Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter March 26, 2011

The expression of myogenic regulatory factors and muscle growth factors in the masticatory muscles of dystrophin-deficient (MDX) mice

  • Alexander Spassov EMAIL logo , Tomasz Gredes , Tomasz Gedrange , Silke Lucke , Dragan Pavlovic and Christiane Kunert-Keil

Abstract

The activities of myogenic regulatory factors (MRF) and muscle growth factors increase in muscle that is undergoing regeneration, and may correspond to some specific changes. Little is known about the role of MRFs in masticatory muscles in mdx mice (the model of Duchenne muscular dystrophy) and particularly about their mRNA expression during the process of muscle regeneration. Using Taqman RT-PCR, we examined the mRNA expression of the MRFs myogenin and MyoD1 (myogenic differentiation 1), and of the muscle growth factors myostatin, IGF1 (insulin-like growth factor) and MGF (mechanogrowth factor) in the masseter, temporal and tongue masticatory muscles of mdx mice (n = 6 to 10 per group). The myogenin mRNA expression in the mdx masseter and temporal muscle was found to have increased (P < 0.05), whereas the myostatin mRNA expressions in the mdx masseter (P < 0.005) and tongue (P < 0.05) were found to have diminished compared to those for the controls. The IGF and MGF mRNA amounts in the mdx mice remained unchanged. Inside the mdx animal group, gender-related differences in the mRNA expressions were also found. A higher mRNA expression of myogenin and MyoD1 in the mdx massterer and temporal muscles was found in females in comparison to males, and the level of myostatin was higher in the masseter and tongue muscle (P < 0.001 for all comparisons). Similar gender-related differences were also found within the control groups. This study reveals the intermuscular differences in the mRNA expression pattern of myogenin and myostatin in mdx mice. The existence of these differences implies that dystrophinopathy affects the skeletal muscles differentially. The finding of gender-related differences in the mRNA expression of the examined factors may indicate the importance of hormonal influences on muscle regeneration.

[1] Hoffman, E.P., Brown, R.H., Jr. and Kunkel, L.M. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51 (1987) 919–928. http://dx.doi.org/10.1016/0092-8674(87)90579-410.1016/0092-8674(87)90579-4Search in Google Scholar

[2] Eckardt, L. and Harzer, W. Facial structure and functional findings in patients with progressive muscular dystrophy (Duchenne). Am. J. Orthod. Dentofacial. Orthop. 110 (1996) 185–190. http://dx.doi.org/10.1016/S0889-5406(96)70107-510.1016/S0889-5406(96)70107-5Search in Google Scholar

[3] Botteron, S., Verdebout, C.M., Jeannet, P.Y. and Kiliaridis, S. Orofacial dysfunction in Duchenne muscular dystrophy. Arch. Oral. Biol. 54 (2009) 26–31. http://dx.doi.org/10.1016/j.archoralbio.2008.07.01210.1016/j.archoralbio.2008.07.012Search in Google Scholar

[4] Manzur, A.Y., Kinali, M. and Muntoni, F. Update on the management of Duchenne muscular dystrophy. Arch. Dis. Child. 93 (2008) 986–990. http://dx.doi.org/10.1136/adc.2007.11814110.1136/adc.2007.118141Search in Google Scholar

[5] Pane, M., Vasta, I., Messina, S., Sorleti, D., Aloysius, A., Sciarra, F., Mangiola, F., Kinali, M., Ricci, E. and Mercuri, E. Feeding problems and weight gain in Duchenne muscular dystrophy. Eur. J. Paediatr. Neurol. 10 (2006) 231–236. http://dx.doi.org/10.1016/j.ejpn.2006.08.00810.1016/j.ejpn.2006.08.008Search in Google Scholar

[6] Bulfield, G., Siller, W.G., Wight, P.A. and Moore, K.J. X chromosomelinked muscular dystrophy (mdx) in the mouse. Proc. Natl. Acad. Sci. USA 81 (1984) 1189–1192. http://dx.doi.org/10.1073/pnas.81.4.118910.1073/pnas.81.4.1189Search in Google Scholar

[7] Pastoret, C. and Sebille, A. Age-related differences in regeneration of dystrophic (mdx) and normal muscle in the mouse. Muscle Nerve 18 (1995) 1147–1154. http://dx.doi.org/10.1002/mus.88018101110.1002/mus.880181011Search in Google Scholar

[8] Tanabe, Y., Esaki, K. and Nomura, T. Skeletal muscle pathology in X chromosome-linked muscular dystrophy (mdx) mouse. Acta. Neuropathol. 69 (1986) 91–95. http://dx.doi.org/10.1007/BF0068704310.1007/BF00687043Search in Google Scholar

[9] McArdle, A., Edwards, R.H. and Jackson, M.J. How does dystrophin deficiency lead to muscle degeneration?—evidence from the mdx mouse. Neuromuscul. Disord. 5 (1995) 445–456. http://dx.doi.org/10.1016/0960-8966(95)00001-410.1016/0960-8966(95)00001-4Search in Google Scholar

[10] Buskin, J.N. and Hauschka, S.D. Identification of a myocyte nuclear factor that binds to the muscle-specific enhancer of the mouse muscle creatine kinase gene. Mol. Cell. Biol. 9 (1989) 2627–2640. Search in Google Scholar

[11] Rudnicki, M.A. and Jaenisch, R. The MyoD family of transcription factors and skeletal myogenesis. Bioessays 17 (1995) 203–209. http://dx.doi.org/10.1002/bies.95017030610.1002/bies.950170306Search in Google Scholar PubMed

[12] Gayraud-Morel, B., Chretien, F., Flamant, P., Gomes, D., Zammit, P.S. and Tajbakhsh, S. A role for the myogenic determination gene Myf5 in adult regenerative myogenesis. Dev. Biol. 312 (2007) 13–28. http://dx.doi.org/10.1016/j.ydbio.2007.08.05910.1016/j.ydbio.2007.08.059Search in Google Scholar

[13] Goldspink, G., Wessner, B., Tschan, H. and Bachl, N. Growth factors, muscle function, and doping. Endocrinol. Metab. Clin. North. Am. 39 (2010) 169–181, xi. http://dx.doi.org/10.1016/j.ecl.2009.11.00110.1016/j.ecl.2009.11.001Search in Google Scholar

[14] Gredes, T., Spassov, A., Mai, R., Mack, H., Loster, B.W., Mazurkiewicz-Janik, M., Kubein-Meesenburg, D., Fanghanel, J. and Gedrange, T. Changes in insulin like growth factors, myostatin and vascular endothelial growth factor in rat musculus latissimus dorsi by poly-3-hydroxybutyrate implants. J. Physiol. Pharmacol. 60Suppl 3 (2009) 77–81. Search in Google Scholar

[15] Enns, D.L. and Tiidus, P.M. Estrogen influences satellite cell activation and proliferation following downhill running in rats. J. Appl. Physiol. 104 (2008) 347–353. http://dx.doi.org/10.1152/japplphysiol.00128.200710.1152/japplphysiol.00128.2007Search in Google Scholar

[16] Tiidus, P.M. Oestrogen and sex influence on muscle damage and inflammation: evidence from animal models. Curr. Opin. Clin. Nutr. Metab. Care 4 (2001) 509–513. http://dx.doi.org/10.1097/00075197-200111000-0000810.1097/00075197-200111000-00008Search in Google Scholar

[17] Tiidus, P.M., Holden, D., Bombardier, E., Zajchowski, S., Enns, D. and Belcastro, A. Estrogen effect on post-exercise skeletal muscle neutrophil infiltration and calpain activity. Can. J. Physiol. Pharmacol. 79 (2001) 400–406. http://dx.doi.org/10.1139/cjpp-79-5-40010.1139/y01-011Search in Google Scholar

[18] Valentine, B.A., Cooper, B.J., de Lahunta, A., O’Quinn, R. and Blue, J.T. Canine X-linked muscular dystrophy. An animal model of Duchenne muscular dystrophy: clinical studies. J. Neurol. Sci. 88 (1988) 69–81. http://dx.doi.org/10.1016/0022-510X(88)90206-710.1016/0022-510X(88)90206-7Search in Google Scholar

[19] Boland, B., Himpens, B., Denef, J.F. and Gillis, J.M. Site-dependent pathological differences in smooth muscles and skeletal muscles of the adult mdx mouse. Muscle Nerve 18 (1995) 649–657. http://dx.doi.org/10.1002/mus.88018061210.1002/mus.880180612Search in Google Scholar PubMed

[20] Spassov, A., Gredes, T., Gedrange, T., Lucke, S., Pavlovic, D. and Kunert-Keil, C. Histological changes in masticatory muscles of mdx mice. Arch. Oral. Biol. 55 (2010) 318–324. http://dx.doi.org/10.1016/j.archoralbio.2010.02.00510.1016/j.archoralbio.2010.02.005Search in Google Scholar PubMed

[21] Spassov, A., Gredes, T., Gedrange, T., Lucke, S., Morgensternm S., Pavlovic, D. and Kunert-Keil, C. Differential expression of MyHC isoforms in masticatory muscles of mdx mice. Eur. J. Orthod. (2010) DOI: 10.1093/ejo/CJQ1113. Search in Google Scholar

[22] Kunert-Keil, C., Bisping, F., Kruger, J. and Brinkmeier, H. Tissue-specific expression of TRP channel genes in the mouse and its variation in three different mouse strains. BioMed. Central Genomics 7 (2006) 159. Search in Google Scholar

[23] Mack, H.B., Mai, R., Lauer, G., Mack, F., Gedrange, T., Franke, R. and Gredes, T. Adaptation of myosin heavy chain mRNA expression after implantation of poly(3)hydroxybutyrate scaffolds in rat m. latissimus dorsi. J. Physiol. Pharmacol. 59Suppl 5 (2008) 95–103. Search in Google Scholar

[24] Livak, K.J. and Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25 (2001) 402–408. http://dx.doi.org/10.1006/meth.2001.126210.1006/meth.2001.1262Search in Google Scholar PubMed

[25] Marotta, M., Sarria, Y., Ruiz-Roig, C., Munell, F. and Roig-Quilis, M. Laser microdissection-based expression analysis of key genes involved in muscle regeneration in mdx mice. Neuromuscul. Disord. 17 (2007) 707–718. http://dx.doi.org/10.1016/j.nmd.2007.05.00710.1016/j.nmd.2007.05.007Search in Google Scholar PubMed

[26] Fuchtbauer, E.M. and Westphal, H. MyoD and myogenin are coexpressed in regenerating skeletal muscle of the mouse. Dev. Dyn. 193 (1992) 34–39. http://dx.doi.org/10.1002/aja.100193010610.1002/aja.1001930106Search in Google Scholar

[27] Beilharz, M.W., Lareu, R.R., Garrett, K.L., Grounds, M.D. and Fletcher, S. Quantitation of muscle precursor cell activity in skeletal muscle by Northern analysis of MyoD and myogenin expression: Application to dystrophic (mdx) mouse muscle. Mol. Cell. Neurosci. 3 (1992) 326–331. http://dx.doi.org/10.1016/1044-7431(92)90029-210.1016/1044-7431(92)90029-2Search in Google Scholar

[28] Jin, Y., Murakami, N., Saito, Y., Goto, Y., Koishi, K. and Nonaka, I. Expression of MyoD and myogenin in dystrophic mice, mdx and dy, during regeneration. Acta Neuropathol. 99 (2000) 619–627. http://dx.doi.org/10.1007/s00401005117210.1007/s004010051172Search in Google Scholar

[29] Hasty, P., Bradley, A., Morris, J.H., Edmondson, D.G., Venuti, J.M., Olson, E.N. and Klein, W.H. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 364 (1993) 501–506. http://dx.doi.org/10.1038/364501a010.1038/364501a0Search in Google Scholar

[30] Nabeshima, Y., Hanaoka, K., Hayasaka, M., Esumi, E., Li, S. and Nonaka, I. Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature 364 (1993) 532–535. http://dx.doi.org/10.1038/364532a010.1038/364532a0Search in Google Scholar

[31] Weintraub, H. The MyoD family and myogenesis: redundancy, networks, and thresholds. Cell 75 (1993) 1241–1244. http://dx.doi.org/10.1016/0092-8674(93)90610-310.1016/0092-8674(93)90610-3Search in Google Scholar

[32] Abe, S., Kasahara, N., Amano, M., Yoshii, M., Watanabe, H. and Ide, Y. Histological study of masseter muscle in a mouse muscular dystrophy model (mdx mouse). Bull. Tokyo Dent. Coll. 41 (2000) 119–122. http://dx.doi.org/10.2209/tdcpublication.41.11910.2209/tdcpublication.41.119Search in Google Scholar PubMed

[33] McMahon, C.D., Popovic, L., Oldham, J.M., Jeanplong, F., Smith, H.K., Kambadur, R., Sharma, M., Maxwell, L. and Bass, J.J. Myostatin-deficient mice lose more skeletal muscle mass than wild-type controls during hindlimb suspension. Am. J. Physiol. Endocrinol. Metab. 285 (2003) E82–87. 10.1152/ajpendo.00275.2002Search in Google Scholar PubMed

[34] Ono, Y., Boldrin, L., Knopp, P., Morgan, J.E. and Zammit, P.S. Muscle satellite cells are a functionally heterogeneous population in both somitederived and branchiomeric muscles. Dev. Biol. 337 (2010) 29–41. http://dx.doi.org/10.1016/j.ydbio.2009.10.00510.1016/j.ydbio.2009.10.005Search in Google Scholar PubMed PubMed Central

[35] Schneider, A.G., Leuthauser, K. and Pette, D. Parathyroid hormone-related protein is rapidly up-regulated in blood vessels of rat skeletal muscle by low-frequency stimulation. Pflugers Arch. 439 (1999) 167–173. http://dx.doi.org/10.1007/s00424005114110.1007/s004240051141Search in Google Scholar

[36] Pedraza-Alva, G., Zingg, J.M., Donda, A. and Perez-Martinez, L. Estrogen receptor regulates MyoD gene expression by preventing AP-1-mediated repression. Biochem. Biophys. Res. Commun. 389 (2009) 360–365. http://dx.doi.org/10.1016/j.bbrc.2009.08.15310.1016/j.bbrc.2009.08.153Search in Google Scholar PubMed

[37] Eason, J.M., Schwartz, G.A., Pavlath, G.K. and English, A.W. Sexually dimorphic expression of myosin heavy chains in the adult mouse masseter. J. Appl. Physiol. 89 (2000) 251–258. Search in Google Scholar

[38] McMahon, C.D., Popovic, L., Jeanplong, F., Oldham, J.M., Kirk, S.P., Osepchook, C.C., Wong, K.W., Sharma, M., Kambadur, R. and Bass, J.J. Sexual dimorphism is associated with decreased expression of processed myostatin in males. Am. J. Physiol. Endocrinol. Metab. 284 (2003) E377–381. 10.1152/ajpendo.00282.2002Search in Google Scholar PubMed

[39] Gonzalez-Cadavid, N.F. and Bhasin, S. Role of myostatin in metabolism. Curr. Opin. Clin. Nutr. Metab. Care 7 (2004) 451–457. http://dx.doi.org/10.1097/01.mco.0000134365.99523.7f10.1097/01.mco.0000134365.99523.7fSearch in Google Scholar PubMed

[40] Gedrange, T., Büttner, C., Schneider, M., Oppitz, R. and Harzer, W. Myosin heavy chain protein and gene expression in the masseter muscle of adult patients with distal or mesial malocclusion. J. Appl. Genet. 46 (2005) 227–236. Search in Google Scholar

Published Online: 2011-3-26
Published in Print: 2011-6-1

© 2011 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 10.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-011-0003-2/html
Scroll to top button