Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter July 27, 2013

Role of inflammasomes and their regulators in prostate cancer initiation, progression and metastasis

  • Sudhakar Veeranki EMAIL logo

Abstract

Prostate cancer is one of the main cancers that affect men, especially older men. Though there has been considerable progress in understanding the progression of prostate cancer, the drivers of its development need to be studied more comprehensively. The emergence of resistant forms has also increased the clinical challenges involved in the treatment of prostate cancer. Recent evidence has suggested that inflammation might play an important role at various stages of cancer development. This review focuses on inflammasome research that is relevant to prostate cancer and indicates future avenues of study into its effective prevention and treatment through inflammasome regulation. With regard to prostate cancer, such research is still in its early stages. Further study is certainly necessary to gain a broader understanding of prostate cancer development and to create successful therapy solutions.

[1] Siegel, R., DeSantis, C., Virgo, K., Stein, K., Mariotto, A., Smith, T., Cooper, D., Gansler, T., Lerro, C., Fedewa, S., Lin, C., Leach, C., Cannady, R.S., Cho, H., Scoppa, S., Hachey, M., Kirch, R., Jemal, A. and Ward, E. Cancer treatment and survivorship statistics, 2012. CA. Cancer J. Clin. 62 (2012) 220–241. http://dx.doi.org/10.3322/caac.2114910.3322/caac.21149Search in Google Scholar PubMed

[2] Tewari, A.K. and George, D.J. Novel chemotherapies in development for management of castration-resistant prostate cancer. Curr. Opin. Urol. (2013). DOI: 10.1097/MOU.0b013e32835f7da2. 10.1097/MOU.0b013e32835f7da2Search in Google Scholar PubMed

[3] De Marzo, A.M., Platz, E.A., Sutcliffe, S., Xu, J., Gronberg, H., Drake, C.G., Nakai, Y., Isaacs, W.B. and Nelson, W.G. Inflammation in prostate carcinogenesis. Nat. Rev. Cancer 7 (2007) 256–269. http://dx.doi.org/10.1038/nrc209010.1038/nrc2090Search in Google Scholar PubMed PubMed Central

[4] Haverkamp, J., Charbonneau, B. and Ratliff, T.L. Prostate inflammation and its potential impact on prostate cancer: a current review. J. Cell Biochem. 103 (2008) 1344–1353. http://dx.doi.org/10.1002/jcb.2153610.1002/jcb.21536Search in Google Scholar PubMed

[5] Kazma, R., Mefford, J.A., Cheng, I., Plummer, S.J., Levin, A.M., Rybicki, B.A., Casey, G. and Witte, J.S. Association of the innate immunity and inflammation pathway with advanced prostate cancer risk. PLoS One 7 (2012) e51680. http://dx.doi.org/10.1371/journal.pone.005168010.1371/journal.pone.0051680Search in Google Scholar PubMed PubMed Central

[6] Kwon, E.M., Salinas, C.A., Kolb, S., Fu, R., Feng, Z., Stanford, J.L. and Ostrander, E.A. Genetic polymorphisms in inflammation pathway genes and prostate cancer risk. Cancer Epidemiol. Biomarkers Prev. 20 (2011) 923–933. http://dx.doi.org/10.1158/1055-9965.EPI-10-099410.1158/1055-9965.EPI-10-0994Search in Google Scholar PubMed PubMed Central

[7] Sfanos, K.S. and De Marzo, A.M. Prostate cancer and inflammation: the evidence. Histopathology 60 (2012) 199–215. http://dx.doi.org/10.1111/j.1365-2559.2011.04033.x10.1111/j.1365-2559.2011.04033.xSearch in Google Scholar PubMed PubMed Central

[8] Stock, D., Groome, P.A. and Siemens, D.R. Inflammation and prostate cancer: a future target for prevention and therapy? Urol. Clin. North Am. 35 (2008) 117–130, vii. http://dx.doi.org/10.1016/j.ucl.2007.09.00610.1016/j.ucl.2007.09.006Search in Google Scholar PubMed

[9] MacLennan, G.T., Eisenberg, R., Fleshman, R.L., Taylor, J.M., Fu, P., Resnick, M.I. and Gupta, S. The influence of chronic inflammation in prostatic carcinogenesis: a 5-year followup study. J. Urol. 176 (2006) 1012–1016. http://dx.doi.org/10.1016/j.juro.2006.04.03310.1016/j.juro.2006.04.033Search in Google Scholar PubMed

[10] Billis, A., Freitas, L.L., Magna, L.A. and Ferreira, U. Inflammatory atrophy on prostate needle biopsies: is there topographic relationship to cancer? Int. Braz. J. Urol. 33 (2007) 355–360; discussion 361–353. http://dx.doi.org/10.1590/S1677-5538200700030000810.1590/S1677-55382007000300008Search in Google Scholar

[11] Billis, A. and Magna, L.A. Inflammatory atrophy of the prostate. Prevalence and significance. Arch. Pathol. Lab. Med. 127 (2003) 840–844. Search in Google Scholar

[12] Montironi, R., Vela Navarrete, R., Lopez-Beltran, A., Mazzucchelli, R., Mikuz, G. and Bono, A.V. Histopathology reporting of prostate needle biopsies. 2005 update. Virchows Arch. 449 (2006) 1–13. http://dx.doi.org/10.1007/s00428-006-0190-910.1007/s00428-006-0190-9Search in Google Scholar PubMed

[13] Billis, A. Re: Inflammatory atrophy on prostate needle biopsies: is there topographic relationship to cancer? Int. Braz. J. Urol. 33 (2007) 566–568. http://dx.doi.org/10.1590/S1677-5538200700040002110.1590/S1677-55382007000400021Search in Google Scholar PubMed

[14] Schroder, K. and Tschopp, J. The inflammasomes. Cell 140 (2010) 821–832. http://dx.doi.org/10.1016/j.cell.2010.01.04010.1016/j.cell.2010.01.040Search in Google Scholar PubMed

[15] Zitvogel, L., Kepp, O., Galluzzi, L. and Kroemer, G. Inflammasomes in carcinogenesis and anticancer immune responses. Nat. Immunol. 13 (2012) 343–351. http://dx.doi.org/10.1038/ni.222410.1038/ni.2224Search in Google Scholar PubMed

[16] Dunn, J.H., Ellis, L.Z. and Fujita, M. Inflammasomes as molecular mediators of inflammation and cancer: potential role in melanoma. Cancer Lett. 314 (2012) 24–33. http://dx.doi.org/10.1016/j.canlet.2011.10.00110.1016/j.canlet.2011.10.001Search in Google Scholar PubMed

[17] Guo, Y. and Kyprianou, N. Restoration of transforming growth factor beta signaling pathway in human prostate cancer cells suppresses tumorigenicity via induction of caspase-1-mediated apoptosis. Cancer Res. 59 (1999) 1366–1371. Search in Google Scholar

[18] Winter, R.N., Kramer, A., Borkowski, A. and Kyprianou, N. Loss of caspase-1 and caspase-3 protein expression in human prostate cancer. Cancer Res. 61 (2001) 1227–1232. Search in Google Scholar

[19] Bruckheimer, E.M. and Kyprianou, N. Bcl-2 antagonizes the combined apoptotic effect of transforming growth factor-beta and dihydrotestosterone in prostate cancer cells. Prostate 53 (2002) 133–142. http://dx.doi.org/10.1002/pros.1014310.1002/pros.10143Search in Google Scholar PubMed

[20] Sasaki, Y., Ahmed, H., Takeuchi, T., Moriyama, N. and Kawabe, K. Immunohistochemical study of Fas, Fas ligand and interleukin-1 beta converting enzyme expression in human prostatic cancer. Br. J. Urol. 81 (1998) 852–855. http://dx.doi.org/10.1046/j.1464-410x.1998.00665.x10.1046/j.1464-410x.1998.00665.xSearch in Google Scholar PubMed

[21] Nikitina, E.Y., Desai, S.A., Zhao, X., Song, W., Luo, A.Z., Gangula, R.D., Slawin, K.M. and Spencer, D.M. Versatile prostate cancer treatment with inducible caspase and interleukin-12. Cancer Res. 65 (2005) 4309–4319. http://dx.doi.org/10.1158/0008-5472.CAN-04-311910.1158/0008-5472.CAN-04-3119Search in Google Scholar PubMed

[22] Winter, R.N., Rhee, J.G. and Kyprianou, N. Caspase-1 enhances the apoptotic response of prostate cancer cells to ionizing radiation. Anticancer Res. 24 (2004) 1377–1386. Search in Google Scholar

[23] Hasegawa, M., Kawase, K., Inohara, N., Imamura, R., Yeh, W.C., Kinoshita, T. and Suda, T. Mechanism of ASC-mediated apoptosis: biddependent apoptosis in type II cells. Oncogene 26 (2007) 1748–1756. http://dx.doi.org/10.1038/sj.onc.120996510.1038/sj.onc.1209965Search in Google Scholar PubMed

[24] Collard, R.L., Harya, N.S., Monzon, F.A., Maier, C.E. and O’Keefe, D.S. Methylation of the ASC gene promoter is associated with aggressive prostate cancer. Prostate 66 (2006) 687–695. http://dx.doi.org/10.1002/pros.2037110.1002/pros.20371Search in Google Scholar PubMed

[25] Das, P.M., Ramachandran, K., Vanwert, J., Ferdinand, L., Gopisetty, G., Reis, I.M. and Singal, R. Methylation mediated silencing of TMS1/ASC gene in prostate cancer. Mol. Cancer 5 (2006) 28. http://dx.doi.org/10.1186/1476-4598-5-2810.1186/1476-4598-5-28Search in Google Scholar

[26] Gurjar, M.V., DeLeon, J., Sharma, R.V. and Bhalla, R.C. Mechanism of inhibition of matrix metalloproteinase-9 induction by NO in vascular smooth muscle cells. J. Appl. Physiol. 91 (2001) 1380–1386. Search in Google Scholar

[27] Petrella, B.L., Armstrong, D.A. and Vincenti, M.P. Interleukin-1 beta and transforming growth factor-beta 3 cooperate to activate matrix metalloproteinase expression and invasiveness in A549 lung adenocarcinoma cells. Cancer Lett. 325 (2012) 220–226. http://dx.doi.org/10.1016/j.canlet.2012.07.00910.1016/j.canlet.2012.07.009Search in Google Scholar

[28] Nakao, S., Kuwano, T., Tsutsumi-Miyahara, C., Ueda, S., Kimura, Y.N., Hamano, S., Sonoda, K.H., Saijo, Y., Nukiwa, T., Strieter, R.M., Ishibashi, T., Kuwano, M. and Ono, M. Infiltration of COX-2-expressing macrophages is a prerequisite for IL-1 beta-induced neovascularization and tumor growth. J. Clin. Invest. 115 (2005) 2979–2991. http://dx.doi.org/10.1172/JCI2329810.1172/JCI23298Search in Google Scholar

[29] Tsuzaki, M., Guyton, G., Garrett, W., Archambault, J.M., Herzog, W., Almekinders, L., Bynum, D., Yang, X. and Banes, A.J. IL-1 beta induces COX2, MMP-1, -3 and -13, ADAMTS-4, IL-1 beta and IL-6 in human tendon cells. J. Orthop. Res. 21 (2003) 256–264. http://dx.doi.org/10.1016/S0736-0266(02)00141-910.1016/S0736-0266(02)00141-9Search in Google Scholar

[30] Maggio, M., Basaria, S., Ceda, G.P., Ble, A., Ling, S.M., Bandinelli, S., Valenti, G. and Ferrucci, L. The relationship between testosterone and molecular markers of inflammation in older men. J. Endocrinol. Invest. 28 (2005) 116–119. Search in Google Scholar

[31] Saylor, P.J., Kozak, K.R., Smith, M.R., Ancukiewicz, M.A., Efstathiou, J.A., Zietman, A.L., Jain, R.K. and Duda, D.G. Changes in biomarkers of inflammation and angiogenesis during androgen deprivation therapy for prostate cancer. Oncologist 17 (2012) 212–219. http://dx.doi.org/10.1634/theoncologist.2011-032110.1634/theoncologist.2011-0321Search in Google Scholar PubMed PubMed Central

[32] Vykhovanets, E.V., Shukla, S., MacLennan, G.T., Vykhovanets, O.V., Bodner, D.R. and Gupta, S. Il-1 beta-induced post-transition effect of NFkappaB provides time-dependent wave of signals for initial phase of intrapostatic inflammation. Prostate 69 (2009) 633–643. http://dx.doi.org/10.1002/pros.2091610.1002/pros.20916Search in Google Scholar PubMed PubMed Central

[33] Klein, R.D., Borchers, A.H., Sundareshan, P., Bougelet, C., Berkman, M.R., Nagle, R.B. and Bowden, G.T. Interleukin-1beta secreted from monocytic cells induces the expression of matrilysin in the prostatic cell line LNCaP. J. Biol. Chem. 272 (1997) 14188–14192. http://dx.doi.org/10.1074/jbc.272.22.1418810.1074/jbc.272.22.14188Search in Google Scholar PubMed

[34] Lebel-Binay, S., Thiounn, N., De Pinieux, G., Vieillefond, A., Debre, B., Bonnefoy, J.Y. and Fridman, W.H., Pages, F. IL-18 is produced by prostate cancer cells and secreted in response to interferons. Int. J. Cancer 106 (2003) 827–835. http://dx.doi.org/10.1002/ijc.1128510.1002/ijc.11285Search in Google Scholar PubMed

[35] Veeranki, S., Duan, X., Panchanathan, R., Liu, H. and Choubey, D. IFI16 protein mediates the anti-inflammatory actions of the type-I interferons through suppression of activation of caspase-1 by inflammasomes. PLoS One 6 (2011) e27040. http://dx.doi.org/10.1371/journal.pone.002704010.1371/journal.pone.0027040Search in Google Scholar PubMed PubMed Central

[36] Fujita, K., Ewing, C.M., Isaacs, W.B. and Pavlovich, C.P. Immunomodulatory IL-18 binding protein is produced by prostate cancer cells and its levels in urine and serum correlate with tumor status. Int. J. Cancer 129 (2011) 424–432. http://dx.doi.org/10.1002/ijc.2570510.1002/ijc.25705Search in Google Scholar PubMed PubMed Central

[37] Veeranki, S. and Choubey, D. Interferon-inducible p200-family protein IFI16, an innate immune sensor for cytosolic and nuclear double-stranded DNA: regulation of subcellular localization. Mol. Immunol. 49 (2012) 567–571. http://dx.doi.org/10.1016/j.molimm.2011.11.00410.1016/j.molimm.2011.11.004Search in Google Scholar PubMed PubMed Central

[38] Xin, H., Curry, J., Johnstone, R.W., Nickoloff, B.J. and Choubey, D. Role of IFI 16, a member of the interferon-inducible p200-protein family, in prostate epithelial cellular senescence. Oncogene 22 (2003) 4831–4840. http://dx.doi.org/10.1038/sj.onc.120675410.1038/sj.onc.1206754Search in Google Scholar PubMed

[39] Cahu, J., Bustany, S. and Sola, B. Senescence-associated secretory phenotype favors the emergence of cancer stem-like cells. Cell Death Dis. 3 (2012) e446. http://dx.doi.org/10.1038/cddis.2012.18310.1038/cddis.2012.183Search in Google Scholar PubMed PubMed Central

[40] Choubey, D. DNA-responsive inflammasomes and their regulators in autoimmunity. Clin. Immunol. 142 (2012) 223–231. http://dx.doi.org/10.1016/j.clim.2011.12.00710.1016/j.clim.2011.12.007Search in Google Scholar PubMed PubMed Central

[41] Lamkanfi, M. and Dixit, V.M. Inflammasomes and their roles in health and disease. Annu. Rev. Cell Dev. Biol. 28 (2012) 137–161. http://dx.doi.org/10.1146/annurev-cellbio-101011-15574510.1146/annurev-cellbio-101011-155745Search in Google Scholar PubMed

[42] Olsson, J., Drott, J.B., Laurantzon, L., Laurantzon, O., Bergh, A. and Elgh, F. Chronic prostatic infection and inflammation by Propionibacterium acnes in a rat prostate infection model. PLoS One 7 (2012) e51434. http://dx.doi.org/10.1371/journal.pone.005143410.1371/journal.pone.0051434Search in Google Scholar PubMed PubMed Central

[43] Shinohara, D.B., Vaghasia, A.M., Yu, S.H., Mak, T.N., Bruggemann, H., Nelson, W.G., De Marzo, A.M., Yegnasubramanian, S. and Sfanos, K.S. A mouse model of chronic prostatic inflammation using a human prostate cancer-derived isolate of Propionibacterium acnes. Prostate (2013) doi: 10.1002/pros.22648. 10.1002/pros.22648Search in Google Scholar PubMed PubMed Central

[44] Sahdo, B., Sarndahl, E., Elgh, F. and Soderquist, B. Propionibacterium acnes activates caspase-1 in human neutrophils. APMIS (2012) doi: 10.1111/apm.12035. 10.1111/apm.12035Search in Google Scholar PubMed

[45] Nakahira, K., Haspel, J.A., Rathinam, V.A., Lee, S.J., Dolinay, T., Lam, H.C., Englert, J.A., Rabinovitch, M., Cernadas, M., Kim, H.P., Fitzgerald, K.A., Ryter, S.W. and Choi, A.M. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12 (2011) 222–230. http://dx.doi.org/10.1038/ni.198010.1038/ni.1980Search in Google Scholar PubMed PubMed Central

[46] Harris, J., Hartman, M., Roche, C., Zeng, S.G., O’Shea, A., Sharp, F.A., Lambe, E.M., Creagh, E.M., Golenbock, D.T., Tschopp, J., Kornfeld, H., Fitzgerald, K.A. and Lavelle, E.C. Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation. J. Biol. Chem. 286 (2011) 9587–9597. http://dx.doi.org/10.1074/jbc.M110.20291110.1074/jbc.M110.202911Search in Google Scholar PubMed PubMed Central

[47] Menu, P., Mayor, A., Zhou, R., Tardivel, A., Ichijo, H., Mori, K. and Tschopp, J. ER stress activates the NLRP3 inflammasome via an UPRindependent pathway. Cell Death Dis. 3 (2012) e261. http://dx.doi.org/10.1038/cddis.2011.13210.1038/cddis.2011.132Search in Google Scholar

[48] Duncan, J.A., Gao, X., Huang, M.T., O’Connor, B.P., Thomas, C.E., Willingham, S.B., Bergstralh, D.T., Jarvis, G.A., Sparling, P.F. and Ting, J.P. Neisseria gonorrhoeae activates the proteinase cathepsin B to mediate the signaling activities of the NLRP3 and ASC-containing inflammasome. J. Immunol. 182 (2009) 6460–6469. http://dx.doi.org/10.4049/jimmunol.080269610.4049/jimmunol.0802696Search in Google Scholar

[49] Abdul-Sater, A.A., Said-Sadier, N., Padilla, E.V. and Ojcius, D.M. Chlamydial infection of monocytes stimulates IL-1beta secretion through activation of the NLRP3 inflammasome. Microbes Infect. 12 (2010) 652–661. http://dx.doi.org/10.1016/j.micinf.2010.04.00810.1016/j.micinf.2010.04.008Search in Google Scholar

[50] Babolin, C., Amedei, A., Ozolins, D., Zilevica, A., D’Elios, M.M. and de Bernard, M. TpF1 from Treponema pallidum activates inflammasome and promotes the development of regulatory T cells. J. Immunol. 187 (2011) 1377–1384. http://dx.doi.org/10.4049/jimmunol.110061510.4049/jimmunol.1100615Search in Google Scholar

[51] Johnson, K.E., Chikoti, L. and Chandran, B. HSV-1 infection induces activation and subsequent inhibition of the IFI16 and NLRP3 inflammasomes. J. Virol. (2013) doi: 10.1128/JVI.00082-13. 10.1128/JVI.00082-13Search in Google Scholar

[52] Rathinam, V.A., Jiang, Z., Waggoner, S.N., Sharma, S., Cole, L.E., Waggoner, L., Vanaja, S.K., Monks, B.G., Ganesan, S., Latz, E., Hornung, V., Vogel, S.N., Szomolanyi-Tsuda, E. and Fitzgerald, K.A. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat. Immunol. 11 (2010) 395–402. http://dx.doi.org/10.1038/ni.186410.1038/ni.1864Search in Google Scholar

[53] Persson, B.E. and Ronquist, G. Evidence for a mechanistic association between nonbacterial prostatitis and levels of urate and creatinine in expressed prostatic secretion. J. Urol. 155 (1996) 958–960. http://dx.doi.org/10.1016/S0022-5347(01)66357-210.1016/S0022-5347(01)66357-2Search in Google Scholar

[54] Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. and Tschopp, J. Goutassociated uric acid crystals activate the NALP3 inflammasome. Nature 440 (2006) 237–241. http://dx.doi.org/10.1038/nature0451610.1038/nature04516Search in Google Scholar PubMed

[55] Couillin, I., Vasseur, V., Charron, S., Gasse, P., Tavernier, M., Guillet, J., Lagente, V., Fick, L., Jacobs, M., Coelho, F.R., Moser, R. and Ryffel, B. IL-1R1/MyD88 signaling is critical for elastase-induced lung inflammation and emphysema. J. Immunol. 183 (2009) 8195–8202. http://dx.doi.org/10.4049/jimmunol.080315410.4049/jimmunol.0803154Search in Google Scholar PubMed

[56] Cohen, T.S. and Prince, A.S. Activation of inflammasome signaling mediates pathology of acute P. aeruginosa pneumonia. J. Clin. Invest. (2013) doi: 10.1172/JCI66142. 10.1172/JCI66142Search in Google Scholar PubMed PubMed Central

[57] Hrbacek, J., Urban, M., Hamsikova, E., Tachezy, R. and Heracek, J. Thirty years of research on infection and prostate cancer: No conclusive evidence for a link. A systematic review. Urol. Oncol. (2012) doi:10.1016/j.urolonc.2012.01.013. 10.1016/j.urolonc.2012.01.013Search in Google Scholar PubMed

Published Online: 2013-7-27
Published in Print: 2013-9-1

© 2013 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-013-0095-y/html
Scroll to top button