Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter March 26, 2014

MiR-34a regulates apoptosis in liver cells by targeting the KLF4 gene

  • Qiu Chen EMAIL logo , Lei Li , Yu Tu , Lu Zheng , Wei Liu , Xue Zuo , Yong He , Shu Zhang , Wei Zhu , Jian Cao , Feng Cui and Jun Hou

Abstract

MicroRNAs (miRNAs) regulate gene expression by inhibiting translation or targeting messenger RNA (mRNA) for degradation in a posttranscriptional fashion. In this study, we show that ectopic expression of miR-34a-5p reduces the mRNA and protein levels of Krüppel-like factor 4 (KLF4). We also demonstrate that miR-34a targets the 3′-untranslated mRNA region of KLF4 and show that overexpression of miR-34a induces a significant level of apoptosis in BNL CL.2 cells exposed to doxorubicin or 10 Gy X-ray. Our data suggest that the effects of miR-34a on apoptosis occur due to the downregulation of KLF4.

[1] Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116 (2004) 281–297. http://dx.doi.org/10.1016/S0092-8674(04)00045-510.1016/S0092-8674(04)00045-5Search in Google Scholar

[2] Kim, V.N. MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell. Biol. 6 (2005) 376–385. http://dx.doi.org/10.1038/nrm164410.1038/nrm1644Search in Google Scholar PubMed

[3] Nilsen, T.W. Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet. 23 (2007) 243–249. http://dx.doi.org/10.1016/j.tig.2007.02.01110.1016/j.tig.2007.02.011Search in Google Scholar PubMed

[4] Sunkar, R., Chinnusamy, V., Zhu, J. and Zhu, J.K. Small RNAs as big players in plant abotic stress responses and nutrient deprivation. Trends Plant Sci. 12 (2007) 301–309. http://dx.doi.org/10.1016/j.tplants.2007.05.00110.1016/j.tplants.2007.05.001Search in Google Scholar PubMed

[5] Kulshreshtha, R., Ferracin, M., Wojcik, S.E., Garzon, R., Alder, H., Agosto-Perez, F.J., Davuluri, R., Liu, C.G., Croce, C.M., Negrini, M., Calin, G.A. and Ivan, M.A. microRNA signature of hypoxia. Mol. Cell. Biol. 27 (2007) 1859–1867. http://dx.doi.org/10.1128/MCB.01395-0610.1128/MCB.01395-06Search in Google Scholar PubMed PubMed Central

[6] Trindade, I., Capitão, C., Dalmay, T., Fevereiro, M.P. and Santos, D.M. miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta 231 (2010) 705–716. http://dx.doi.org/10.1007/s00425-009-1078-010.1007/s00425-009-1078-0Search in Google Scholar PubMed

[7] Simone, N.L., Soule, B.P., Ly, D., Saleh, A.D., Savage, J.E., Degraff, W., Cook, J., Harris, C.C., Gius, D. and Mitchell, J.B. Ionizing radiation-induced oxidative stress alters miRNA expression. PLoS One 4 (2009) e6377. http://dx.doi.org/10.1371/journal.pone.000637710.1371/journal.pone.0006377Search in Google Scholar PubMed PubMed Central

[8] Chaudhry, M.A. Real-time PCR analysis of micro-RNA expression in ionizing radiation-treated cells. Cancer Biother. Radiopharm. 24 (2009) 49–56. http://dx.doi.org/10.1089/cbr.2008.051310.1089/cbr.2008.0513Search in Google Scholar PubMed

[9] Chaudhry, M.A. Biomarkers for human radiation exposure. J. Biomed. Sci. 15 (2008) 557–563. http://dx.doi.org/10.1007/s11373-008-9253-z10.1007/s11373-008-9253-zSearch in Google Scholar PubMed

[10] Leung, A.K.L. and Sharp, P.A. MicroRNA functions in stress responses. Mol. Cell 40 (2010) 205–215. http://dx.doi.org/10.1016/j.molcel.2010.09.02710.1016/j.molcel.2010.09.027Search in Google Scholar PubMed PubMed Central

[11] Babar, I.A., Slack, F.J. and Weidhaas, J.B. MiRNA modulation of the cellular stress response. Future Oncol. 4 (2008) 289–298. http://dx.doi.org/10.2217/14796694.4.2.28910.2217/14796694.4.2.289Search in Google Scholar PubMed

[12] Ichimura, A., Ruike, Y., Terasawa, K., Shimizu, K. and Tsujimoto, G. MicroRNA-34a inhibits cell proliferation by repressing mitogen-activated protein kinase 1 during megakaryocytic differentiation of K562 cells. Mol. Pharmacol. 77 (2010) 1016–1024. http://dx.doi.org/10.1124/mol.109.06332110.1124/mol.109.063321Search in Google Scholar PubMed

[13] Sun, F., Fu, H., Liu, Q., Tie, Y., Zhu, J., Xing, R., Sun, Z. and Zheng, X. Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Lett. 582 (2008) 1564–1568. http://dx.doi.org/10.1016/j.febslet.2008.03.05710.1016/j.febslet.2008.03.057Search in Google Scholar PubMed

[14] Jain, A.K., Allton, K., Iacovino, M., Mahen, E., Milczarek, R.J., Zwaka, T.P., Kyba, M. and Barton, M.C. p53 Regulates Cell Cycle and MicroRNAs to Promote Differentiation of Human Embryonic Stem Cells. PLoS Biol. 10 (2012) e1001268. http://dx.doi.org/10.1371/journal.pbio.100126810.1371/journal.pbio.1001268Search in Google Scholar PubMed PubMed Central

[15] Ji, X., Wang, Z., Geamanu, A., Goja, A., Sarkar, F.H. and Gupta, S.V. Delta-tocotrienol suppresses Notch-1 pathway by up-regulating miR-34a in non-small cell lung cancer cells. Int. J. Cancer 131 (2012) 2668–2677. http://dx.doi.org/10.1002/ijc.2754910.1002/ijc.27549Search in Google Scholar PubMed PubMed Central

[16] Chang, T.C., Wentzel, E.A., Kent, O.A., Ramachandran, K., Mullendore, M., Lee, K.H., Feldmann, G., Yamakuchi, M., Ferlito, M., Lowenstein, C.J., Arking, D.E., Beer, M.A., Maitra, A. and Mendell, J.T. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell 26 (2007) 745–752. http://dx.doi.org/10.1016/j.molcel.2007.05.01010.1016/j.molcel.2007.05.010Search in Google Scholar PubMed PubMed Central

[17] Hermeking, H. The miR-34 family in cancer and apoptosis. Cell Death Differ. 17 (2010) 193–199. http://dx.doi.org/10.1038/cdd.2009.5610.1038/cdd.2009.56Search in Google Scholar PubMed

[18] Krek, A., Grün, D., Poy, M.N., Wolf, R., Rosenberg, L., Epstein, E.J., MacMenamin, P., da Piedade, I., Gunsalus, K.C., Stoffel, M. and Rajewsky, N. Combinatorial microRNA target predictions. Nat. Genet. 37 (2005) 495–500. http://dx.doi.org/10.1038/ng153610.1038/ng1536Search in Google Scholar PubMed

[19] Ghaleb, A.M., Katz, J.P., Kaestner, K.H., Du, J.X. and Yang, V.W. Krüppellike factor 4 exhibits antiapoptotic activity following gamma-radiationinduced DNA damage. Oncogene 26 (2007) 2365–2373. http://dx.doi.org/10.1038/sj.onc.121002210.1038/sj.onc.1210022Search in Google Scholar PubMed PubMed Central

[20] http://www.genepharma.com/En/productslist.asp?Parentid=15&sortname=miRNA Search in Google Scholar

[21] http://www.microrna.org/microrna/home.do Search in Google Scholar

[22] http://www.mirbase.org Search in Google Scholar

[23] http://pictar.mdc-berlin.de Search in Google Scholar

[24] Xia, J., Duan, Q., Ahmad, A., Bao, B., Benerjee, S., Shi, Y., Ma, J., Geng, J., Chen, Z., Rahman, K.M., Miele, L., Sarkar, F.H. and Wang, Z. Genistein inhibits cell growth and induces apoptosis through up-regulation of miR-34a in pancreatic cancer cells. Curr. Drug Targets 13 (2012) 1750–1756. http://dx.doi.org/10.2174/13894501280454559710.2174/138945012804545597Search in Google Scholar PubMed

[25] Sacher, G.A. Dependence of acute radiosensitivity on age in adult female mouse. Science 125 (1957) 1039–1040. http://dx.doi.org/10.1126/science.125.3256.103910.1126/science.125.3256.1039Search in Google Scholar

[26] Crosfill, M.L., Lindop, P.J. and Rotblat, J. Variation of sensitivity to ionizing radiation with age. Nature 183 (1959) 1729–1730. http://dx.doi.org/10.1038/1831729a010.1038/1831729a0Search in Google Scholar

[27] Burdelya, L.G., Krivokrysenko, V.I., Tallant, T.C., Strom, E., Gleiberman, A.S., Gupta, D., Kurnasov, O.V., Fort, F.L., Osterman, A.L., Didonato, J.A., Feinstein, E. and Gudkov, A.V.. An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science 320 (2008) 226–230. http://dx.doi.org/10.1126/science.115498610.1126/science.1154986Search in Google Scholar

[28] Lewanski, C.R. and Gullick, W.J. Radiotherapy and cellular signaling. Lancet Oncol. 2 (2001) 366–370. http://dx.doi.org/10.1016/S1470-2045(00)00391-010.1016/S1470-2045(00)00391-0Search in Google Scholar

[29] Peter, M.E. Targeting of mRNAs by multiple miRNAs: the next step. Oncogene 29 (2010) 2161–2164. http://dx.doi.org/10.1038/onc.2010.5910.1038/onc.2010.59Search in Google Scholar PubMed

[30] Kloosterman, W.P. and Plasterk, R.H. The diverse functions of microRNAs in animal development and disease. Dev. Cell 11 (2006) 441–450. http://dx.doi.org/10.1016/j.devcel.2006.09.00910.1016/j.devcel.2006.09.009Search in Google Scholar PubMed

[31] Esquela-Kerscher, A. and Slack, F.J. Oncomirs-microRNAs with a role in cancer. Nat. Rev. Cancer 6 (2006) 259–269. http://dx.doi.org/10.1038/nrc184010.1038/nrc1840Search in Google Scholar PubMed

[32] Thalia, A.F, Jessica, I.H., Pavel, M. and Thomas, T. microRNAs in Human Cancer. Adv. Exp. Med. Biol. 774 (2013) 1–20. 10.1007/978-94-007-5590-1_1Search in Google Scholar PubMed PubMed Central

[33] Metheetrairut, C. and Slack, F.J. MicroRNAs in the ionizing radiation response and in radiotherapy. Curr. Opin. Genet. Dev. 23 (2013) 12–19. http://dx.doi.org/10.1016/j.gde.2013.01.00210.1016/j.gde.2013.01.002Search in Google Scholar PubMed PubMed Central

[34] Chang, T.C., Wentzel, E.A., Kent, O.A., Ramachandran, K., Mullendore, M., Lee, K.H, Feldmann, G., Yamakuchi, M., Ferlito, M., Lowenstein, C.J., Arking, D.E., Beer, M.A., Maitra, A. and Mendell, J.T. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell 26 (2007) 745–752. http://dx.doi.org/10.1016/j.molcel.2007.05.01010.1016/j.molcel.2007.05.010Search in Google Scholar PubMed PubMed Central

[35] Raver-Shapira, N., Marciano, E., Meiri, E., Spector, Y., Rosenfeld, N., Moskovits, N., Bentwich, Z. and Oren, M. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol. Cell 26 (2007) 731–743. http://dx.doi.org/10.1016/j.molcel.2007.05.01710.1016/j.molcel.2007.05.017Search in Google Scholar PubMed

[36] Zhang, W., Shields, J.M., Sogawa, K., Fujii-Kuriyama, Y. and Yang, V.W. The gut-enriched Kruppel-like factor suppresses the activity of the CYP1A1 promoter in a Spl-dependent fashion. J. Biol. Chem. 273 (1998) 17917–17925. http://dx.doi.org/10.1074/jbc.273.28.1791710.1074/jbc.273.28.17917Search in Google Scholar PubMed PubMed Central

[37] Yoon, H.S., Chen, X. and Yang, V.W. Kruppel-like factor 4 mediates p53- dependent G1/S cell cycle arrest in response to DNA damage. J. Biol. Chem. 278 (2003) 2101–2105. http://dx.doi.org/10.1074/jbc.M21102720010.1074/jbc.M211027200Search in Google Scholar PubMed PubMed Central

[38] Yoon, H.S. and Yang, V.W. Requirement of Kruppel-like factor 4 in preventing entry into mitosis following DNA damage. J. Biol. Chem. 279 (2004) 5035–5041. http://dx.doi.org/10.1074/jbc.M30763120010.1074/jbc.M307631200Search in Google Scholar PubMed PubMed Central

[39] Calin, G.A. and Croce, C.M. MicroRNA-cancer connection: the beginning of a new tale. Cancer Res. 66 (2006) 7390–7394. http://dx.doi.org/10.1158/0008-5472.CAN-06-080010.1158/0008-5472.CAN-06-0800Search in Google Scholar PubMed

[40] Hammond, S.M. MicroRNAs as oncogenes. Curr. Opin. Genet. Dev. 16 (2006) 4–9. http://dx.doi.org/10.1016/j.gde.2005.12.00510.1016/j.gde.2005.12.005Search in Google Scholar PubMed

[41] Bommer, G.T., Gerin, I., Feng, Y., Kaczorowski, A.J., Kuick, R., Love, R.E., Zhai, Y., Giordano, T.J., Qin, Z.S., Moore, B.B., MacDougald, O.A., Cho, K.R. and Fearon, E.R. P53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr. Biol. 17 (2007) 1298–1307. http://dx.doi.org/10.1016/j.cub.2007.06.06810.1016/j.cub.2007.06.068Search in Google Scholar PubMed

[42] Fan, F., Sun, A., Zhao, H., Liu, X., Zhang, W., Jin, X., Wang, C., Ma, X., Shen, C., Zou, Y., Hu, K. and Ge, J. MicroRNA-34a promotes cardiomyocyte apoptosis post myocardial infarction through down-regulating aldehyde dehydrogenase 2. Curr. Pharm. Des. 19 (2013) 4865–4873. http://dx.doi.org/10.2174/1381612811319999032510.2174/13816128113199990325Search in Google Scholar PubMed

[43] Sasaki, A., Udaka, Y., Tsunoda, Y., Yamamoto, G., Tsuji, M., Oyamada, H., Oguchi, K. and Mizutani, T. Analysis of p53 and miRNA expression after irradiation of glioblastoma cell lines. Anticancer Res. 32 (2012) 4709–4713. Search in Google Scholar

Published Online: 2014-3-26
Published in Print: 2014-3-1

© 2013 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 3.6.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-013-0115-y/html
Scroll to top button