Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter June 22, 2014

Study on the activity of the signaling pathways regulating hepatocytes from G0 phase into G1 phase during rat liver regeneration

  • Menghua Li EMAIL logo , Xiaochun Zhou , Jinxin Mei , Xiaofang Geng , Yun Zhou , Weimin Zhang and Cunshuan Xu

Abstract

Under normal physiological conditions, the majority of hepatocytes are in the functional state (G0 phase). After injury or liver partial hepatectomy (PH), hepatocytes are rapidly activated to divide. To understand the mechanism underlying hepatocyte G0/G1 transition during rat liver regeneration, we used the Rat Genome 230 2.0 Array to determine the expression changes of genes, then searched the GO and NCBI databases for genes associated with the G0/G1 transition, and QIAGEN and KEGG databases for the G0/G1 transition signaling pathways. We used expression profile function (E t) to calculate the activity level of the known G0/G1 transition signal pathways, and Ingenuity Pathway Analysis 9.0 (IPA) to determine the interactions among these signaling pathways. The results of our study show that the activity of the signaling pathways of HGF, IL-10 mediated by p38MAPK, IL-6 mediated by STAT3, and JAK/STAT mediated by Ras/ERK and STAT3 are significantly increased during the priming phase (2–6 h after PH) of rat liver regeneration. This leads us to conclude that during rat liver regeneration, the HGF, IL-10, IL-6 and JAK/STAT signaling pathways play a major role in promoting hepatocyte G0/G1 transition in the regenerating liver.

[1] Yokoyama, Y., Nagino, M. and Nimura, Y. Mechanisms of hepatic regeneration following portal vein embolization and partial hepatectomy: a review. World J. Surg. 31 (2007) 367–374. http://dx.doi.org/10.1007/s00268-006-0526-210.1007/s00268-006-0526-2Search in Google Scholar

[2] Vondran, F.W., Katenz, E., Schwartlander, R., Morgul, R.S., Haluk, M., Raschzok, N., Gong, X.B., Cheng, X.D., Kehr, D. and Sauer, I.M. Isolation of primary human hepatocytes after partial hepatectomy: criteria for identification of the most promising liver specimen. Artif. Organs 32 (2008) 205–213. http://dx.doi.org/10.1111/j.1525-1594.2007.00524.x10.1111/j.1525-1594.2007.00524.xSearch in Google Scholar

[3] Estes, M.D., Do J. and Ahn, C.H. On chip cell separator using magnetic bead-based enrichment and depletion of various surface markers. Biomed. Microdevices 11 (2009) 509–515. http://dx.doi.org/10.1007/s10544-008-9257-510.1007/s10544-008-9257-5Search in Google Scholar

[4] Michalopoulos, G.K. Liver regeneration. J. Cell Physiol. 213 (2007) 286–300. http://dx.doi.org/10.1002/jcp.2117210.1002/jcp.21172Search in Google Scholar PubMed PubMed Central

[5] Kountouras, J., Boura, P. and Lygidakis, N.J. Liver regeneration after hepatectomy. Hepatogastroenterology 48 (2001) 556–562. Search in Google Scholar

[6] Sell, S. The hepatocyte: heperogeneity and plasticity of liver cells. Int. J. Biochem. Cell Biol. 35 (2003) 267–271. http://dx.doi.org/10.1016/S1357-2725(02)00182-610.1016/S1357-2725(02)00182-6Search in Google Scholar

[7] Zimmermann, A. Regulation of liver regeneration. Nephrol. Dial. Transplant. 19 (2004) iv6–iv10. http://dx.doi.org/10.1093/ndt/gfh103410.1093/ndt/gfh1034Search in Google Scholar PubMed

[8] Fausto, N., Laird, A.D. and Webber, E.M. Liver regeneration. 2. Role of growth factors and cytokines in hepatic regeneration. FASEB J. 9 (1995) 1527–1536. Search in Google Scholar

[9] Cantz, T., Manns, M.P. and Ott, M. Stem cells in liver regeneration and therapy. Cell Tissue Res. 331 (2008) 271–282. http://dx.doi.org/10.1007/s00441-007-0483-610.1007/s00441-007-0483-6Search in Google Scholar PubMed PubMed Central

[10] Xu, C.S., Chen, X.G., Chang, C.F., Wang, G.P., Wang, W.B., Zhang, L.X., Zhu, Q.S., Wang, L. and Zhang, F.C. Transcriptional profiles of biliary epithelial cells from rat regenerating liver after partial hepatectomy. Genes Genomics 34 (2012) 245–256. http://dx.doi.org/10.1007/s13258-011-0123-010.1007/s13258-011-0123-0Search in Google Scholar

[11] Xu, C.S., Yang, Y.J., Yang, J.Y., Chen, X.G. and Wang, G.P. Analysis of the role of the integrin signaling pathway in hepatocytes during rat liver regeneration. Cell. Mol. Biol. Lett. 17 (2012) 274–288. http://dx.doi.org/10.2478/s11658-012-0011-x10.2478/s11658-012-0011-xSearch in Google Scholar PubMed PubMed Central

[12] Michalopeulos, G.K. Liver regeneration. J. Cell Physiol. 213 (2007) 286–300. http://dx.doi.org/10.1002/jcp.2117210.1002/jcp.21172Search in Google Scholar

[13] Gómez-Lechón, M.J., Guillén, I., Ponsoda, X., Fabra, R., Trullenque, R., Nakamura, T., and Castell, J.V. Cell cycle progression proteins (cyclins), oncogene expression, and signal transduction during the proliferative response of human hepatocytes to hepatocyte growth factor. Hepatology 23 (1996) 1012–1019. http://dx.doi.org/10.1002/hep.51023051110.1002/hep.510230511Search in Google Scholar PubMed

[14] Morello, D., Fitzgerald, M.J., Babinet, C. and Fausto, N. C-myc, c-fos and c-jun regulation in the regeneration livers of normal and H-2K/c-myc transgenic mice. Mol. Cell Biol. 10 (1990) 3185–3193. Search in Google Scholar

[15] Akira, S., Isshiki, H., Sugita, T., Tanabe, O., Kinoshita, S., Nishio, Y., Nakajima, T., Hirano, T. and Kishimoto, T. A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family. EMBO J. 9 (1990) 1897–1906. Search in Google Scholar

[16] Zhong, Z., Wen, Z. and Darnell, J.E. Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264 (1994) 95–98. http://dx.doi.org/10.1126/science.814042210.1126/science.8140422Search in Google Scholar PubMed

[17] Trautwein, C., Caelles, C., Vander, G.P., Hunter, T., Karin, M. and Chojkier, M. Transactivation by NF-IL6/LAP is enhanced by phosphorylation of its activation domain. Nature 364 (1993) 544–547. http://dx.doi.org/10.1038/364544a010.1038/364544a0Search in Google Scholar PubMed

[18] Cressmann, D.E., Diamond, R.H. and Taub, R. Rapid activation of the Stat3 tran-scription complex in liver regeneration. Hepatology 21 (1995) 1443–1449. http://dx.doi.org/10.1002/hep.184021053110.1002/hep.1840210531Search in Google Scholar

[19] Trautwein, C., Rakemann, T., Niehof, M., Rose-John, S. and Manns, M.P. Acute-phase response factor, increased binding, and target gene transcription during liver regeneration. Gastroenterology 110 (1996) 1854–1862. http://dx.doi.org/10.1053/gast.1996.v110.pm896441110.1053/gast.1996.v110.pm8964411Search in Google Scholar PubMed

[20] Niehof, M., Manns, M.P. and Trautwein, C. CREB controls LAP/C/EBP beta transcription. Mol. Cell Biol. 17 (1997) 3600–3613. Search in Google Scholar

[21] Fujiyoshi, M. and Ozaki, M. Molecular mechanisms of liver regeneration and protection for treatment of liver dysfunction and diseases. J. Hepatobiliary Pancreat. Sci. 18 (2011) 13–22. http://dx.doi.org/10.1007/s00534-010-0304-210.1007/s00534-010-0304-2Search in Google Scholar PubMed

[22] Higgins, G.M. and Anderson, R.M. Experimental pathology of the liver: Restoration of the liver of the white rat following partial surgical removal. Arch. Pathol. 12 (1931) 186–202. Search in Google Scholar

[23] Grisham, J.W. Cell types in rat liver cultures: their identification and isolation. Mol. Cell Biochem. 54 (1983) 23–33. Search in Google Scholar

[24] Wang, W.B., Xie, L.F., Wang, W., Wang, L. and Xu C.S. Isolation, purity and identification of hepatocytes in rat normal liver and regenerating liver. Henan Sci. 26 (2008) 1492–1498. Search in Google Scholar

[25] Strober, W. Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol. 2001 May Appendix 3: Appendix 3B. 10.1002/0471142735.ima03bs21Search in Google Scholar PubMed

[26] Twigger, S.N., Smith J., Zuniga-Meyer, A. and Bromberg, S.K. Exploring phenotypic data at the rat genome database. Curr. Protoc. Bioinformatics (2006) Chapter 1, Unit 1.14. 10.1002/0471250953.bi0114s14Search in Google Scholar PubMed

[27] Wang, J.Z., Du, Z., Payattakool, R., Yu, P.S. and Chen, C.F. A new method to measure the semantic similarity of GO terms. Bioinformatics 23 (2007) 1274–1281. http://dx.doi.org/10.1093/bioinformatics/btm08710.1093/bioinformatics/btm087Search in Google Scholar PubMed

[28] Guo, W., Cai, C., Wang, C., Zhao, L., Wang, L. and Zhang, T. A preliminary analysis of genome structure and composition in Gossypium hirsutum. BMC Genomics 9 (2008) 314. http://dx.doi.org/10.1186/1471-2164-9-31410.1186/1471-2164-9-314Search in Google Scholar PubMed PubMed Central

[29] Xu, C.S., Wang, G.P., Zhang, L.X., Chang, C.F., Zhi, J. and Hao, Y.P. Correlation between liver cancer occurrence and gene expression profiles in rat liver tissue. Genet. Mol. Res. 10 (2011) 3480–3513. http://dx.doi.org/10.4238/2011.December.14.310.4238/2011.December.14.3Search in Google Scholar PubMed

[30] Jiang, C., Xuan, Z., Zhao, F. and Zhang, M.Q. TRED: a transcriptional regulatory element database, new entries and other development. Nucleic Acids Res. 35 (2007) 137–140. http://dx.doi.org/10.1093/nar/gkl104110.1093/nar/gkl1041Search in Google Scholar PubMed PubMed Central

[31] Childress, P.J., Flepcher, R.L. and Perumal, N.B. LymphTF-DB: a database of transcription factors involved in lymphocyte development. Genes Immun. 8 (2007) 360–365. http://dx.doi.org/10.1038/sj.gene.636438610.1038/sj.gene.6364386Search in Google Scholar PubMed

[32] Wang, G.P. and Xu, C.S. Reference gene selection for real-time RT-PCR in eight kinds of rat regenerating hepatic cells. Mol. Biotechnol. 46 (2010) 49–57. http://dx.doi.org/10.1007/s12033-010-9274-510.1007/s12033-010-9274-5Search in Google Scholar PubMed

[33] Kost, D.P. and Michalpopulos, G.K. Effect of epidermal growth factor on the expression of protooncogenes c-myc and c-Ha-ras in short-term primary hepatocyte culture. J. Cell. Physiol. 144 (1990) 122–127. http://dx.doi.org/10.1002/jcp.104144011610.1002/jcp.1041440116Search in Google Scholar PubMed

[34] Borowiak, M., Garratt, A.N., Wustefeld, T., Strehle, M., Trautwein, C. and Birchmeier, C. Met provides essential signals for liver regeneration. Proc. Natl. Acad. Sci.USA 101 (2004) 10608–10613. http://dx.doi.org/10.1073/pnas.040341210110.1073/pnas.0403412101Search in Google Scholar PubMed PubMed Central

[35] Okano, J., Shiota, G., Matsumoto, K., Yasui, S., Kurimasa, A., Hisatome, I. Steinbergd, P. and Murawakia, Y. Hepatocyte growth factor exerts a proliferative effect on oval cells through the PI3K/AKT signaling pathway. Biochem. Biophys. Res. Commun. 309 (2003) 298–304. http://dx.doi.org/10.1016/j.bbrc.2003.04.00210.1016/j.bbrc.2003.04.002Search in Google Scholar PubMed

[36] Stolz, D.B., Mars, W.M., Petersen, B.E., Kim, T.H. and Michalopoulos, G.K. Growth factor signal transduction immediately after two-thirds partial hepatectomy in the rat. Cancers Res. 59 (1999) 3954–3960. Search in Google Scholar

[37] Boccaccio, C., Ando, M., Tamagnone, L., Bardelli, A., Michieli, P., Battistini, C. and Comoglio, P.M. Induction of epithelial tubules by growth factor HGF depends on the STAT pathway. Nature 391 (1998) 285–288. http://dx.doi.org/10.1038/3465710.1038/34657Search in Google Scholar PubMed

[38] Zhang, Y.W., Wang, L.M., Jove, R. and Van de Woude, G.F. Requirement of Stat3 signaling for HGF/SF-Met mediated tumorigenesis. Oncogene 21 (2002) 217–226. http://dx.doi.org/10.1038/sj.onc.120500410.1038/sj.onc.1205004Search in Google Scholar PubMed

[39] Hirano, T. Interleukin 6 and its receptor: Ten years later. Int. Rev. Immunol. 16 (1998) 249–284. http://dx.doi.org/10.3109/0883018980904299710.3109/08830189809042997Search in Google Scholar PubMed

[40] Lutticken, C., Wegenka, U.M., Yuan, J., Buschmann, J., Schindler, C., Ziemiecki, A., Harpur, A.G., Wilks, A.F., Yasukawa, K., Taga, T., Kishimoto, T., Barbieri, G., Sendtner, M., Pellegrini, S., Heinrich, C. P. and Horn, F. Association of transcription factor APRF and protein kinase Jak1 with the interleukin-6 signaltransducer gp130. Science 263 (1994) 89–92. http://dx.doi.org/10.1126/science.827287210.1126/science.8272872Search in Google Scholar

[41] Stahl, N., Boulton, T.G., Farruggella, T., Ip. N.Y., Davis, S., Witthuhn, B.A., Quelle, F.W., Silvennoinen, O., Barbieri, G., Pellegrini, S., Ihle, J.N. and Yancopoulos, G.D. Association and activation of Jak Tyk kinases by CNTF-LIF-OSM-IL-6 beta receptor components. Science 263 (1994) 92–95. http://dx.doi.org/10.1126/science.827287310.1126/science.8272873Search in Google Scholar

[42] Gerhartz, C., Heesel, B., Sasse, J., Hemmann, U., Landgraf, C., Schneider-Mergener, J., Horn, F., Heinrich, P.C. and Graeve, L. Differential activation of acute phase response factor/STAT3 and STAT1 via the cytoplasmic domain of the interleukin 6 signal transducer gp130. I. Definition of a novel phosphotyrosine motif mediating STAT1 activation. J. Biol. Chem. 271 (1996) 12991–12998. http://dx.doi.org/10.1074/jbc.271.22.1299910.1074/jbc.271.22.12999Search in Google Scholar

[43] Streetz, K.L., Luedde, T., Manns, M.P. and Trautwein, C. Interleukin 6 and liver regeneration. Gut 47 (2000) 309–312. http://dx.doi.org/10.1136/gut.47.2.30910.1136/gut.47.2.309Search in Google Scholar

[44] Marshall, C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80 (1995) 179–185. http://dx.doi.org/10.1016/0092-8674(95)90401-810.1016/0092-8674(95)90401-8Search in Google Scholar

[45] Cohen, C.B., Ren, R. and Baltimore, D. Modular binding domains in signal transduction proteins. Cell 80 (1995) 237–248. http://dx.doi.org/10.1016/0092-8674(95)90406-910.1016/0092-8674(95)90406-9Search in Google Scholar

[46] Hunter, T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80 (1995) 225–236. http://dx.doi.org/10.1016/0092-8674(95)90405-010.1016/0092-8674(95)90405-0Search in Google Scholar

[47] Heldin, C.H. Dimerization of cell surface receptors in signal transduction. Cell 80 (1995) 213–224. http://dx.doi.org/10.1016/0092-8674(95)90404-210.1016/0092-8674(95)90404-2Search in Google Scholar

[48] Hill, C.S. and Treisman, R. Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell 80 (1995) 199–212. http://dx.doi.org/10.1016/0092-8674(95)90403-410.1016/0092-8674(95)90403-4Search in Google Scholar

Published Online: 2014-6-22
Published in Print: 2014-6-1

© 2013 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 1.6.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-014-0188-2/html
Scroll to top button