Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter April 24, 2012

Deficiency in TR4 nuclear receptor abrogates Gadd45a expression and increases cytotoxicity induced by ionizing radiation

  • Shian-Jang Yan EMAIL logo , Yi-Fen Lee , Huei-Ju Ting , Ning-Chun Liu , Su Liu , Shin-Jen Lin , Shauh-Der Yeh , Gonghui Li and Chawnshang Chang

Abstract

The testicular receptor 4 (TR4) is a member of the nuclear receptor superfamily that controls various biological activities. A protective role of TR4 against oxidative stress has recently been discovered. We here examined the protective role of TR4 against ionizing radiation (IR) and found that small hairpin RNA mediated TR4 knockdown cells were highly sensitive to IR-induced cell death. IR exposure increased the expression of TR4 in scramble control small hairpin RNA expressing cells but not in TR4 knockdown cells. Examination of IR-responsive molecules found that the expression of Gadd45a, the growth arrest and DNA damage response gene, was dramatically decreased in Tr4 deficient (TR4KO) mice tissues and could not respond to IR stimulation in TR4KO mouse embryonic fibroblast cells. This TR4 regulation of GADD45A was at the transcriptional level. Promoter analysis identified four potential TR4 response elements located in intron 3 and exon 4 of the GADD45A gene. Reporter and chromatin immunoprecipitation (ChIP) assays provided evidence indicating that TR4 regulated the GADD45A expression through TR4 response elements located in intron 3 of the GADD45A gene. Together, we find that TR4 is essential in protecting cells from IR stress. Upon IR challenges, TR4 expression is increased, thereafter inducing GADD45A through transcriptional regulation. As GADD45A is directly involved in the DNA repair pathway, this suggests that TR4 senses genotoxic stress and up-regulates GADD45A expression to protect cells from IR-induced genotoxicity.

[1] Chang, C., Da Silva, S.L., Ideta, R., Lee, Y., Yeh, S. and Burbach, J.P. Human and rat TR4 orphan receptors specify a subclass of the steroid receptor superfamily. Proc. Natl. Acad. Sci. USA 91 (1994) 6040–6044. http://dx.doi.org/10.1073/pnas.91.13.604010.1073/pnas.91.13.6040Search in Google Scholar

[2] Xie, S., Lee, Y.F., Kim, E., Chen, L.M., Ni, J., Fang, L.Y., Liu, S., Lin, S.J., Abe, J., Berk, B., Ho, F.M. and Chang, C. TR4 nuclear receptor functions as a fatty acid sensor to modulate CD36 expression and foam cell formation. Proc. Natl. Acad. Sci. USA 106 (2009) 13353–13358. http://dx.doi.org/10.1073/pnas.090572410610.1073/pnas.0905724106Search in Google Scholar

[3] Tsai, N.P., Huq, M., Gupta, P., Yamamoto, K., Kagechika, H. and Wei, L.N. Activation of testicular orphan receptor 4 by fatty acids. Biochim. Biophys. Acta 1789 (2009) 734–740. Search in Google Scholar

[4] Lee, Y.F., Lee, H.J. and Chang, C. Recent advances in the TR2 and TR4 orphan receptors of the nuclear receptor superfamily. J. Steroid Biochem. Mol. Biol. 81 (2002) 291–308. http://dx.doi.org/10.1016/S0960-0760(02)00118-810.1016/S0960-0760(02)00118-8Search in Google Scholar

[5] Young, W.J., Lee, Y.F., Smith, S.M. and Chang, C. A bidirectional regulation between the TR2/TR4 orphan receptors (TR2/TR4) and the ciliary neurotrophic factor (CNTF) signaling pathway. J. Biol. Chem. 273 (1998) 20877–20885. http://dx.doi.org/10.1074/jbc.273.33.2087710.1074/jbc.273.33.20877Search in Google Scholar PubMed

[6] Young, W.J., Smith, S.M. and Chang, C. Induction of the intronic enhancer of the human ciliary neurotrophic factor receptor (CNTFRalpha) gene by the TR4 orphan receptor. A member of steroid receptor superfamily. J. Biol. Chem. 272 (1997) 3109–3116. http://dx.doi.org/10.1074/jbc.272.18.1211610.1074/jbc.272.18.12116Search in Google Scholar PubMed

[7] Lee, Y.F., Young, W.J., Burbach, J.P. and Chang, C. Negative feedback control of the retinoid-retinoic acid/retinoid X receptor pathway by the human TR4 orphan receptor, a member of the steroid receptor superfamily. J. Biol. Chem. 273 (1998) 13437–13443. http://dx.doi.org/10.1074/jbc.273.22.1343710.1074/jbc.273.22.13437Search in Google Scholar PubMed

[8] Lee, Y.F., Young, W.J., Lin, W.J., Shyr, C.R. and Chang, C. Differential regulation of direct repeat 3 vitamin D3 and direct repeat 4 thyroid hormone signaling pathways by the human TR4 orphan receptor. J. Biol. Chem. 274 (1999) 16198–16205. http://dx.doi.org/10.1074/jbc.274.23.1619810.1074/jbc.274.23.16198Search in Google Scholar PubMed

[9] Lee, Y.F., Shyr, C.R., Thin, T.H., Lin, W.J. and Chang, C. Convergence of two repressors through heterodimer formation of androgen receptor and testicular orphan receptor-4: a unique signaling pathway in the steroid receptor superfamily. Proc. Natl. Acad. Sci. USA 96 (1999) 14724–14729. http://dx.doi.org/10.1073/pnas.96.26.1472410.1073/pnas.96.26.14724Search in Google Scholar PubMed PubMed Central

[10] Shyr, C.R., Hu, Y.C., Kim, E. and Chang, C. Modulation of estrogen receptor-mediated transactivation by orphan receptor TR4 in MCF-7 cells. J. Biol. Chem. 277 (2002) 14622–14628. http://dx.doi.org/10.1074/jbc.M11005120010.1074/jbc.M110051200Search in Google Scholar PubMed

[11] Lee, H.J., Lee, Y., Burbach, J.P. and Chang, C. Suppression of gene expression on the simian virus 40 major late promoter by human TR4 orphan receptor. A member of the steroid receptor superfamily. J. Biol. Chem. 270 (1995) 30129–30133. http://dx.doi.org/10.1074/jbc.270.50.3012910.1074/jbc.270.50.30129Search in Google Scholar PubMed

[12] Collins, L.L., Lee, Y.F., Heinlein, C.A., Liu, N.C., Chen, Y.T., Shyr, C.R., Meshul, C.K., Uno, H., Platt, K.A. and Chang, C. Growth retardation and abnormal maternal behavior in mice lacking testicular orphan nuclear receptor 4. Proc. Natl. Acad. Sci. USA 101 (2004) 15058–15063. http://dx.doi.org/10.1073/pnas.040570010110.1073/pnas.0405700101Search in Google Scholar PubMed PubMed Central

[13] Chen, L.M., Wang, R.S., Lee, Y.F., Liu, N.C., Chang, Y.J., Wu, C.C., Xie, S., Hung, Y.C. and Chang, C. Subfertility with defective folliculogenesis in female mice lacking testicular orphan nuclear receptor 4. Mol. Endocrinol. 22 (2008) 858–867. http://dx.doi.org/10.1210/me.2007-018110.1210/me.2007-0181Search in Google Scholar PubMed PubMed Central

[14] Mu, X., Lee, Y.F., Liu, N.C., Chen, Y.T., Kim, E., Shyr, C.R. and Chang, C. Targeted inactivation of testicular nuclear orphan receptor 4 delays and disrupts late meiotic prophase and subsequent meiotic divisions of spermatogenesis. Mol. Cell Biol. 24 (2004) 5887–5899. http://dx.doi.org/10.1128/MCB.24.13.5887-5899.200410.1128/MCB.24.13.5887-5899.2004Search in Google Scholar PubMed PubMed Central

[15] Kim, E., Xie, S., Yeh, S.D., Lee, Y.F., Collins, L.L., Hu, Y.C., Shyr, C.R., Mu, X.M., Liu, N.C., Chen, Y.T., Wang, P.H. and Chang, C. Disruption of TR4 orphan nuclear receptor reduces the expression of liver apolipoprotein E/C-I/C-II gene cluster. J. Biol. Chem. 278 (2003) 46919–46926. http://dx.doi.org/10.1074/jbc.M30408820010.1074/jbc.M304088200Search in Google Scholar PubMed

[16] Kim, E., Yang, Z., Liu, N.C. and Chang, C. Induction of apolipoprotein E expression by TR4 orphan nuclear receptor via 5′ proximal promoter region. Biochem. Biophys. Res. Commun. 328 (2005) 85–90. http://dx.doi.org/10.1016/j.bbrc.2004.12.14610.1016/j.bbrc.2004.12.146Search in Google Scholar PubMed

[17] Liu, N.C., Lin, W.J., Kim, E., Collins, L.L., Lin, H.Y., Yu, I.C., Sparks, J.D., Chen, L.M., Lee, Y.F. and Chang, C. Loss of TR4 orphan nuclear receptor reduces phosphoenolpyruvate carboxykinase-mediated gluconeogenesis. Diabetes 56 (2007) 2901–2909. http://dx.doi.org/10.2337/db07-035910.2337/db07-0359Search in Google Scholar PubMed

[18] Chen, Y.T., Collins, L.L., Uno, H. and Chang, C. Deficits in motor coordination with aberrant cerebellar development in mice lacking testicular orphan nuclear receptor 4. Mol. Cell Biol. 25 (2005) 2722–2732. http://dx.doi.org/10.1128/MCB.25.7.2722-2732.200510.1128/MCB.25.7.2722-2732.2005Search in Google Scholar PubMed PubMed Central

[19] Lee, Y.F., Liu, S., Liu, N.C., Wang, R.S., Chen, L.M., Lin, W.J., Ting, H.J., Ho, H.C., Li, G., Puzas, E.J., Wu, Q. and Chang, C. Premature aging with impaired oxidative stress defense in mice lacking TR4. Am. J. Physiol. Endocrinol. Metab. 301 (2011) E91–98. http://dx.doi.org/10.1152/ajpendo.00701.201010.1152/ajpendo.00701.2010Search in Google Scholar PubMed PubMed Central

[20] Li, G., Lee, Y.F., Liu, S., Cai, Y., Xie, S., Liu, N.C., Bao, B.Y., Chen, Z. and Chang, C. Oxidative stress stimulates testicular orphan receptor 4 through forkhead transcription factor forkhead box O3a. Endocrinology 149 (2008) 3490–3499. http://dx.doi.org/10.1210/en.2008-012110.1210/en.2008-0121Search in Google Scholar PubMed PubMed Central

[21] Liu, S., Yan, S.J., Lee, Y.F., Liu, N.C., Ting, H.J., Li, G., Wu, Q., Chen, L.M. and Chang, C. Testicular nuclear receptor 4 (TR4) regulates UV light-induced responses via Cockayne syndrome B protein-mediated transcription-coupled DNA repair. J. Biol. Chem. 286 (2011) 38103–38108. http://dx.doi.org/10.1074/jbc.M111.25952310.1074/jbc.M111.259523Search in Google Scholar PubMed PubMed Central

[22] Fornace, A.J., Jr., Jackman, J., Hollander, M.C., Hoffman-Liebermann, B. and Liebermann, D.A. Genotoxic-stress-response genes and growth-arrest genes. gadd, MyD, and other genes induced by treatments eliciting growth arrest. Ann. N. Y. Acad. Sci. 663 (1992) 139–153. http://dx.doi.org/10.1111/j.1749-6632.1992.tb38657.x10.1111/j.1749-6632.1992.tb38657.xSearch in Google Scholar

[23] Papathanasiou, M.A., Kerr, N.C., Robbins, J.H., McBride, O.W., Alamo, I., Jr., Barrett, S.F., Hickson, I.D. and Fornace, A.J., Jr. Induction by ionizing radiation of the gadd45 gene in cultured human cells: lack of mediation by protein kinase C. Mol. Cell Biol. 11 (1991) 1009–1016. Search in Google Scholar

[24] Tran, H., Brunet, A., Grenier, J.M., Datta, S.R., Fornace, A.J., Jr., DiStefano, P.S., Chiang, L.W. and Greenberg, M.E. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science 296 (2002) 530–534. http://dx.doi.org/10.1126/science.106871210.1126/science.1068712Search in Google Scholar

[25] Jiang, F., Li, P., Fornace, A.J., Jr., Nicosia, S.V. and Bai, W. G2/M arrest by 1,25-dihydroxyvitamin D3 in ovarian cancer cells mediated through the induction of GADD45 via an exonic enhancer. J. Biol. Chem. 278 (2003) 48030–48040. http://dx.doi.org/10.1074/jbc.M30843020010.1074/jbc.M308430200Search in Google Scholar

[26] Jiang, M., Fernandez, S., Jerome, W.G., He, Y., Yu, X., Cai, H., Boone, B., Yi, Y., Magnuson, M.A., Roy-Burman, P., Matusik, R.J., Shappell, S.B. and Hayward, S.W. Disruption of PPARgamma signaling results in mouse prostatic intraepithelial neoplasia involving active autophagy. Cell Death Differ. 17 (2010) 469–481. http://dx.doi.org/10.1038/cdd.2009.14810.1038/cdd.2009.148Search in Google Scholar

[27] Shang, Y., Hu, X., DiRenzo, J., Lazar, M.A. and Brown, M. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 103 (2000) 843–852. http://dx.doi.org/10.1016/S0092-8674(00)00188-410.1016/S0092-8674(00)00188-4Search in Google Scholar

[28] Kumala, S., Niemiec, P., Widel, M., Hancock, R. and Rzeszowska-Wolny, J. Apoptosis and clonogenic survival in three tumour cell lines exposed to gamma rays or chemical genotoxic agents. Cell. Mol. Biol. Lett. 8 (2003) 655–665. Search in Google Scholar

[29] Kastan, M.B., Zhan, Q., el-Deiry, W.S., Carrier, F., Jacks, T., Walsh, W.V., Plunkett, B.S., Vogelstein, B. and Fornace, A.J., Jr. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxiatelangiectasia. Cell 71 (1992) 587–597. http://dx.doi.org/10.1016/0092-8674(92)90593-210.1016/0092-8674(92)90593-2Search in Google Scholar

[30] Tachiiri, S., Katagiri, T., Tsunoda, T., Oya, N., Hiraoka, M. and Nakamura, Y. Analysis of gene-expression profiles after gamma irradiation of normal human fibroblasts. Int. J. Radiat. Oncol. Biol. Phys. 64 (2006) 272–279. http://dx.doi.org/10.1016/j.ijrobp.2005.08.03010.1016/j.ijrobp.2005.08.030Search in Google Scholar PubMed

[31] Hollander, M.C. and Fornace, A.J., Jr. Genomic instability, centrosome amplification, cell cycle checkpoints and Gadd45a. Oncogene 21 (2002) 6228–6233. http://dx.doi.org/10.1038/sj.onc.120577410.1038/sj.onc.1205774Search in Google Scholar PubMed

[32] Jung, H.J., Kim, E.H., Mun, J.Y., Park, S., Smith, M.L., Han, S.S. and Seo, Y.R. Base excision DNA repair defect in Gadd45a-deficient cells. Oncogene 26 (2007) 7517–7525. http://dx.doi.org/10.1038/sj.onc.121055710.1038/sj.onc.1210557Search in Google Scholar PubMed

[33] Rai, K., Huggins, I.J., James, S.R., Karpf, A.R., Jones, D.A. and Cairns, B.R. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 135 (2008) 1201–1212. http://dx.doi.org/10.1016/j.cell.2008.11.04210.1016/j.cell.2008.11.042Search in Google Scholar PubMed PubMed Central

[34] Barreto, G., Schafer, A., Marhold, J., Stach, D., Swaminathan, S.K., Handa, V., Doderlein, G., Maltry, N., Wu, W., Lyko, F. and Niehrs, C. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445 (2007) 671–675. http://dx.doi.org/10.1038/nature0551510.1038/nature05515Search in Google Scholar PubMed

[35] Jin, S.G., Guo, C. and Pfeifer, G.P. GADD45A does not promote DNA demethylation. PLoS Genet. 4 (2008) e1000013. http://dx.doi.org/10.1371/journal.pgen.100001310.1371/journal.pgen.1000013Search in Google Scholar PubMed PubMed Central

[36] Hollander, M.C., Sheikh, M.S., Bulavin, D.V., Lundgren, K., Augeri-Henmueller, L., Shehee, R., Molinaro, T.A., Kim, K.E., Tolosa, E., Ashwell, J.D., Rosenberg, M.P., Zhan, Q., Fernandez-Salguero, P.M., Morgan, W.F., Deng, C.X. and Fornace, A.J., Jr. Genomic instability in Gadd45a-deficient mice. Nat. Genet. 23 (1999) 176–184. http://dx.doi.org/10.1038/1380210.1038/13802Search in Google Scholar PubMed

[37] Gupta, M., Gupta, S.K., Balliet, A.G., Hollander, M.C., Fornace, A.J., Hoffman, B. and Liebermann, D.A. Hematopoietic cells from Gadd45a- and Gadd45b-deficient mice are sensitized to genotoxic-stress-induced apoptosis. Oncogene 24 (2005) 7170–7179. http://dx.doi.org/10.1038/sj.onc.120884710.1038/sj.onc.1208847Search in Google Scholar PubMed

Published Online: 2012-4-24
Published in Print: 2012-6-1

© 2012 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 31.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-012-0012-9/html
Scroll to top button