Skip to main content

Advertisement

Log in

A biomechanical evaluation of proximal femoral nail antirotation with respect to helical blade position in femoral head: A cadaveric study

  • Original Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

A Corrigendum to this article was published on 01 August 2013

Abstract

Objective: Despite new developments in the management of osteoporotic fractures, complications like screw cutout are still found in the fixation of proximal femur fractures even with biomechanically proven better implants like proximal femoral nail antirotation (PFNA). The purpose of this cadaveric study was to investigate the biomechanical stability of this device in relation to two common positions (center-center and inferior-center) of the helical blade in the femoral head in unstable trochanteric fractures.

Materials and Methods: Eight pairs of human cadaveric femurs were used; in one group [center-center (C-C) group], the helical blade of PFNA was fixed randomly in central position both in anteroposterior and lateral view, whereas in the other group it was fixed in inferior one-third position in anteroposterior and in central position in lateral view [inferior-center (I-C) group]. Unstable intertrochanteric fracture was created and each specimen was loaded cyclically till load to failure

Results: Angular and rotational displacements were significantly higher within the C-C group compared to the I-C group in both unloaded and loaded condition. Loading to failure was higher in the I-C group compared to the C-C group. No statistical significance was found for this parameter. Correlations between tip apex distance, cyclic loading which lead to femoral head displacement, and ultimate load to failure showed a significant positive relationship.

Conclusion: The I-C group was superior to the C-C group and provided better biomechanical stability for angular and rotational displacement. This study would be a stimulus for further experimental studies with larger number specimens and complex loading protocols at multicentres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosisrelated fractures in the United States, 2005–2025. J Bone Miner Res 2007;22:465–75.

    Article  Google Scholar 

  2. Penzkofer J, Mendel T, Bauer C, Brehme K. Treatment results of pertrochanteric and subtrochanteric femoral fractures: A retrospective comparison of PFN and PFNA. Unfallchirurg 2009;112:699–705.

    Article  CAS  Google Scholar 

  3. Mahomed N, Harrington I, Kellam J, Maistrelli G, Hearn T, Vroemen J. Biomechanical analysis of the Gamma nail and sliding hip screw. Clin Orthop Relat Res 1994;304:280–8.

    Google Scholar 

  4. Kold S, Bechtold JE, Mouzin O, Elmengaard B, Chen X, Soballe K. Fixation of revision implants is improved by a surgical technique to crack the sclerotic bone rim. Clin Orthop Relat Res 2005;432:160–6.

    Article  Google Scholar 

  5. Mereddy P, Kamath S, Ramakrishnan M, Malik H, Donnachie N. The AO/ASIF proximal femoral nail antirotation (PFNA): A new design for the treatment of unstable proximal femoral fractures. Injury 2009;40:428–32.

    Article  Google Scholar 

  6. Audige L, Hanson B, Swiontkowski MF. Implant-related complications in the treatment of unstable intertrochanteric fractures: Meta-analysis of dynamic screw-plate versus dynamic screw-intramedullary nail devices. Int Orthop 2003;27:197–203.

    Article  CAS  Google Scholar 

  7. Bonnaire F, Weber A, Bosl O, Eckhardt C, Schwieger K, Linke B. “Cutting out” in pertrochanteric fractures-problem of osteoporosis? Unfallchirurg 2007;110:425–32.

    Article  CAS  Google Scholar 

  8. Baumgaertner MR, Curtin SL, Lindskog DM, Keggi JM. The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J Bone Joint Surg Am 1995;77:1058–64.

    Article  CAS  Google Scholar 

  9. Davis TR, Sher JL, Horsman A, Simpson M, Porter BB, Checketts RG. Intertrochanteric femoral fractures. Mechanical failure after internal fixation. J Bone Joint Surg Br 1990;72:26- 31.

    Article  CAS  Google Scholar 

  10. Parker MJ. Cutting-out of the dynamic hip screw related to its position. J Bone Joint Surg Br 1992;74:625.

    Article  CAS  Google Scholar 

  11. Den Hartog BD, Bartal E, Cooke F. Treatment of the unstable intertrochanteric fracture. Effect of the placement of the screw, its angle of insertion, and osteotomy. J Bone Joint Surg Am 1991;73:726–33.

    Article  Google Scholar 

  12. Galanakis IA, Steriopoulos KA, Dretakis EK. Correct placement of the screw or nail in trochanteric fractures. Effect of the initial placement in the migration. Clin Orthop Relat Res 1995;313:206–13.

    Google Scholar 

  13. Lindskog DM, Baumgaertner MR. Unstable intertrochanteric hip fractures in the elderly. J Am Acad Orthop Surg 2004;12:179–90.

    Article  Google Scholar 

  14. Kaufer H. Mechanics of the treatment of hip injuries. Clin Orthop Relat Res 1980;146:53–61.

    Google Scholar 

  15. Laskin RS, Gruber MA, Zimmerman AJ. Intertrochanteric fractures of the hip in the elderly: A retrospective analysis of 236 cases. Clin Orthop Relat Res 1979;141:188–95.

    Google Scholar 

  16. Wu CC, Shih CH. Biomechanical analysis of the dynamic hip screw in the treatment of intertrochanteric fractures. Arch Orthop Trauma Surg 1991;110:307–10.

    Article  CAS  Google Scholar 

  17. Thomas AP. Dynamic hip screws that fail. Injury 1991;22:45–6.

    Article  CAS  Google Scholar 

  18. Leung KS, So WS, Shen WY, Hui PW. Gamma nails and dynamic hip screws for peritrochanteric fractures. A randomised prospective study in elderly patients. J Bone Joint Surg Br 1992;74:345–51.

    Article  CAS  Google Scholar 

  19. Krischak GD, Augat P, Beck A, Arand M, Baier B, Blakytny R, et al. Biomechanical comparison of two side plate fixation techniques in an unstable intertrochanteric osteotomy model: Sliding hip screw and percutaneous compression plate. Clin Biomech (Bristol, Avon) 2007;22:1112–8.

    Article  CAS  Google Scholar 

  20. Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, et al. Hip contact forces and gait patterns from routine activities. J Biomech 2001;34:859–71.

    Article  CAS  Google Scholar 

  21. Pourcelot P, Audigie F, Degueurce C, Geiger D, Denoix JM. A method to synchronise cameras using the direct linear transformation technique. J Biomech 2000;33:1751–4.

    Article  CAS  Google Scholar 

  22. Cole GK, Nigg BM, Ronsky JL, Yeadon MR. Application of the joint coordinate system to 3-dimensional joint attitude and movement representation — a standardization proposal. J Biomech Eng 1993;115:344–9.

    Article  CAS  Google Scholar 

  23. Strauss E, Frank J, Lee J, Kummer FJ, Tejwani N. Helical blade versus sliding hip screw for treatment of unstable intertrochanteric hip fractures: A biomechanical evaluation. Injury 2006;37:984–9.

    Article  Google Scholar 

  24. Apel DM, Patwardhan A, Pinzur MS, Dobozi WR. Axial loading studies of unstable intertrochanteric fractures of the femur. Clin Orthop Relat Res 1989;246:156–64.

    Google Scholar 

  25. Roderer G, Moll S, Gebhard F, Claes L, Krischak G. Side plate fixation vs. intramedullary nailing in an unstable medial femoral neck fracture model: A comparative biomechanical study. Clin Biomech (Bristol, Avon) 2011;26:141–6.

    Article  CAS  Google Scholar 

  26. Larsson S, Friberg S, Hansson LI. Trochanteric fractures. Influence of reduction and implant position on impaction and complications. Clin Orthop Relat Res 1990;259:130–9.

    Google Scholar 

  27. Swiontkowski MF, Harrington RM, Keller TS, Van Patten PK. Torsion and bending analysis of internal fixation techniques for femoral neck fractures: The role of implant design and bone density. J Orthop Res 1987;5:433–44.

    Article  CAS  Google Scholar 

  28. Madsen JE, Naess L, Aune AK, Alho A, Ekeland A, Stromsoe K. Dynamic hip screw with trochanteric stabilizing plate in the treatment of unstable proximal femoral fractures: A comparative study with the Gamma nail and compression hip screw. J Orthop Trauma 1998;12:241–8.

    Article  CAS  Google Scholar 

  29. Barrios C, Brostrom LA, Stark A, Walheim G. Healing complications after internal fixation of trochanteric hip fractures: The prognostic value of osteoporosis. J Orthop Trauma 1993;7:438–42.

    Article  CAS  Google Scholar 

  30. Zafiropoulos G, Pratt DJ. Fractured Gamma nail. Injury 1994;25:331–6.

    Article  CAS  Google Scholar 

  31. Wu CC, Shih CH, Lee MY, Tai CL. Biomechanical analysis of location of lag screw of a dynamic hip screw in treatment of unstable intertrochanteric fracture. J Trauma 1996;41:699–702.

    Article  CAS  Google Scholar 

  32. Guven M, Yavuz U, Kadioglu B, Akman B, Kilinçoğlu V, Unay K, et al. Importance of screw position in intertrochanteric femoral fractures treated by dynamic hip screw. Orthop Traumatol Surg Res 2010;96:21–7.

    Article  CAS  Google Scholar 

  33. Jacobs RR, McClain O, Armstrong HJ. Internal fixation of intertrochanteric hip fractures: A clinical and biomechanical study. Clin Orthop Relat Res 1980;146:62–70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Keon Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, JH., Oh, JK., Oh, CW. et al. A biomechanical evaluation of proximal femoral nail antirotation with respect to helical blade position in femoral head: A cadaveric study. IJOO 46, 627–632 (2012). https://doi.org/10.4103/0019-5413.104186

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.4103/0019-5413.104186

Key words

Navigation