Skip to main content

Advertisement

Log in

Targeting angiogenesis for the treatment of advanced melanoma

  • Review
  • Published:
Oncology Reviews

Abstract

Metastatic melanoma (MM) carries a dismal prognosis, as it is largely resistant to conventional chemotherapy, bio-chemotherapy and immunotherapy. The search for new effective treatments is an unquestionable priority in MM. A wealth of novel therapies have been currently tested in oncology and MM represents an attractive model for investigation. The process of angiogenesis is crucial for the establishment and progression of most solid tumors including melanoma. As the mechanisms of angiogenesis are being elucidated, strategies against angiogenic targets are among the most innovative in oncology drug development. Multiple growth factors secreted in melanoma trigger angiogenic responses and a variety of receptors are activated. Many of these function in synergy with the extracellular matrix, setting in motion downstream pathways. It is unlikely, therefore, that targeting a single angiogenic axis will be sufficient to achieve tumor control in melanoma, as exemplified by several negative trials conducted to date. Current anti-angiogenic strategies include those targeting pro-angiogenic ligands (bevacizumab, VEGF-Trap: aflibercept), kinases associated with cell surface receptors and growth factor pathways (sorafenib, axitinib, erlotinib, imatinib), matrix metalloproteinases (MMPs), intergrins [batimastat, marimastat, etaracizomab (abegrin)] and potentially mTOR inhibitors (everolimus). Many of those recently developed compounds targeting key angiogenic pathways are in the final clinical trial stages. Future approaches to tackling angiogenesis in MM should take into account therapeutic synergism and drug resistance, by combining novel agents with different mechanisms of action against different angiogenic pathways. In this review, we focus primarily on current anti-angiogenic strategies in melanoma, with a view to future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Fecher LA, Cummings SD, Keefe MJ, Alani RM (2007) Toward a molecular classification of melanoma. J Clin Oncol 25:1606–1620

    Article  PubMed  CAS  Google Scholar 

  2. Houghton AN, Legha S, Bajorin DF (1992) Chemotherapy for metastatic melanomas. In: Balch CM, Houghton AN, Milton SG, Sober AJ, Soong S (eds) Cutaneous melanoma, 2nd edn. Lippincott, Philadelphia, pp 458–508

  3. Folkman J (2006) Angiogenesis. Annu Rev Med 57:1–18

    Article  PubMed  CAS  Google Scholar 

  4. Warren BA, Shubik P (1966) The growth of the blood supply to melanoma transplants in the hamster cheek pouch. Lab Invest 15:464–478

    PubMed  CAS  Google Scholar 

  5. Hubler WR Jr, Wolf JE Jr (1976) Melanoma. Tumor angiogenesis and human neoplasia. Cancer 38:187–192

    Article  PubMed  Google Scholar 

  6. Elder DE, Van Belle P, Elenitasas R, Halpern A, Guerry D (1996) Neoplastic progression and prognosis in melanoma. Semin Cutan Med Surg 15:336–348

    Article  PubMed  CAS  Google Scholar 

  7. Meier F, Satyamoorthy K, Nesbit M, Hsu MY, Schittek B, Garbe C, Herlyn M (1998) Molecular events in melanoma development and progression. Front Biosci 3:1005–1010

    Google Scholar 

  8. Tuthill RJ, Reed RI (2007) Failure of senescence in the dysplasia–melanoma sequence: demonstration using a tissue microarray and a revised paradigm for melanoma. Semin Oncol 34:467–475

    Article  PubMed  Google Scholar 

  9. Wanebo HJ, Argiris A, Bergsland E et al (2006) Targeting growth factors and angiogenesis; using small molecules in malignancy. Cancer Metastasis Rev 25:279–292

    Article  PubMed  Google Scholar 

  10. Gille J (2006) Antiangiogenic cancer therapies get their act together: current developments and future prospects of growth factor- and growth factor receptor-targeted approaches. Exp Dermatol 15:175–186

    Article  PubMed  CAS  Google Scholar 

  11. Plum SM, Holaday JW, Ruiz A et al (2000) Administration of a liposomal FGF-2 peptide vaccine leads to abrogation of FGF-2-mediated angiogenesis and tumor development. Vaccine 19:1294–1303

    Article  PubMed  CAS  Google Scholar 

  12. Bar-Eli M (1999) Role of interleukin-8 in tumor growth and metastasis of human melanoma. Pathobiology 67:12–18

    Article  PubMed  CAS  Google Scholar 

  13. Kuphal S, Bauer R, Bosserhoff AK (2005) Integrin signaling in malignant melanoma. Cancer Metastasis Rev 24:195–222

    Article  PubMed  CAS  Google Scholar 

  14. Luttun A, Autiero M, Tjwa M, Carmeliet P (2004) Genetic dissection of tumor angiogenesis: are PlGF and VEGFR-1 novel anti-cancer targets? Biochim Biophys Acta 1654:79–94

    PubMed  CAS  Google Scholar 

  15. Hofmann UB, Westphal JR, Van Muijen GNP, Ruiter DJ (2000) Matrix metalloproteinases in human melanoma. J Invest Dermatol 115:337–344

    Article  PubMed  CAS  Google Scholar 

  16. Nikkola J, Vihinen P, Vuoristo MS, Kellokumpu-Lehtinen P, Kahari VM, Pyrhonen S (2005) High serum levels of matrix metalloproteinase-9 and matrix metalloproteinase-1 are associated with rapid progression in patients with metastatic melanoma. Clin Cancer Res 11:5158–5166

    Article  PubMed  CAS  Google Scholar 

  17. Schnaeker E-M, Ossig R, Ludwig T et al (2004) Microtubule-dependent matrix metalloproteinase-2/matrix metalloproteinase-9 exocytosis: prerequisite in human melanoma cell invasion. Cancer Res 64:8924–8931

    Article  PubMed  CAS  Google Scholar 

  18. Varker KA, Biber JE, Kefauver C et al (2007) A randomized Phase 2 trial of bevacizumab with or without daily low-dose interferon α-2β in metastatic malignant melanoma. Ann Surg Oncol 14:2367–2376

    Article  PubMed  Google Scholar 

  19. Perez DG, Suman VJ, Fitch TR et al (2009) Phase 2 trial of carboplatin, weekly paclitaxel, and biweekly bevacizumab in patients with unresectable stage IV melanoma: a North Central Cancer Treatment group study, N047A. Cancer 115:119–127

    Article  PubMed  CAS  Google Scholar 

  20. O’Day SJ, Kim KB, Sosman JA et al (2009) BEAM: a randomized Phase II study evaluating the activity of bevacizumab in combination with carboplatin plus paclitaxel in patients with previously untreated advanced melanoma. Eur J Cancer Suppl 7 (Abstract 23LBA)

  21. Corrie P, Marshall A, East C et al (2009) Safety of adjuvant bevacizumab as treatment for melanoma patients at high risk of recurrence. 7th World Congress on Melanoma Vienna, 12–16 May 2009

  22. Wilhelm SM, Carter C, Tang L et al (2004) BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64:7099–7109

    Article  PubMed  CAS  Google Scholar 

  23. Eisen T, Ahmad T, Flaherty KT et al (2006) Sorafenib in advanced melanoma: a Phase II randomised discontinuation trial analysis. Br J Cancer 95:581–586

    Article  PubMed  CAS  Google Scholar 

  24. Hauschild A, Agarwala SS, Trefzer U et al (2009) Results of a phase III, randomized, placebo-controlled study of sorafenib in combination with carboplatin and paclitaxel as second-line treatment in patients with unresectable stage III or stage IV melanoma. J Clin Oncol 27:2823–2830

    Article  PubMed  CAS  Google Scholar 

  25. Eisen T, Ahmad T, Marais R et al (2005) Phase I trial of sorafenib (BAY 43-9006) combined with dacarbazine (DTIC) in patients with metastatic melanoma (abstract). Eur J Cancer Suppl 3:349

    Google Scholar 

  26. Eisen T, Marais R, Affolter A et al (2007) An open-label phase ii study of sorafenib and dacarbazine as first line therapy in patients with advanced melanoma (abstract). J Clin Oncol 25:8529

    Google Scholar 

  27. McDermott DF, Sosman JA, Gonzalez R et al (2008) Double-blind randomized phase II study of the combination of sorafenib and dacarbazine in patients with advanced melanoma: A report from the 11715 study group. J Clin Oncol 26:2178–2185

    Article  PubMed  CAS  Google Scholar 

  28. Amaravadi R, Schuchter LM, McDermott DF et al (2007) Updated results of a randomized phase ii study comparing two schedules of temozolomide in combination with sorafenib in patients with advanced melanoma (abstract). J Clin Oncol 25:8527

    Google Scholar 

  29. Fruehauf J, Lutzky J, McDermott D et al (2008) Axitinib (AG-013736) in patients with metastatic melanoma: a Phase II study. J Clin Oncol 26 (Abstract 9006)

  30. Sini P, Wyder L, Schnell C et al (2005) The antitumor and antiangiogenic activity of vascular endothelial growth factor receptor inhibition is potentiated by ErbB1 blockade. Clin Cancer Res 11:4521–4532

    Article  PubMed  CAS  Google Scholar 

  31. Wyman K, Spigel D, Puzanov I et al (2007) A multicenter Phase IΙ study of erlotinib and bevacizumab in patients with metastatic melanoma. 2007 ASCO Annual Meeting Proceedings Part I. J Clin Oncol 25(18S) (Abstract 8539)

  32. Ugerel S, Hildenbrand R, Zimpfer A et al (2005) Lack of clinical efficacy of imatinib in metastatic melanoma. Br J Cancer 92:1398–1405

    Article  Google Scholar 

  33. Curtin JA, Busam K, Pinkel D, Bastian BC (2006) Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol 24:4340–4346

    Article  PubMed  CAS  Google Scholar 

  34. Antonescu CR, Busam KJ, Francone TD, Wong GC, Guo T, Agaram NP, Besmer P, Jungbluth A, Gimbel M, Chen CT, Veach D, Clarkson BD et al (2007) L576P KIT mutation in anal melanomas correlates with KIT protein expression and is sensitive to specific kinase inhibition. Int J Cancer 121:257–264

    Article  PubMed  CAS  Google Scholar 

  35. Rivera RS, Nagatsuka H, Gunduz M, Cengiz B, Gunduz E, Siar CH, Tsujigiwa H, Tamamura R, Han KN, Nagai N (2008) C-kit protein expression correlated with activating mutations in KIT gene in oral mucosal melanoma. Virchows Arch 452:27–32

    Article  PubMed  CAS  Google Scholar 

  36. Lutzky J, Bauer J, Bastian BC (2008) Dose-dependent, complete response to imatinib of a metastatic mucosal melanoma with a K642E KIT mutation. Pigment Cell Melanoma Res 21:492–493

    Article  PubMed  Google Scholar 

  37. Hodi FS, Friedlander P, Corless CL, Heinrich MC, Mac Rae S, Krase A, Jagannathan J, Van den Abbeele AD, Velazquez EF, Demetri GD, Fisher DE (2008) Major response to imatinib mesylate in KIT-mutated melanoma. J Clin Oncol 26:2046–2051

    Article  PubMed  CAS  Google Scholar 

  38. Ishihara K, Saida T, Otsuka F, Yamazaki N (2008) Statistical profiles of malignant melanoma and other skin cancers in Japan: 2007 update. Int J Clin Oncol 13:33–41

    Article  PubMed  Google Scholar 

  39. Davies H, Bignell GR, Cox C et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  PubMed  CAS  Google Scholar 

  40. A study to evaluate RAF265, an oral drug administered to subjects with locally advanced or metastatic melanoma. http://clinicaltrials.gov/ct2/show/NCT00304525

  41. Flaherty K, Puzanov I, Sosman J et al (2009) Phase I study of PLX4032: proof of concept for V600E BRAF mutation as a therapeutic target in human cancer. J Clin Oncol 27 (15S) (Abstract 9000)

  42. Adjei AA, Cohen RB, Franklin W et al (2008) Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers. J Clin Oncol 26:2139–2146

    Article  PubMed  CAS  Google Scholar 

  43. Dummer R, Robert C, Chapman PB et al (2008) AZD6244 (ARRY-142886) vs temozolomide (TMZ) in patients (pts) with advanced melanoma: an open-label, randomized, multicenter, phase II study (abstract). J Clin Oncol 26(Suppl):9033

    Google Scholar 

  44. Dutcher JP, Hudes G, Motzer R et al (2003) Preliminary report of a phase 1 study of intravenous (IV) CCI-779 given in combination with interferon-(IFN) to patients with advanced renal cell carcinoma (RCC) (abstract). Proc Am Soc Clin Oncol 22:213

    Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios J. Bafaloukos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bafaloukos, D.J., Linardou, H. Targeting angiogenesis for the treatment of advanced melanoma. Oncol Rev 5, 167–176 (2011). https://doi.org/10.1007/s12156-011-0075-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12156-011-0075-2

Keywords

Navigation