takii Y et al. mPGES-1 expression in non-cancerous liver tissue impacts on postoperative recurrence of HCC. World J. Gastroenterol.16(38),4846–4853 (2010).
  • 43  Hasan S, Satake M, Dawson DW et al. Expression analysis of the prostaglandin E2 production pathway in human pancreatic cancers. Pancreas37(2),121–127 (2008).
  • 44  Mattila S, Tuominen H, Koivukangas J, Stenback F. The terminal prostaglandin synthases mPGES-1, mPGES-2, and cPGES are all overexpressed in human gliomas. Neuropathology29(2),156–165 (2009).
  • 45  Baryawno N, Sveinbjornsson B, Eksborg S et al. Tumor-growth-promoting cyclooxygenase-2 prostaglandin E2 pathway provides medulloblastoma therapeutic targets. Neuro. Oncol.10(5),661–674 (2008).
  • 46  Mehrotra S, Morimiya A, Agarwal B, Konger R, Badve S. Microsomal prostaglandin E2 synthase-1 in breast cancer: a potential target for therapy. J. Pathol.208(3),356–363 (2006).
  • 47  Gatalica Z, Lilleberg SL, Koul MS et al. COX-2 gene polymorphisms and protein expression in renomedullary interstitial cell tumors. Hum. Pathol.39(10),1495–1504 (2008).
  • 48  Omi Y, Shibata N, Okamoto T, Obara T, Kobayashi M. Immunohistochemical demonstration of membrane-bound prostaglandin E2 synthase-1 in papillary thyroid carcinoma. Acta Histochem. Cytochem.42(4),105–109 (2009).
  • 49  Kawata R, Hyo S, Araki M, Takenaka H. Expression of cyclooxygenase-2 and microsomal prostagalandin E synthase-1 in head and neck squamous cell carcinoma. Auris. Nasus. Larynx37(4),482–487 (2010).
  • 50  Cohen EG, Almahmeed T, Du B et al. Microsomal prostaglandin E synthase-1 is overexpressed in head and neck squamous cell carcinoma. Clin. Cancer Res.9(9),3425–3430 (2003).
  • 51  Golijanin D, Tan JY, Kazior A et al. Cyclooxygenase-2 and microsomal prostaglandin E synthase-1 are overexpressed in squamous cell carcinoma of the penis. Clin. Cancer Res.10(3),1024–1031 (2004).
  • 52  Yoshimatsu K, Altorki NK, Golijanin D et al. Inducible prostaglandin E synthase is overexpressed in non-small cell lung cancer. Clin. Cancer Res.7(9),2669–2674 (2001).
  • 53  Wu YC, Su LJ, Wang HW et al. Co-overexpression of cyclooxygenase-2 and microsomal prostaglandin E synthase-1 adversely affects the postoperative survival in non-small cell lung cancer. J. Thorac. Oncol.5(8),1167–1174 (2010).
  • 54  Wang HW, Hsueh CT, Lin CF et al. Clinical implications of microsomal prostaglandin e synthase-1 overexpression in human non-small-cell lung cancer. Ann. Surg. Oncol.13(9),1224–1234 (2006).
  • 55  Kawata R, Hyo S, Maeda T, Urade Y, Takenaka H. Simultaneous expression of cyclooxygenase-2 and microsomal prostaglandin E synthase in squamous cell carcinoma of the larynx. Acta Otolaryngol.126(6),627–632 (2006).
  • 56  Herfs M, Herman L, Hubert P et al. High expression of PGE2 enzymatic pathways in cervical (pre)neoplastic lesions and functional consequences for antigen-presenting cells. Cancer Immunol. Immunother.58(4),603–614 (2009).
  • 57  Jabbour HN, Milne SA, Williams AR, Anderson RA, Boddy SC. Expression of COX-2 and PGE synthase and synthesis of PGE(2)in endometrial adenocarcinoma: a possible autocrine/paracrine regulation of neoplastic cell function via EP2/EP4 receptors. Br. J. Cancer85(7),1023–1031 (2001).
  • 58  Rask K, Zhu Y, Wang W, Hedin L, Sundfeldt K. Ovarian epithelial cancer: a role for PGE2-synthesis and signalling in malignant transformation and progression. Mol. Cancer5,62 (2006).
  • 59  Nakanishi M, Gokhale V, Meuillet EJ, Rosenberg DW. mPGES-1 as a target for cancer suppression: a comprehensive invited review “phospholipase A2 and lipid mediators”. Biochimie92(6),660–664 (2010).▪ Concise review of the role of mPGES-1 in colorectal carcinogenesis and the novel inhibitors developed for this target.
  • 60  Elander N, Ungerback J, Olsson H, Uematsu S, Akira S, Soderkvist P. Genetic deletion of mPGES-1 accelerates intestinal tumorigenesis in APC(Min/+) mice. Biochem. Biophys. Res. Comm. (2008).▪ Controvertial report about the effects of mPGES-1 downregulation in intestinal tumorigenesis (in contradiction to [2]).
  • 61  Hanaka H, Pawelzik SC, Johnsen JI et al. Microsomal prostaglandin E synthase 1 determines tumor growth in vivo of prostate and lung cancer cells. Proc. Natl Acad. Sci. USA106(44),18757–18762 (2009).
  • 62  Kamei D, Murakami M, Sasaki Y et al. Microsomal prostaglandin E synthase-1 in both cancer cells and hosts contributes to tumour growth, invasion and metastasis. Biochem. J.425(2),361–371 (2010).▪ This report provides evidence that mPGES-1 in both cancer cells and host contributes to tumorigenesis in vitro and in vivo.
  • 63  Wang M, Zukas AM, Hui Y, Ricciotti E, Pure E, Fitzgerald GA. Deletion of microsomal prostaglandin E synthase-1 augments prostacyclin and retards atherogenesis. Proc. Natl Acad. Sci. USA103(39),14507–14512 (2006).▪ Deletion of the mPGES-1 gene in low-density lipoprotein receptor knockout mice retards atherogenesis without affecting blood pressure. The report also confirms the Cheng work by [71].
  • 64  Bombardier C, Laine L, Reicin A et al. Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. VIGOR Study Group. N. Engl. J. Med.343(21),1520–1528 (2000).
  • 65  Nussmeier NA, Whelton AA, Brown MT et al. Complications of the COX-2 inhibitors parecoxib and valdecoxib after cardiac surgery. N. Engl. J. Med.352(11),1081–1091 (2005).
  • 66  Gislason GH, Jacobsen S, Rasmussen JN et al. Risk of death or reinfarction associated with the use of selective cyclooxygenase-2 inhibitors and nonselective nonsteroidal antiinflammatory drugs after acute myocardial infarction. Circulation113(25),2906–2913 (2006).
  • 67  Mukherjee D, Nissen SE, Topol EJ. Risk of cardiovascular events associated with selective COX-2 inhibitors. JAMA286(8),954–959 (2001).
  • 68  Wu D, Mennerich D, Arndt K et al. Comparison of microsomal prostaglandin E synthase-1 deletion and COX-2 inhibition in acute cardiac ischemia in mice. Prostaglandins Other Lipid Mediat.90(1–2),21–25 (2009).
  • 69  Wu D, Mennerich D, Arndt K et al. The effects of microsomal prostaglandin E synthase-1 deletion in acute cardiac ischemia in mice. Prostaglandins Leukot Essent Fatty Acids81(1),31–33 (2009).
  • 70  Degousee N, Fazel S, Angoulvant D et al. Microsomal prostaglandin E2 synthase-1 deletion leads to adverse left ventricular remodeling after myocardial infarction. Circulation117(13),1701–1710 (2008).
  • 71  Cheng Y, Wang M, Yu Y, Lawson J, Funk CD, Fitzgerald GA. Cyclooxygenases, microsomal prostaglandin E synthase-1, and cardiovascular function. J. Clin. Invest.116(5),1391–1399 (2006).▪▪ Reports that mPGES-1 deletion, in contrast to deletion, disruption, or inhibition of or cyclooxygenase 2 (COX-2), does not result in hypertension or a predisposition to thrombosis in normo-lipidemic mice. These important findings suggested that selective mPGES-1 inhibitors would have very low if any cardiotoxic side effects typically associated with COX-2 inhibitors.
  • 72  Bannenberg G, Dahlen SE, Luijerink M, Lundqvist G, Morgenstern R. Leukotriene C4 is a tight-binding inhibitor of microsomal glutathione transferase-1. Effects of leukotriene pathway modifiers. J. Biol. Chem.274(4),1994–1999 (1999).
  • 73  Quraishi O, Mancini JA, Riendeau D. Inhibition of inducible prostaglandin E(2) synthase by 15-deoxy-Δ(12,14)-prostaglandin J(2) and polyunsaturated fatty acids. Biochem. Pharmacol.63(6),1183–1189 (2002).
  • 74  Wobst I, Schiffmann S, Birod K et al. Dimethylcelecoxib inhibits prostaglandin E2 production. Biochem. Pharmacol.76(1),62–69 (2008).
  • 75  Mancini JA, Blood K, Guay J et al. Cloning, expression, and up-regulation of inducible rat prostaglandin e synthase during lipopolysaccharide-induced pyresis and adjuvant-induced arthritis. J. Biol. Chem.276(6),4469–4475 (2001).
  • 76  Riendeau D, Aspiotis R, Ethier D et al. Inhibitors of the inducible microsomal prostaglandin E2 synthase (mPGES-1) derived from MK-886. Bioorg. Med. Chem. Lett.15(14),3352–3355 (2005).
  • 77  Sciulli MG, Seta F, Tacconelli S et al. Effects of acetaminophen on constitutive and inducible prostanoid biosynthesis in human blood cells. Br. J. Pharmacol.138(4),634–641 (2003).
  • 78  Bage T, Modeer T, Kawakami T, Quezada HC, Yucel-Lindberg T. Regulation of prostaglandin E synthases: effects of siRNA-mediated inhibition of microsomal prostaglandin E synthase-1. Biochim. Biophys. Acta1773(10),1589–1598 (2007).
  • 79  Cianchi F, Cortesini C, Magnelli L et al. Inhibition of 5-lipoxygenase by MK886 augments the antitumor activity of celecoxib in human colon cancer cells. Mol. Cancer Ther.5(11),2716–2726 (2006).
  • 80  Koeberle A, Siemoneit U, Buhring U et al. Licofelone suppresses prostaglandin E2 formation by interference with the inducible microsomal prostaglandin E2 synthase-1. J. Pharmacol. Exp. Ther.326(3),975–982 (2008).
  • 81  Fischer L, Hornig M, Pergola C et al. The molecular mechanism of the inhibition by licofelone of the biosynthesis of 5-lipoxygenase products. Br. J. Pharmacol.152(4),471–480 (2007).
  • 82  Koeberle A, Northoff H, Werz O. Curcumin blocks prostaglandin E2 biosynthesis through direct inhibition of the microsomal prostaglandin E2 synthase-1. Mol. Cancer Ther.8(8),2348–2355 (2009).
  • 83  Koeberle A, Bauer J, Verhoff M, Hoffmann M, Northoff H, Werz O. Green tea epigallocatechin-3-gallate inhibits microsomal prostaglandin E(2) synthase-1. Biochem. Biophys. Res. Comm.388(2),350–354 (2009).
  • 84  Koeberle A, Northoff H, Werz O. Identification of 5-lipoxygenase and microsomal prostaglandin E2 synthase-1 as functional targets of the anti-inflammatory and anti-carcinogenic garcinol. Biochem. Pharmacol.77(9),1513–1521 (2009).
  • 85  Koeberle A, Pollastro F, Northoff H, Werz O. Myrtucommulone, a natural acylphloroglucinol, inhibits microsomal prostaglandin E(2) synthase-1. Br. J. Pharmacol.156(6),952–961 (2009).
  • 86  Bauer J, Koeberle A, Dehm F et al. Arzanol, a prenylated heterodimeric phloroglucinyl pyrone, inhibits eicosanoid biosynthesis and exhibits anti-inflammatory efficacy in vivo. Biochem. Pharmacol.81(2),259–268 (2011).
  • 87  Siemoneit U, Koeberle A, Rossi A et al. Inhibition of microsomal prostaglandin E2 synthase-1 as a molecular basis for the anti-inflammatory actions of boswellic acids from frankincense. Br. J. Pharmacol.162(1),147–162 (2011).
  • 88  Koeberle A, Rossi A, Bauer J et al. Hyperforin, an anti-inflammatory constituent from St. John’s wort, inhibits microsomal prostaglandin E(2) synthase-1 and suppresses prostaglandin E(2) formation in vivo. Front. Pharmacol.2,7 (2011).
  • 89  Rao CV. Regulation of COX and LOX by curcumin. Adv. Exp. Med. Biol.595,213–226 (2007).
  • 90  Charleson S, Prasit P, Leger S et al. Characterization of a 5-lipoxygenase-activating protein binding assay: correlation of affinity for 5-lipoxygenase-activating protein with leukotriene synthesis inhibition. Mol. Pharmacol.41(5),873–879 (1992).
  • 91  Masse F, Guiral S, Fortin LJ et al. An automated multistep high-throughput screening assay for the identification of lead inhibitors of the inducible enzyme mPGES-1. J. Biomol. Screen10(6),599–605 (2005).
  • 92  Cote B, Boulet L, Brideau C et al. Substituted phenanthrene imidazoles as potent, selectiveIdentification of a novel, potent and selective inhibitor of mPGES-1 activity, and orally active mPGES-1 inhibitors. Bioorg. Med. Chem. Lett.17(24),6816–6820 (2007).
  • 93  Pawelzik SC, Uda NR, Spahiu L et al. Identification of key residues determining species differences in inhibitor binding of microsomal prostaglandin E synthase-1. J. Biol. Chem.285(38),29254–29261 (2010).
  • 94  Xu D, Rowland SE, Clark P et al. MF63 [2-(6-chloro-1H-phenanthro[9,10-d]imidazol-2-yl)-isophthalonitrile], a selective microsomal prostaglandin E synthase-1 inhibitor, relieves pyresis and pain in preclinical models of inflammation. J. Pharmacol. Exp. Ther.326(3),754–763 (2008).
  • 95  Giroux A, Boulet L, Brideau C et al. Discovery of disubstituted phenanthrene imidazoles as potent, selective and orally active mPGES-1 inhibitors. Bioorg. Med. Chem. Lett.19(20),5837–5841 (2009).
  • 96  Gosselin F, Lau S, Nadeau C, Trinh T, O’shea PD, Davies IW. A practical synthesis of m-prostaglandin E synthase-1 inhibitor MK-7285. J. Org. Chem.74(20),7790–7797 (2009).
  • 97  Wu TY, Juteau H, Ducharme Y et al. Biarylimidazoles as inhibitors of microsomal prostaglandin E2 synthase-1. Bioorg. Med. Chem. Lett.20(23),6978–6982 (2010).
  • 98  Werz O, Greiner C, Koeberle A et al. Novel and potent inhibitors of 5-lipoxygenase product synthesis based on the structure of pirinixic acid. J. Med. Chem.51(17),5449–5453 (2008).
  • 99  Koeberle A, Zettl H, Greiner C, Wurglics M, Schubert-Zsilavecz M, Werz O. Pirinixic acid derivatives as novel dual inhibitors of microsomal prostaglandin E2 synthase-1 and 5-lipoxygenase. J. Med. Chem.51(24),8068–8076 (2008).
  • 100  Hieke M, Greiner C, Thieme TM, Schubert-Zsilavecz M, Werz O, Zettl H. A novel class of dual mPGES-1/5-LO inhibitors based on the α-naphthyl pirinixic acid scaffold. Bioorg. Med. Chem. Lett.21(5),1329–1333 (2011).
  • 101  Koeberle A, Rossi A, Zettl H et al. The molecular pharmacology and in vivo activity of 2-(4-chloro-6-(2,3-dimethylphenylamino)pyrimidin-2-ylthio)octanoic acid (YS121), a dual inhibitor of microsomal prostaglandin E2 synthase-1 and 5-lipoxygenase. J. Pharmacol. Exp. Ther.332(3),840–848 (2010).
  • 102  Hieke M, Greiner C, Dittrich M et al. Discovery and biological evaluation of a novel class of dual microsomal prostaglandin E(2) synthase-1/5-lipoxygenase inhibitors based on 2-[(4,6-diphenethoxypyrimidin-2-yl)thio]hexanoic acid. J. Med. Chem. (2011).
  • 103  Greiner C, Zettl H, Koeberle A et al. Identification of 2-mercaptohexanoic acids as dual inhibitors of 5-lipoxygenase and microsomal prostaglandin E(2) synthase-1. Bioorg. Med. Chem.19(11),3394–3401 (2011).
  • 104  Liedtke AJ, Keck PR, Lehmann F, Koeberle A, Werz O, Laufer SA. Arylpyrrolizines as inhibitors of microsomal prostaglandin E2 synthase-1 (mPGES-1) or as dual inhibitors of mPGES-1 and 5-lipoxygenase (5-LOX). J. Med. Chem.52(15),4968–4972 (2009).
  • 105  Karg EM, Luderer S, Pergola C et al. Structural optimization and biological evaluation of 2-substituted 5-hydroxyindole-3-carboxylates as potent inhibitors of human 5-lipoxygenase. J. Med. Chem.52(11),3474–3483 (2009).
  • 106  Koeberle A, Haberl EM, Rossi A et al. Discovery of benzo[g]indol-3-carboxylates as potent inhibitors of microsomal prostaglandin E(2) synthase-1. Bioorg. Med. Chem.17(23),7924–7932 (2009).
  • 107  Wang J, Limburg D, Carter J, Mbalaviele G, Gierse J, Vazquez M. Selective inducible microsomal prostaglandin E(2) synthase-1 (mPGES-1) inhibitors derived from an oxicam template. Bioorg. Med. Chem. Lett.20(5),1604–1609 (2010).
  • 108  Mbalaviele G, Pauley AM, Shaffer AF et al. Distinction of microsomal prostaglandin E synthase-1 (mPGES-1) inhibition from cyclooxygenase-2 inhibition in cells using a novel, selective mPGES-1 inhibitor. Biochem. Pharmacol.79(10),1445–1454 (2010).▪ This study discusses technical assays to be performed in order to obtain mPGES-1 inhibitors profiles, disctinct from COX-2 inhibitor profiles.
  • 109  Olkkola KT, Brunetto AV, Mattila MJ. Pharmacokinetics of oxicam nonsteroidal anti-inflammatory agents. Clin. Pharmacokinet.26(2),107–120 (1994).
  • 110  Chiasson JF, Boulet L, Brideau C et al. Trisubstituted ureas as potent and selective mPGES-1 inhibitors. Bioorg. Med. Chem. Lett.21(5),1488–1492 (2011).
  • 111  Bruno A, Di Francesco L, Coletta I et al. Effects of AF3442 [N-(9-ethyl-9H-carbazol-3-yl)-2-(trifluoromethyl)benzamide], a novel inhibitor of human microsomal prostaglandin E synthase-1, on prostanoid biosynthesis in human monocytes in vitro. Biochem. Pharmacol.79(7),974–981 (2010).
  • 112  Rorsch F, Wobst I, Zettl H et al. Nonacidic inhibitors of human microsomal prostaglandin synthase 1 (mPGES 1) identified by a multistep virtual screening protocol. J. Med. Chem.53(2),911–915 (2010).
  • 113  De Simone R, Chini MG, Bruno I et al. Structure-based discovery of inhibitors of microsomal prostaglandin E2 synthase-1, 5-lipoxygenase and 5-lipoxygenase-activating protein: promising hits for the development of new anti-inflammatory agents. J. Med. Chem.54(6),1565–1575 (2011).
  • 114  Waltenberger B, Wiechmann K, Bauer J et al. Pharmacophore modeling and virtual screening for novel acidic inhibitors of microsomal prostaglandin E(2) synthase-1 (mPGES-1). J. Med. Chem.54(9),3163–3174 (2011).▪▪ Most recent and compelling study that describes the identification of novel mPGES-1 inhibitor scaffolds from pharmacophore modeling and in silico studies.
  • 115  Schuller HM, Zhang L, Weddle DL, Castonguay A, Walker K, Miller MS. The cyclooxygenase inhibitor ibuprofen and the FLAP inhibitor MK886 inhibit pancreatic carcinogenesis induced in hamsters by transplacental exposure to ethanol and the tobacco carcinogen NNK. J. Cancer Res. Clin. Oncol.128(10),525–532 (2002).