Skip to main content

Advertisement

Log in

Metastatic breast cancer cells in the bone marrow microenvironment: novel insights into oncoprotection

  • Review
  • Published:
Oncology Reviews

Abstract

Among all cancers, malignancies of the breast are the second leading cause of cancer death in the United States after carcinoma of the lung. One of the major factors considered when assessing the prognosis of breast cancer patients is whether the tumor has metastasized to distant organs. Although the exact phenotype of the malignant cells responsible for metastasis and dormancy is still unknown, growing evidence has revealed that they may have stem cell-like properties that may account for resistance to chemotherapy and radiation. One process that has been attributed to primary tumor metastasis is the epithelial-to-mesenchymal transition. In this review, we specifically discuss breast cancer dissemination to the bone marrow and factors that ultimately serve to shelter and promote tumor growth, including the complex relationship between mesenchymal stem cells (MSCs) and various aspects of the immune system, carcinoma-associated fibroblasts, and the diverse components of the tumor microenvironment. A better understanding of the journey from the primary tumor site to the bone marrow and subsequently the oncoprotective role of MSCs and other factors within that microenvironment can potentially lead to development of novel therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baynes RD, Dansey RD, Klein JL et al (2001) High-dose chemotherapy and hematopoietic stem cell transplantation for breast cancer: past or future? Semin Oncol 28:377–388

    Article  PubMed  CAS  Google Scholar 

  2. Weigelt B, Geyer FC, Reis-Filho JS (2010) Histological types of breast cancer: how special are they? Mol Oncol 4(3):192–208

    Article  PubMed  CAS  Google Scholar 

  3. Gatza ML, Lucas JE, Barry WT et al (2010) A pathway-based classification of human breast cancer. Proc Natl Acad Sci USA 107:6994–6999

    Article  PubMed  CAS  Google Scholar 

  4. de Ronde J, Wessels L, Wesseling J (2010) Molecular subtyping of breast cancer: ready to use? Lancet Oncol 11:306–307

    Article  PubMed  Google Scholar 

  5. Khramtsov AI, Khramtsova GF, Tretiakova M et al (2010) Wnt/beta-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. Am J Pathol 176(6):2911–2920

    Article  PubMed  Google Scholar 

  6. Riester M, Stephan-Otto Attolini C, Downey RJ et al (2010) A differentiation-based phylogeny of cancer subtypes. PLoS Comput Biol 6(5):e1000777

    Article  PubMed  Google Scholar 

  7. Millikan RC, Newman B, Tse CK et al (2008) Epidemiology of basal-like breast cancer. Breast Cancer Res Treat 109:123–139

    Article  PubMed  Google Scholar 

  8. Kim MJ, Ro JY, Ahn SH et al (2006) Clinicopathologic significance of the basal-like subtype of breast cancer: a comparison with hormone receptor and Her2/neu-overexpressing phenotypes. Hum Pathol 37:1217–1226

    Article  PubMed  CAS  Google Scholar 

  9. Myal Y, Leygue E, Blanchard AA (2010) Claudin 1 in breast tumorigenesis: revelation of a possible novel “claudin high” subset of breast cancers. J Biomed Biotechnol 2010:956897

  10. Tai P, Yu E, Joseph K (2010) Prognostic significance of number of positive nodes: a long-term study of one to two nodes versus three nodes in breast cancer patients. Int J Radiat Oncol Biol Phys 77:180–187

    Article  PubMed  Google Scholar 

  11. Chaffer CL, Thompson EW, Williams ED (2007) Mesenchymal to epithelial transition in development and disease. Cells Tissues Organs 185:7–19

    Article  PubMed  Google Scholar 

  12. Godde NJ, Galea RC, Elsum IA et al (2010) Cell polarity in motion: redefining mammary tissue organization through EMT and cell polarity transitions. J Mammary Gland Biol Neoplasia 15(2):149–168

    Article  PubMed  Google Scholar 

  13. Takeyama Y, Sato M, Horio M et al (2010) Knockdown of ZEB1, a master epithelial-to-mesenchymal transition (EMT) gene, suppresses anchorage-independent cell growth of lung cancer cells. Cancer Lett 296(2):216–224

    Article  PubMed  CAS  Google Scholar 

  14. Dohadwala M, Wang G, Heinrich E et al (2010) The role of ZEB1 in the inflammation-induced promotion of EMT in HNSCC. Otolaryngol Head Neck Surg 142:753–759

    Article  PubMed  Google Scholar 

  15. Taylor MA, Parvani JG, Schiemann WP (2010) The pathophysiology of epithelial-mesenchymal transition induced by transforming growth factor-beta in normal and malignant mammary epithelial cells. J Mammary Gland Biol Neoplasia 15(2):169–190

    Article  PubMed  Google Scholar 

  16. Lahat G, Zhu QS, Huang KL et al (2010) Vimentin is a novel anti-cancer therapeutic target; insights from in vitro and in vivo mice xenograft studies. PLoS One 5(4):e10105

    Article  PubMed  Google Scholar 

  17. Ohashi S, Natsuizaka M, Wong GS et al (2010) Epidermal growth factor receptor and mutant p53 expand an esophageal cellular subpopulation capable of epithelial-to-mesenchymal transition through ZEB transcription factors. Cancer Res 70:4174–4184

    Article  PubMed  CAS  Google Scholar 

  18. Berx G, van Roy F (2009) Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb Perspect Biol 1(6):a003129

    Article  PubMed  Google Scholar 

  19. He H, Davidson AJ, Wu D et al (2010) Phorbol ester phorbol-12-myristate-13-acetate induces epithelial to mesenchymal transition in human prostate cancer ARCaP(E) cells. Prostate (in press)

  20. Wang QL, Tao YY, Yuan JL et al (2010) Salvianolic acid B prevents epithelial-to-mesenchymal transition through the TGF-beta1 signal transduction pathway in vivo and in vitro. BMC Cell Biol 11:31

    Article  PubMed  Google Scholar 

  21. Bargagna-Mohan P, Hamza A, Kim YE et al (2007) The tumor inhibitor and antiangiogenic agent withaferin A targets the intermediate filament protein vimentin. Chem Biol 4:623–634

    Article  Google Scholar 

  22. Yori JL, Johnson E, Zhou G et al (2010) Kruppel-like factor 4 (KLF4) inhibits epithelial-to-mesenchymal transition through regulation of E-cadherin gene expression. J Biol Chem 285(22):16854–16863

    Article  PubMed  CAS  Google Scholar 

  23. Wu K, Zeng J, Li L, Fan J, Zhang D, Xue Y, Zhu G, Yang L, Wang X, He D (2010) Silibinin reverses epithelial-to-mesenchymal transition in metastatic prostate cancer cells by targeting transcription factors. Oncol Rep 23:1545–1552

    Article  PubMed  CAS  Google Scholar 

  24. Hong KO, Kim JH, Hong JS et al (2009) Inhibition of Akt activity induces the mesenchymal-to-epithelial reverting transition with restoring E-cadherin expression in KB and KOSCC-25B oral squamous cell carcinoma cells. J Exp Clin Cancer Res 28:28

    Article  PubMed  Google Scholar 

  25. Haviv I, Polyak K, Qiu W et al (2009) Origin of carcinoma associated fibroblasts. Cell Cycle 8:589–595

    Article  PubMed  CAS  Google Scholar 

  26. Potian JA, Aviv H, Ponzio NM et al (2003) Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigens and recall antigens. J Immunol 171:3426–3434

    PubMed  CAS  Google Scholar 

  27. Di Ianni M, Del Papa B, De Ioanni M et al (2008) Mesenchymal cells recruit and regulate T regulatory cells. Exp Hematol 36:309–318

    Article  PubMed  CAS  Google Scholar 

  28. Casiraghi F, Azzollini N, Cassis P et al (2008) Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells. J Immunol 181:3933–3946

    PubMed  CAS  Google Scholar 

  29. Zhang Q, Shi S, Liu Y et al (2009) Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol 183:7787–7798

    Article  PubMed  CAS  Google Scholar 

  30. Gonzalez MA, Gonzalez-Rey E, Rico L et al (2009) Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis Rheum 60:1006–1019

    Article  PubMed  CAS  Google Scholar 

  31. Madec AM, Mallone R, Afonso G et al (2009) Mesenchymal stem cells protect NOD mice from diabetes by inducing regulatory T cells. Diabetologia 52:1391–1399

    Article  PubMed  CAS  Google Scholar 

  32. Patel SA, Meyer JR, Greco SJ et al (2010) Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-beta. J Immunol 184(10):5885–5894

    Article  PubMed  CAS  Google Scholar 

  33. Yang YA, Dukhanina O, Tang B et al (2002) Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J Clin Invest 109:1607–1615

    PubMed  CAS  Google Scholar 

  34. Tang B, Vu M, Booker T et al (2003) TGF-beta switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J Clin Invest 112:112–1116

    Google Scholar 

  35. Selmani Z, Naji A, Zidi I et al (2008) Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells 26:212–222

    Article  PubMed  CAS  Google Scholar 

  36. Paget S (1889) The distributions of secondary growths in cancer of the breast. Lancet 1:571–573

    Article  Google Scholar 

  37. Mishra PJ, Mishra PJ, Humeniuk R et al (2008) Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res 68:4331–4339

    Article  PubMed  CAS  Google Scholar 

  38. Jeon ES, Moon HJ, Lee MJ et al (2008) Cancer-derived lysophosphatidic acid stimulates differentiation of human mesenchymal stem cells to myofibroblast-like cells. Stem Cells 26:789–797

    Article  PubMed  CAS  Google Scholar 

  39. Bauer M, Su G, Casper C et al (2010) Heterogeneity of gene expression in stromal fibroblasts of human breast carcinomas and normal breast. Oncogene 29:1732–1740

    Article  PubMed  CAS  Google Scholar 

  40. Sonnenberg M, van der Kuip H, Haubeis S et al (2008) Highly variable response to cytotoxic chemotherapy in carcinoma-associated fibroblasts (CAFs) from lung and breast. BMC Cancer 8:364

    Article  PubMed  Google Scholar 

  41. Su G, Blaine SA, Qiao D et al (2008) Membrane type 1 matrix metalloproteinase-mediated stromal syndecan-1 shedding stimulates breast carcinoma cell proliferation. Cancer Res 68:9558–9565

    Article  PubMed  CAS  Google Scholar 

  42. Olumi AF, Grossfeld GD, Hayward SW et al (1999) Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 59:5002–5011

    PubMed  CAS  Google Scholar 

  43. Karnoub AE, Dash AB, Vo AP et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–563

    Article  PubMed  CAS  Google Scholar 

  44. Lama VN, Phan SH (2006) The extrapulmonary origin of fibroblasts: stem/progenitor cells and beyond. Proc Am Thorac Soc 3:373–376

    Article  PubMed  CAS  Google Scholar 

  45. LaRue AC, Masuya M, Ebihara Y et al (2006) Hematopoietic origins of fibroblasts: I. In vivo studies of fibroblasts associated with solid tumors. Exp Hematol 34:208–218

    Article  PubMed  CAS  Google Scholar 

  46. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Article  PubMed  CAS  Google Scholar 

  47. Reya T, Morrison SJ, Clarke MF et al (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  PubMed  CAS  Google Scholar 

  48. Marquardt JU, Thorgeirsson SS (2010) Stem cells in hepatocarcinogenesis: evidence from genomic data. Semin Liver Dis 30:26–34

    Article  PubMed  CAS  Google Scholar 

  49. Hubbard S, Gargett C (2010) A cancer stem cell origin for human endometrial carcinoma? Reproduction 140(1):23–32

    Article  PubMed  CAS  Google Scholar 

  50. Kohga K, Tatsumi T, Takehara T et al (2010) Expression of CD133 confers malignant potential by regulating metalloproteinases in human hepatocellular carcinoma. J Hepatol 52(6):872–879

    Article  PubMed  CAS  Google Scholar 

  51. Yasuda H, Tanaka K, Saigusa S et al (2009) Elevated CD133, but not VEGF or EGFR, as a predictive marker of distant recurrence after preoperative chemoradiotherapy in rectal cancer. Oncol Rep 22:709–717

    PubMed  CAS  Google Scholar 

  52. Brown CE, Starr R, Martinez C et al (2009) Recognition and killing of brain tumor stem-like initiating cells by CD8+ cytolytic T cells. Cancer Res 69:8886–8893

    Article  PubMed  CAS  Google Scholar 

  53. Youssef KK, Van Keymeulen A, Lapouge G et al (2010) Identification of the cell lineage at the origin of basal cell carcinoma. Nat Cell Biol 12:299–305

    PubMed  CAS  Google Scholar 

  54. Groner B, Vafaizadeh V, Brill B et al (2010) Stem cells of the breast and cancer therapy. Womens Health 6:205–219

    Google Scholar 

  55. Giuffrida D, Rogers I (2010) Targeting cancer stem cell lines as a new treatment of human cancer. Recent Pat Anticancer Drug Discov 5(3):205–218

    Article  PubMed  CAS  Google Scholar 

  56. Arifin M, Tanimoto K, Putra AC et al (2010) Carcinogenesis and cellular immortalization without persistent inactivation of p16/Rb pathway in lung cancer. Int J Oncol 36:1217–1227

    PubMed  CAS  Google Scholar 

  57. Ahmed N, Abubaker K, Findlay J et al (2010) Epithelial mesenchymal transition and cancer stem cell-like phenotypes facilitate chemoresistance in recurrent ovarian cancer. Curr Cancer Drug Targets 10:268–278

    Article  PubMed  CAS  Google Scholar 

  58. Luo J, Yin X, Ma T et al (2010) Stem cells in normal mammary gland and breast cancer. Am J Med Sci 339:366–370

    PubMed  Google Scholar 

  59. Castellanos A, Vicente-Dueñas C, Campos-Sánchez E et al (2010) Cancer as a reprogramming-like disease: Implications in tumor development and treatment. Semin Cancer Biol 20(2):93–97

    Article  PubMed  CAS  Google Scholar 

  60. Shabason JE, Camphausen K (2010) Cancer stem cells as a prognostic indicator for glioblastoma multiforme. Biomark Med 4:127–128

    Article  PubMed  Google Scholar 

  61. ten Cate B, de Bruyn M, Wei Y et al (2010) Targeted elimination of leukemia stem cells; a new therapeutic approach in hemato-oncology. Curr Drug Targets 11:95–110

    Article  PubMed  CAS  Google Scholar 

  62. Carey LA, Perou CM, Livasy CA et al (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295:2492–2502

    Article  PubMed  CAS  Google Scholar 

  63. Eriksson M, Guse K, Bauerschmitz G et al (2007) Oncolytic adenoviruses kill breast cancer initiating CD44+CD24−/low cells. Mol Ther 15:2088–2093

    Article  PubMed  CAS  Google Scholar 

  64. Redova M, Chlapek P, Loja T et al (2010) Influence of LOX/COX inhibitors on cell differentiation induced by all-trans retinoic acid in neuroblastoma cell lines. Int J Mol Med 25:271–280

    PubMed  CAS  Google Scholar 

  65. Yamashita T, Honda M, Nio K et al (2010) Oncostatin m renders epithelial cell adhesion molecule-positive liver cancer stem cells sensitive to 5-Fluorouracil by inducing hepatocytic differentiation. Cancer Res 70(11):4687–4697

    Article  PubMed  CAS  Google Scholar 

  66. Salnikov AV, Groth A, Apel A et al (2009) Targeting of cancer stem cell marker EpCAM by bispecific antibody EpCAMxCD3 inhibits pancreatic carcinoma. J Cell Mol Med 13:4023–4033

    Article  PubMed  Google Scholar 

  67. Tazzari PL, Tabellini G, Ricci F et al (2008) Synergistic proapoptotic activity of recombinant TRAIL plus the Akt inhibitor Perifosine in acute myelogenous leukemia cells. Cancer Res 68:9394–9403

    Article  PubMed  CAS  Google Scholar 

  68. Zhang M, Atkinson RL, Rosen JM (2010) Selective targeting of radiation-resistant tumor-initiating cells. Proc Natl Acad Sci USA 107:3522–3527

    Article  PubMed  CAS  Google Scholar 

  69. Grymula K, Tarnowski M, Wysoczynski M et al (2010) Overlapping and distinct role of CXCR7-SDF-1/ITAC and CXCR4-SDF-1 axes in regulating metastatic behavior of human rhabdomyosarcomas. Int J Cancer 127(11):2554–2568

    Article  PubMed  CAS  Google Scholar 

  70. Dillmann F, Veldwijk MR, Laufs S et al (2009) Plerixafor inhibits chemotaxis toward SDF-1 and CXCR4-mediated stroma contact in a dose-dependent manner resulting in increased susceptibility of BCR-ABL+ cell to Imatinib and Nilotinib. Leuk Lymphoma 50:1676–1686

    Article  PubMed  CAS  Google Scholar 

  71. Galanzha EI, Kim JW, Zharov VP (2009) Nanotechnology-based molecular photoacoustic and photothermal flow cytometry platform for in vivo detection and killing of circulating cancer stem cells. J Biophotonics 2:725–735

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranela Rameshwar.

Additional information

This work was done at UMDNJ-New Jersey Medical School, Department of Medicine, Newark, NJ 07103.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, S.A., Dave, M.A., Murthy, R.G. et al. Metastatic breast cancer cells in the bone marrow microenvironment: novel insights into oncoprotection. Oncol Rev 5, 93–102 (2011). https://doi.org/10.1007/s12156-010-0071-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12156-010-0071-y

Keywords

Navigation