Cite

Eicosanoids lead to the promotion of inflammation, cause fever and pain and have many other eff ects. NSAIDs block the action of cyclooxygenase (COX) during the process of converting arachidonic acid into inflammatory mediators, thus reducing the symptoms of inflammation. Investigations focusing on nonselective COX inhibitors, used in high doses, revealed harmful eff ects on myocardial function. Th e aim of our study was to assess the eff ects of two nonselective NSAIDs, diclofenac and ibuprofen, on cardiodynamic parameters, coronary flow and oxidative stress biomarkers in isolated rat hearts. Th e hearts of male Wistar albino rats were excised and retrogradely perfused according to the Langendorff technique at gradually increased coronary perfusion pressures (40-120 cm H2O). Th e experiments were performed under controlled conditions (Krebs-Henseleit physiological solution). Th e hearts were perfused with 10 μmol/l diclofenac and 10 μmol/l ibuprofen. Th e heart function parameters, including the maximum rate of pressure development (dp/dt max), minimum rate of pressure development (dp/dt min), systolic left ventricular pressure (SLVP), diastolic left ventricular pressure (DLVP), mean perfusion pressure (MBP) and heart rate (HR), were continuously registered. Coronary flow (CF) was measured flowmetrically. Oxidative stress markers, including the index of lipid peroxidation measured as TBARS, nitric oxide measured through nitrites (NO2 -), superoxide anion radical (O2 -), and hydrogen peroxide (H2O2) in the coronary venous effluent, were assessed spectrophotometrically. Our results showed that diclofenac aff ected cardiodynamic parameters more significantly than did ibuprofen. Furthermore, the present data indicate that both estimated COX inhibitors do not promote the production of reactive oxygen species.

eISSN:
2335-075X
ISSN:
1820-8665
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other