We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Published Online:https://doi.org/10.4155/fmc.11.12

The phosphoinositide 3-kinase (PI3K) signaling pathway controls a wide variety of cellular processes including cell death and survival, cell migration, protein synthesis and metabolism. Aberrant PI3K-dependent signaling, mediated by Akt kinase, has been implicated in many human diseases including cancer, inflammation, cardiovascular disease and metabolic diseases, making this pathway a principle target for drug development. In this article we will summarize the PI3K signaling network and discuss current strategies for pathway inhibition. We will also explore the importance and emerging relevance of Akt-independent PI3K signaling pathways and discuss attempts being made to harness these pathways by inhibiting the binding of a product of PI3K, phosphatidylinositol-(3,4,5)-trisphosphate, to effector pleckstrin homology domains.

Papers of special note have been highlighted as: ▪ of interest

Bibliography

  • Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet.7(8),606–619 (2006).
  • Martin TF. Phosphoinositide lipids as signaling molecules: common themes for signal transduction, cytoskeletal regulation, and membrane trafficking. Annu. Rev. Cell Dev. Biol.14,231–264 (1998).
  • Toker A. Phosphoinositides and signal transduction. Cell. Mol. Life Sci.59(5),761–779 (2002).
  • Fruman DA, Meyers RE, Cantley LC. Phosphoinositide kinases. Annu. Rev. Biochem.67,481–507 (1998).
  • Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B. The emerging mechanisms of isoform-specific PI3K signalling. Nat. Rev. Mol. Cell Biol.11(5),329–341 (2010).
  • Stephens LR, Jackson TR, Hawkins PT. Agonist-stimulated synthesis of phosphatidylinositol(3,4,5)-trisphosphate: a new intracellular signalling system? Biochim. Biophys. Acta1179(1),27–75 (1993).
  • Rameh LE, Cantley LC. The role of phosphoinositide 3-kinase lipid products in cell function. J. Biol. Chem.274(13),8347–8350 (1999).
  • Kutateladze TG. Translation of the phosphoinositide code by PI effectors. Nat. Chem. Biol.6(7),507–513 (2010).
  • Brognard J, Newton AC. PHLiPPing the switch on Akt and protein kinase C signaling. Trends Endocrinol. Metab.19(6),223–230 (2008).
  • 10  Arroyo JD, Hahn WC. Involvement of PP2A in viral and cellular transformation. Oncogene24(52),7746–7755 (2005).
  • 11  Brazil DP, Yang ZZ, Hemmings BA. Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem. Sci.29(5),233–242 (2004).
  • 12  Mora A, Komander D, van Aalten DMF, Alessi DR. PDK1, the master regulator of AGC kinase signal transduction. Semin. Cell Dev. Biol.15(2),161–170 (2004).
  • 13  Currie RA, Walker KS, Gray A et al. Role of phosphatidylinositol 3,4,5-trisphosphate in regulating the activity and localization of 3-phosphoinositide-dependent protein kinase-1. Biochem. J.337(Pt. 3),575–583 (1999).
  • 14  Alessi DR, James SR, Downes CP et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα. Curr. Biol.7(4),261–269 (1997).
  • 15  Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science307(5712),1098–1101 (2005).
  • 16  Chan TO, Rittenhouse SE, Tsichlis PN. AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu. Rev. Biochem.68,965–1014 (1999).
  • 17  Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell129(7),1261–1274 (2007).▪ Comprehensive review of the Akt signaling pathway.
  • 18  Datta SR, Dudek H, Tao X et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell91(2),231–241 (1997).
  • 19  Van Der Heide LP, Hoekman MF, Smidt MP. The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem. J.380(Pt. 2),297–309 (2004).
  • 20  Marine JC, Lozano G. Mdm2-mediated ubiquitylation: p53 and beyond. Cell Death Differ.17(1),93–102 (2010).
  • 21  Nair VD, Olanow CW. Differential modulation of Akt/glycogen synthase kinase-3β pathway regulates apoptotic and cytoprotective signaling responses. J. Biol. Chem.283(22),15469–15478 (2008).
  • 22  Foster KG, Fingar DC. Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J. Biol. Chem.285(19),14071–14077 (2010).
  • 23  Liang J, Slingerland JM. Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle2(4),339–345 (2003).
  • 24  Danial NN, Walensky LD, Zhang C-Y et al. Dual role of proapoptotic BAD in insulin secretion and β cell survival. Nat. Med.14(2),144–153 (2008).
  • 25  Matheny RW Jr, Adamo ML. Current perspectives on Akt Akt-ivation and Akt-ions. Exp. Biol. Med. (Maywood)234(11),1264–1270 (2009).
  • 26  Toker A, Yoeli-Lerner M. Akt signaling and cancer: surviving but not moving on. Cancer Res.66(8),3963–3966 (2006).
  • 27  Chin YR, Toker A. The actin-bundling protein palladin is an Akt1-specific substrate that regulates breast cancer cell migration. Mol. Cell38(3),333–344 (2010).
  • 28  Iliopoulos D, Polytarchou C, Hatziapostolou M et al. MicroRNAs differentially regulated by Akt isoforms control EMT and stem cell renewal in cancer cells. Sci. Signal.2(92),ra62 (2009).
  • 29  Maroulakou IG, Oemler W, Naber SP, Tsichlis PN. Akt1 ablation inhibits, whereas Akt2 ablation accelerates, the development of mammary adenocarcinomas in mouse mammary tumor virus (MMTV)-ErbB2/neu and MMTV-polyoma middle T transgenic mice. Cancer Res.67(1),167–177 (2007).
  • 30  Park WS, Heo WD, Whalen JH et al. Comprehensive identification of PIP3-regulated PH domains from C. elegans to H. sapiens by model prediction and live imaging. Mol. Cell30(3),381–392 (2008).▪ Describes the development of a model system that was used to predict which pleckstrin homology (PH) domain-containing proteins are regulated by PIP3.
  • 31  Vasudevan KM, Barbie DA, Davies MA et al. AKT-independent signaling downstream of oncogenic PIK3CA mutations in human cancer. Cancer Cell16(1),21–32 (2009).▪ Demonstrates that phosphoinositide 3-kinase may promote cancer through 
either AKT-dependent or 
AKT-independent mechanisms.
  • 32  Dawes AT, Edelstein-Keshet L. Phosphoinositides and Rho proteins spatially regulate actin polymerization to initiate and maintain directed movement in a one-dimensional model of a motile cell. Biophys. J.92(3),744–768 (2007).
  • 33  Kölsch V, Charest PG, Firtel RA. The regulation of cell motility and chemotaxis by phospholipid signaling. J. Cell Sci.121(5),551–559 (2008).
  • 34  Takenawa T, Itoh T. Phosphoinositides, key molecules for regulation of actin cytoskeletal organization and membrane traffic from the plasma membrane. Biochim. Biophys. Acta1533(3),190–206 (2001).
  • 35  Hirsch E, Ciraolo E, Ghigo A, Costa C. Taming the PI3K team to hold inflammation and cancer at bay. Pharmacol. Ther.118(2),192–205 (2008).
  • 36  Oudit GY, Penninger JM. Cardiac regulation by phosphoinositide 3-kinases and PTEN. Cardiovasc. Res.82(2),250–260 (2009).
  • 37  Manning BD. Balancing Akt with S6K: implications for both metabolic diseases and tumorigenesis. J. Cell Biol.167(3),399–403 (2004).
  • 38  Liu P, Cheng H, Roberts TM, Zhao JJ. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov.8(8),627–644 (2009).▪ Thorough review of the role of the phosphoinositide 3-kinase pathway in cancer and the development of therapeutic inhibitors of this pathway.
  • 39  Mandelker D, Gabelli SB, Schmidt-Kittler O et al. A frequent kinase domain mutation that changes the interaction between PI3Kα and the membrane. Proc. Natl Acad. Sci. USA106(40),16996–17001 (2009).
  • 40  Carpten JD, Faber AL, Horn C et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature448(7152),439–444 (2007).
  • 41  Marone R, Cmiljanovic V, Giese B, Wymann MP. Targeting phosphoinositide 3-kinase: moving towards therapy. Biochim. Biophys. Acta1784(1),159–185 (2008).
  • 42  Cleary JM, Shapiro GI. Development of phosphoinositide-3 kinase pathway inhibitors for advanced cancer. Curr. Oncol. Rep.12(2),87–94 (2010).
  • 43  Ihle NT, Williams R, Chow S et al. Molecular pharmacology and antitumor activity of PX-866, a novel inhibitor of phosphoinositide-3-kinase signaling. Mol. Cancer Ther.3(7),763–772 (2004).
  • 44  Vlahos CJ, Matter WF, Hui KY, Brown RF. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J. Biol. Chem.269(7),5241–5248 (1994).
  • 45  Garlich JR, De P, Dey N et al. A vascular targeted pan phosphoinositide 3-kinase inhibitor prodrug, SF1126, with antitumor and antiangiogenic activity. Cancer Res.68(1),206–215 (2008).
  • 46  Calvo E, Edelman G, Baselga J et al. A Phase I dose-escalation study of the safety, pharmacokinetics and pharmacodynamics of XL147, a novel PI3K inhibitor administered orally to patients with advanced solid tumors. Ejc Suppl.6(12),69–69 (2008).
  • 47  Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat. Rev. Cancer9(8),550–562 (2009).
  • 48  Hay N. The Akt-mTOR tango and its relevance to cancer. Cancer Cell8(3),179–183 (2005).
  • 49  O’Reilly KE, Rojo F, She QB et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res.66(3),1500–1508 (2006).
  • 50  Raynaud FI, Eccles S, Clarke PA et al. Pharmacologic characterization of a potent inhibitor of class I phosphatidylinositide 3-kinases. Cancer Res.67(12),5840–5850 (2007).
  • 51  Workman P, Clarke PA, Raynaud FI, Van Montfort RLM. Drugging the PI3 kinome: from chemical tools to drugs in the clinic. Cancer Res.70(6),2146–2157 (2010).
  • 52  Fan QW, Knight ZA, Goldenberg DD et al. A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell9(5),341–349 (2006).
  • 53  Folkes AJ, Ahmadi K, Alderton WK et al. The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer. J. Med. Chem.51(18),5522–5532 (2008).
  • 54  Wagner AJ, Von Hoff DH, LoRusso PM et al. A first-in-human Phase I study to evaluate the pan-PI3K inhibitor GDC-0941 administered QD or BID in patients with advanced solid tumors. J. Clin. Oncol.27(15),3501 (2009).
  • 55  Maira SM, Stauffer F, Brueggen J et al. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol. Cancer Ther.7(7),1851–1863 (2008).
  • 56  Eichhorn PJ, Gili M, Scaltriti M et al. Phosphatidylinositol 3-kinase hyperactivation results in lapatinib resistance that is reversed by the mTOR/phosphatidylinositol 3-kinase inhibitor NVP-BEZ235. Cancer Res.68(22),9221–9230 (2008).
  • 57  Serra V, Markman B, Scaltriti M et al. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res.68(19),8022–8030 (2008).
  • 58  Knight SD, Adams ND, Burgess JL et al. Discovery of GSK2126458, a highly potent inhibitor of PI3K and the mammalian target of rapamycin. Acs Med. Chem. Lett.1(1),39–43 (2010).
  • 59  Venkatesan AM, Dehnhardt CM, Delos Santos E et al. Bis(morpholino-1,3,5-triazine) derivatives: potent adenosine 5´-triphosphate competitive phosphatidylinositol-3-kinase/mammalian target of rapamycin inhibitors: discovery of compound 26 (PKI-587), a highly efficacious dual inhibitor. J. Med. Chem.53(6),2636–2645 (2010).
  • 60  Cheng HM, Bagrodia S, Bailey S et al. Discovery of the highly potent PI3K/mTOR dual inhibitor PF-04691502 through structure based drug design. MedChemComm1(2),139–144 (2010).
  • 61  Bi L, Okabe I, Bernard DJ, Nussbaum RL. Early embryonic lethality in mice deficient in the p110β catalytic subunit of PI 3-kinase. Mamm. Genome13(3),169–172 (2002).
  • 62  Bi L, Okabe I, Bernard DJ, Wynshaw-Boris A, Nussbaum RL. Proliferative defect and embryonic lethality in mice homozygous for a deletion in the p110α subunit of phosphoinositide 3-kinase. J. Biol. Chem.274(16),10963–10968 (1999).
  • 63  Knight ZA, Gonzalez B, Feldman ME et al. A pharmacological map of the PI3-K family defines a role for p110α in insulin signaling. Cell125(4),733–747 (2006).
  • 64  Sadhu C, Masinovsky B, Dick K, Sowell CG, Staunton DE. Essential role of phosphoinositide 3-kinase δ in neutrophil directional movement. J. Immunol.170(5),2647–2654 (2003).
  • 65  Billottet C, Grandage VL, Gale RE et al. A selective inhibitor of the p110δ isoform of PI 3-kinase inhibits AML cell proliferation and survival and increases the cytotoxic effects of VP16. Oncogene25(50),6648–6659 (2006).
  • 66  Flinn W, Byrd J, Furman R et al. Preliminary evidence of clinical activity in a Phase I study of Cal-101, a potent selective inhibitor of the P110δ isoform of phosphatidylinositol 3-kinase, in patient with B-cell malignancies. Haematol-Hematol. J.94,303–303 (2009).
  • 67  Garcia-Echeverria C, Sellers WR. Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene27(41),5511–5526 (2008).
  • 68  Crowell JA, Steele VE, Fay JR. Targeting the AKT protein kinase for cancer chemoprevention. Mol. Cancer Ther.6(8),2139–2148 (2007).
  • 69  LoPiccolo J, Granville CA, Gills JJ, Dennis PA. Targeting Akt in cancer therapy. Anticancer Drugs18(8),861–874 (2007).
  • 70  Rhodes N, Heerding DA, Duckett DR et al. Characterization of an Akt kinase inhibitor with potent pharmacodynamic and antitumor activity. Cancer Res.68(7),2366–2374 (2008).
  • 71  Lindsley CW, Zhao Z, Leister WH et al. Allosteric Akt (PKB) inhibitors: discovery and SAR of isozyme selective inhibitors. Bioorg. Med. Chem. Lett.15(3),761–764 (2005).
  • 72  Wu WI, Voegtli WC, Sturgis HL, Dizon FP, Vigers GPA, Brandhuber BJ. Crystal structure of human AKT1 with an allosteric inhibitor reveals a new mode of kinase inhibition. PLoS One5(9),e12913 (2010).
  • 73  Hirai H, Sootome H, Nakatsuru Y et al. MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol. Cancer Ther.9(7),1956–1967 (2010).
  • 74  Voliva CF, Pecchi S, Burger M et al. Biological characterization of NVP-BKM120, a novel inhibitor of phosphoinosotide 3-kinase in Phase I/II clinical trials. Presented at: The 101st American Association for Cancer Research Congress, WA, DC, USA, 20 April 2010.
  • 75  Faivre S, Kroemer G, Raymond E. Current development of mTOR inhibitors as anticancer agents. Nat. Rev. Drug Discov.5(8),671–688 (2006).
  • 76  Atkins MB, Hidalgo M, Stadler WM et al. Randomized Phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J. Clin. Oncol.22(5),909–918 (2004).
  • 77  Feldman ME, Apsel B, Uotila A et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol.7(2),e38 (2009).
  • 78  Thoreen CC, Kang SA, Chang JW et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem.284(12),8023–8032 (2009).
  • 79  Liu Q, Chang JW, Wang J et al. Discovery of 1-(4-(4-propionylpiperazin-1-yl)-3-(trifluoromethyl)phenyl)-9-(quinolin-3-yl)benzo[h][1,6]naphthyridin-2(1H)-one as a highly potent, selective mammalian target of rapamycin (mTOR) inhibitor for the treatment of cancer. J. Med. Chem.53(19),7146–7155 (2010).
  • 80  Chresta CM, Davies BR, Hickson I et al. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer. Res.70(1),288–298 (2010).
  • 81  Carayol N, Vakana E, Sassano A et al. Critical roles for mTORC2- and rapamycin-insensitive mTORC1-complexes in growth and survival of BCR-ABL-expressing leukemic cells. Proc. Natl Acad. Sci. USA107(28),12469–12474 (2010).
  • 82  Peifer C, Alessi DR. Small-molecule inhibitors of PDK1. ChemMedChem3(12),1810–1838 (2008).
  • 83  Stockman BJ, Kothe M, Kohls D et al. Identification of allosteric PIF-pocket ligands for PDK1 using NMR-based fragment screening and 1H-15N TROSY experiments. Chem. Biol. Drug Des.73(2),179–188 (2009).
  • 84  Bobkova EV, Weber MJ, Xu Z et al. Discovery of PDK1 kinase inhibitors with a novel mechanism of action by ultrahigh throughput screening. J. Biol. Chem.285(24),18838–18846 (2010).
  • 85  Lemmon MA, Ferguson KM. Molecular determinants in pleckstrin homology domains that allow specific recognition of phosphoinositides. Biochem. Soc. Trans.29(Pt. 4),377–384 (2001).
  • 86  Haslam RJ, Koide HB, Hemmings BA. Pleckstrin domain homology. Nature363(6427),309–310 (1993).
  • 87  Mayer BJ, Ren R, Clark KL, Baltimore D. A putative modular domain present in diverse signaling proteins. Cell73(4),629–630 (1993).
  • 88  DiNitto JP, Lambright DG. Membrane and juxtamembrane targeting by PH and PTB domains. Biochim. Biophys. Acta1761(8),850–867 (2006).▪ Provides a helpful overview of PH domain structures.
  • 89  Lemmon MA. Pleckstrin homology domains: not just for phosphoinositides. Biochem. Soc. Trans.32(Pt. 5),707–711 (2004).
  • 90  Harlan JE, Hajduk PJ, Yoon HS, Fesik SW. Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate. Nature371(6493),168–170 (1994).
  • 91  Yu JW, Mendrola JM, Audhya A et al. Genome-wide analysis of membrane targeting by S. cerevisiae pleckstrin homology domains. Mol. Cell13(5),677–688 (2004).
  • 92  Isakoff SJ, Cardozo T, Andreev J et al. Identification and analysis of PH domain-containing targets of phosphatidylinositol 3-kinase using a novel in vivo assay in yeast. EMBO J.17(18),5374–5387 (1998).
  • 93  Ferguson KM, Kavran JM, Sankaran VG et al. Structural basis for discrimination of 3-phosphoinositides by pleckstrin homology domains. Mol. Cell6(2),373–384 (2000).
  • 94  Kontos CD, Stauffer TP, Yang WP et al. Tyrosine 1101 of Tie2 is the major site of association of p85 and is required for activation of phosphatidylinositol 3-kinase and Akt. Mol. Cell. Biol.18(7),4131–4140 (1998).
  • 95  Stauffer TP, Ahn S, Meyer T. Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr. Biol.8(6),343–346 (1998).
  • 96  Lansbergen G, Grigoriev I, Mimori-Kiyosue Y et al. CLASPs attach microtubule plus ends to the cell cortex through a complex with LL5β. Dev. Cell11(1),21–32 (2006).
  • 97  Takabayashi T, Xie MJ, Takeuchi S et al. LL5β directs the translocation of filamin A and SHIP2 to sites of phosphatidylinositol 3,4,5-triphosphate (PtdIns(3,4,5)P3) accumulation, and PtdIns(3,4,5)P3 localization is mutually modified by co-recruited SHIP2. J. Biol. Chem.285(21),16155–16165 (2010).
  • 98  Plantard L, Arjonen A, Lock JG, Nurani G, Ivaska J, Stromblad S. PtdIns(3,4,5)P3 is a regulator of myosin-X localization and filopodia formation. J. Cell Sci.123(Pt. 20),3525–3534 (2010).
  • 99  Hamaguchi N, Ihara S, Ohdaira T et al. Pleckstrin-2 selectively interacts with phosphatidylinositol 3-kinase lipid products and regulates actin organization and cell spreading. Biochem. Biophys. Res. Commun.361(2),270–275 (2007).
  • 100  Qu X, Kawauchi-Kamata K, Miah SM, Hatani T, Yamamura H, Sada K. Tyrosine phosphorylation of adaptor protein 3BP2 induces T-cell receptor-mediated activation of transcription factor. Biochemistry44(10),3891–3898 (2005).
  • 101  Cullen PJ, Venkateswarlu K. Potential regulation of ADP-ribosylation factor 6 signalling by phosphatidylinositol 3,4,5-trisphosphate. Biochem. Soc. Trans.27(4),683–689 (1999).
  • 102  Falasca M. PI3K/Akt signalling pathway specific inhibitors: a novel strategy to sensitize cancer cells to anti-cancer drugs. Curr. Pharm. Des.16(12),1410–1416 (2010).
  • 103  Berrie CP, Falasca M. Patterns within protein/polyphosphoinositide interactions provide specific targets for therapeutic intervention. FASEB J.14(15),2618–2622 (2000).
  • 104  Razzini G, Berrie CP, Vignati S et al. Novel functional PI 3-kinase antagonists inhibit cell growth and tumorigenicity in human cancer cell lines. FASEB J.14(9),1179–1187 (2000).
  • 105  Piccolo E, Vignati S, Maffucci T et al. Inositol pentakisphosphate promotes apoptosis through the PI 3-K/Akt pathway. Oncogene23(9),1754–1765 (2004).
  • 106  Maffucci T, Piccolo E, Cumashi A et al. Inhibition of the phosphatidylinositol 3-kinase/Akt pathway by inositol pentakisphosphate results in antiangiogenic and antitumor effects. Cancer Res.65(18),8339–8349 (2005).
  • 107  Falasca M, Chiozzotto D, Godage HY et al. A novel inhibitor of the PI3K/Akt pathway based on the structure of inositol 1,3,4,5,6-pentakisphosphate. Br. J. Cancer102(1),104–114 (2010).
  • 108  Kondapaka SB, Singh SS, Dasmahapatra GP, Sausville EA, Roy KK. Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation. Mol. Cancer Ther.2(11),1093–1103 (2003).
  • 109  Gills JJ, Dennis PA. Perifosine: update on a novel Akt inhibitor. Curr. Oncol. Rep.11(2),102–110 (2009).
  • 110  Meuillet EJ, Mahadevan D, Vankayalapati H et al. Specific inhibition of the Akt1 pleckstrin homology domain by D-3-deoxy-phosphatidyl-myo-inositol analogues. Mol. Cancer Ther.2(4),389–399 (2003).
  • 111  Kozikowski AP, Sun H, Brognard J, Dennis PA. Novel PI analogues selectively block activation of the pro-survival serine/threonine kinase Akt. J. Am. Chem. Soc.125(5),1144–1145 (2003).
  • 112  Castillo SS, Brognard J, Petukhov PA et al. Preferential inhibition of Akt and killing of Akt-dependent cancer cells by rationally designed phosphatidylinositol ether lipid analogues. Cancer Res.64(8),2782–2792 (2004).
  • 113  Meuillet EJ, Ihle N, Baker AF et al. In vivo molecular pharmacology and antitumor activity of the targeted Akt inhibitor PX-316. Oncol. Res.14(10),513–527 (2004).
  • 114  Thomas CC, Deak M, Alessi DR, van Aalten DM. High-resolution structure of the pleckstrin homology domain of protein kinase B/Akt bound to phosphatidylinositol (3,4,5)-trisphosphate. Curr. Biol.12(14),1256–1262 (2002).
  • 115  Mahadevan D, Powis G, Mash EA et al. Discovery of a novel class of AKT pleckstrin homology domain inhibitors. Mol. Cancer Ther.7(9),2621–2632 (2008).
  • 116  Moses SA, Ali MA, Zuohe S et al. In vitro and in vivo activity of novel small-molecule inhibitors targeting the pleckstrin homology domain of protein kinase B/AKT. Cancer Res.69(12),5073–5081 (2009).
  • 117  Meuillet EJ, Zuohe S, Lemos R et al. Molecular pharmacology and antitumor activity of PHT-427, a novel Akt/phosphatidylinositide-dependent protein kinase 1 pleckstrin homology domain inhibitor. Mol. Cancer Ther.9(3),706–717 (2010).
  • 118  Kim D, Sun M, He L et al. A small molecule inhibits Akt through direct binding to Akt and preventing Akt membrane translocation. J. Biol. Chem.285(11),8383–8394 (2010).
  • 119  Berndt N, Yang H, Trinczek B et al. The Akt activation inhibitor TCN-P inhibits Akt phosphorylation by binding to the PH domain of Akt and blocking its recruitment to the plasma membrane. Cell Death Differ.17(11),1795–1804 (2010).▪ Characterizes a phosphatidylinositol-(3,4,5)-trisphosphate/PH domain inhibitor that is currently in clinical trials.
  • 120  Garrett CR, Coppola D, Wenham RM et al. Phase I pharmacokinetic and pharmacodynamic study of triciribine phosphate monohydrate, a small-molecule inhibitor of AKT phosphorylation, in adult subjects with solid tumors containing activated AKT. Invest. New Drugs DOI: 10.1007/s10637-010-9479-2 (2010). (Epub ahead of print).
  • 121  Miao B, Skidan I, Yang J et al. Small molecule inhibition of phosphatidylinositol-3,4,5-triphosphate (PIP3) binding to pleckstrin homology domains. Proc. Natl Acad. Sci. USA107(46),20126–20131 (2010).