Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter July 23, 2011

Mislocalization of CDK11/PITSLRE, a regulator of the G2/M phase of the cell cycle, in Alzheimer disease

  • Vladan Bajić EMAIL logo , Bo Su , Hyoung-Gon Lee , Wataru Kudo , Sandra Siedlak , Lada Živković , Biljana Spremo-Potparević , Ninoslav Djelic , Zorana Milicevic , Avneet Singh , Lara Fahmy , Xinglong Wang , Mark Smith and Xiongwei Zhu

Abstract

Post-mitotic neurons are typically terminally differentiated and in a quiescent status. However, in Alzheimer disease (AD), many neurons display ectopic re-expression of cell cycle-related proteins. Cyclin-dependent kinase 11 (CDK11) mRNA produces a 110-kDa protein (CDK11p110) throughout the cell cycle, a 58-kDa protein (CDK11p58) that is specifically translated from an internal ribosome entry site and expressed only in the G2/M phase of the cell cycle, and a 46-kDa protein (CDK11p46) that is considered to be apoptosis specific. CDK11 is required for sister chromatid cohesion and the completion of mitosis. In this study, we found that the expression patterns of CDK11 vary such that cytoplasmic CDK11 is increased in AD cellular processes, compared to a pronounced nuclear expression pattern in most controls. We also investigated the effect of amyloid precursor protein (APP) on CDK11 expression in vitro by using M17 cells overexpressing wild-type APP and APP Swedish mutant phenotype and found increased CDK11 expression compared to empty vector. In addition, amyloid-β25–35 resulted in increased CDK11 in M17 cells. These data suggest that CDK11 may play a vital role in cell cycle re-entry in AD neurons in an APP-dependent manner, thus presenting an intriguing novel function of the APP signaling pathway in AD.

[1] Rosenberg, R.N. The molecular and genetic basis of AD: the end of the beginning: the 2000 Wartenberg lecture. Neurology 54 (2000) 2045–2054. Search in Google Scholar

[2] Steele, C.D. The genetics of Alzheimer disease. Nurs. Clin. North Am. 35 (2000) 687–694. 10.1016/S0029-6465(22)02510-5Search in Google Scholar

[3] Smith, M.A. Alzheimer disease. Int. Rev. Neurobiol. 42 (1998) 1–54. http://dx.doi.org/10.1016/S0074-7742(08)60607-810.1016/S0074-7742(08)60607-8Search in Google Scholar

[4] Vincent, I., Rosado, M. and Davies, P. Mitotic mechanisms in Alzheimer’s disease? J. Cell Biol. 132 (1996) 413–425. http://dx.doi.org/10.1083/jcb.132.3.41310.1083/jcb.132.3.413Search in Google Scholar

[5] Vincent, I., Jicha, G., Rosado, M. and Dickson, D.W. Aberrant expression of mitotic cdc2/cyclin B1 kinase in degenerating neurons of Alzheimer’s disease brain. J. Neurosci. 17 (1997) 3588–3598. Search in Google Scholar

[6] McShea, A., Wahl, A.F. and Smith, M.A. Re-entry into the cell cycle: a mechanism for neurodegeneration in Alzheimer disease. Med. Hypotheses 52 (1999) 525–527. http://dx.doi.org/10.1054/mehy.1997.068010.1054/mehy.1997.0680Search in Google Scholar

[7] Arendt, T., Rodel, L., Gartner, U. and Holzer, M. Expression of the cyclin-dependent kinase inhibitor p16 in Alzheimer’s disease. Neuroreport 7 (1996) 3047–3049. http://dx.doi.org/10.1097/00001756-199611250-0005010.1097/00001756-199611250-00050Search in Google Scholar

[8] McShea, A., Harris, P.L., Webster, K.R., Wahl, A.F. and Smith, M.A. Abnormal expression of the cell cycle regulators P16 and CDK4 in Alzheimer’s disease. Am. J. Pathol. 150 (1997) 1933–1939. Search in Google Scholar

[9] Raina, A.K., Zhu, X. and Smith, M.A. Alzheimer’s disease and the cell cycle. Acta Neurobiol. Exp. (Wars) 64 (2004) 107–112. Search in Google Scholar

[10] Zhu, X., Raina, A.K., Boux, H., Simmons, Z.L., Takeda, A. and Smith, M.A. Activation of oncogenic pathways in degenerating neurons in Alzheimer disease. Int. J. Dev. Neurosci. 18 (2000) 433–437. http://dx.doi.org/10.1016/S0736-5748(00)00010-110.1016/S0736-5748(00)00010-1Search in Google Scholar

[11] Nagy, Z., Esiri, M.M., Hindley, N.J., Joachim, C., Morris, J.H., King, E.M., McDonald, B., Litchfield, S., Barnetson, L., Jobst, K.A. and Smith, A.D. Accuracy of clinical operational diagnostic criteria for Alzheimer’s disease in relation to different pathological diagnostic protocols. Dement. Geriatr. Cogn. Disord. 9 (1998) 219–226. http://dx.doi.org/10.1159/00001705010.1159/000017050Search in Google Scholar PubMed

[12] Lee, H.G., Casadesus, G., Zhu, X., Castellani, R.J., McShea, A., Perry, G., Petersen, R.B., Bajic, V. and Smith, M.A. Cell cycle re-entry mediated neurodegeneration and its treatment role in the pathogenesis of Alzheimer’s disease. Neurochem. Int. 54 (2009) 84–88. http://dx.doi.org/10.1016/j.neuint.2008.10.01310.1016/j.neuint.2008.10.013Search in Google Scholar PubMed PubMed Central

[13] Varvel, N.H., Bhaskar, K., Patil, A.R., Pimplikar, S.W., Herrup, K. and Lamb, B.T. Abeta oligomers induce neuronal cell cycle events in Alzheimer’s disease. J. Neurosci. 28 (2008) 10786–10793. http://dx.doi.org/10.1523/JNEUROSCI.2441-08.200810.1523/JNEUROSCI.2441-08.2008Search in Google Scholar PubMed PubMed Central

[14] Tomiyama, T., Matsuyama, S., Iso, H., Umeda, T., Takuma, H., Ohnishi, K., Ishibashi, K., Teraoka, R., Sakama, N., Yamashita, T., Nishitsuji, K., Ito, K., Shimada, H., Lambert, M.P., Klein, W.L. and Mori, H. A mouse model of amyloid beta oligomers: their contribution to synaptic alteration, abnormal tau phosphorylation, glial activation, and neuronal loss in vivo. J. Neurosci. 30 (2010) 4845–4856. http://dx.doi.org/10.1523/JNEUROSCI.5825-09.201010.1523/JNEUROSCI.5825-09.2010Search in Google Scholar PubMed PubMed Central

[15] Tomiyama, T., Nagata, T., Shimada, H., Teraoka, R., Fukushima, A., Kanemitsu, H., Takuma, H., Kuwano, R., Imagawa, M., Ataka, S., Wada, Y., Yoshioka, E., Nishizaki, T., Watanabe, Y. and Mori, H. A new amyloid beta variant favoring oligomerization in Alzheimer’s-type dementia. Ann. Neurol. 63 (2008) 377–387. http://dx.doi.org/10.1002/ana.2132110.1002/ana.21321Search in Google Scholar PubMed

[16] Lavoie, J.N., Rivard, N., L’Allemain, G. and Pouyssegur, J. A temporal and biochemical link between growth factor-activated MAP kinases, cyclin D1 induction and cell cycle entry. Prog. Cell Cycle Res. 2 (1996) 49–58. http://dx.doi.org/10.1007/978-1-4615-5873-6_510.1007/978-1-4615-5873-6_5Search in Google Scholar PubMed

[17] Reed, S.I. G1/S regulatory mechanisms from yeast to man. Prog. Cell Cycle Res. 2 (1996) 15–27. http://dx.doi.org/10.1007/978-1-4615-5873-6_210.1007/978-1-4615-5873-6_2Search in Google Scholar PubMed

[18] Grana, X. and Reddy, E.P. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene 11 (1995) 211–219. Search in Google Scholar

[19] McDonald, D.R., Bamberger, M.E., Combs, C.K. and Landreth, G.E. beta-Amyloid fibrils activate parallel mitogen-activated protein kinase pathways in microglia and THP1 monocytes. J. Neurosci. 18 (1998) 4451–4460. Search in Google Scholar

[20] Zhang, S., Cai, M., Zhang, S., Xu, S., Chen, S., Chen, X., Chen, C. and Gu, J. Interaction of p58(PITSLRE), a G2/M-specific protein kinase, with cyclin D3. J. Biol. Chem. 277 (2002) 35314–35322. http://dx.doi.org/10.1074/jbc.M20217920010.1074/jbc.M202179200Search in Google Scholar PubMed

[21] Li, Z., Wang, H., Zong, H., Sun, Q., Kong, X., Jiang, J. and Gu, J. Downregulation of beta1,4-galactosyltransferase 1 inhibits CDK11(p58)-mediated apoptosis induced by cycloheximide. Biochem. Biophys. Res. Commun. 327 (2005) 628–636. http://dx.doi.org/10.1016/j.bbrc.2004.12.04710.1016/j.bbrc.2004.12.047Search in Google Scholar PubMed

[22] Xiang, J., Lahti, J.M., Grenet, J., Easton, J. and Kidd, V.J. Molecular cloning and expression of alternatively spliced PITSLRE protein kinase isoforms. J. Biol. Chem. 269 (1994) 15786–15794. Search in Google Scholar

[23] Gururajan, R., Lahti, J.M., Grenet, J., Easton, J., Gruber, I., Ambros, P.F. and Kidd, V.J. Duplication of a genomic region containing the Cdc2L1–2 and MMP21–22 genes on human chromosome 1p36.3 and their linkage to D1Z2. Genome Res. 8 (1998) 929–939. Search in Google Scholar

[24] Shi, J. and Nelson, M.A. The cyclin-dependent kinase 11 interacts with NOT2. Biochem. Biophys. Res. Commun. 334 (2005) 1310–1316. http://dx.doi.org/10.1016/j.bbrc.2005.07.02610.1016/j.bbrc.2005.07.026Search in Google Scholar PubMed

[25] Loyer, P., Trembley, J.H., Katona, R., Kidd, V.J. and Lahti, J.M. Role of CDK/cyclin complexes in transcription and RNA splicing. Cell. Signal. 17 (2005) 1033–1051. http://dx.doi.org/10.1016/j.cellsig.2005.02.00510.1016/j.cellsig.2005.02.005Search in Google Scholar PubMed

[26] Yokoyama, H., Gruss, O.J., Rybina, S., Caudron, M., Schelder, M., Wilm, M., Mattaj, I.W. and Karsenti, E. Cdk11 is a RanGTP-dependent microtubule stabilization factor that regulates spindle assembly rate. J. Cell Biol. 180 (2008) 867–875. http://dx.doi.org/10.1083/jcb.20070618910.1083/jcb.200706189Search in Google Scholar PubMed PubMed Central

[27] Petretti, C., Savoian, M., Montembault, E., Glover, D.M., Prigent, C. and Giet, R. The PITSLRE/CDK11p58 protein kinase promotes centrosome maturation and bipolar spindle formation. EMBO Rep. 7 (2006) 418–424. Search in Google Scholar

[28] Lahti, J.M., Xiang, J., Heath, L.S., Campana, D. and Kidd, V.J. PITSLRE protein kinase activity is associated with apoptosis. Mol. Cell. Biol. 15 (1995) 1–11. Search in Google Scholar

[29] Hu, D., Valentine, M., Kidd, V.J. and Lahti, J.M. CDK11(p58) is required for the maintenance of sister chromatid cohesion. J. Cell Sci. 120 (2007) 2424–2434. http://dx.doi.org/10.1242/jcs.00796310.1242/jcs.007963Search in Google Scholar PubMed

[30] Bunnell, B.A., Heath, L.S., Adams, D.E., Lahti, J.M. and Kidd, V.J. Increased expression of a 58-kDa protein kinase leads to changes in the CHO cell cycle. Proc. Natl. Acad. Sci. U. S. A. 87 (1990) 7467–7471. http://dx.doi.org/10.1073/pnas.87.19.746710.1073/pnas.87.19.7467Search in Google Scholar PubMed PubMed Central

[31] Zong, H., Chi, Y., Wang, Y., Yang, Y., Zhang, L., Chen, H., Jiang, J., Li, Z., Hong, Y., Wang, H., Yun, X. and Gu, J. Cyclin D3/CDK11p58 complex is involved in the repression of androgen receptor. Mol. Cell. Biol. 27 (2007) 7125–7142. http://dx.doi.org/10.1128/MCB.01753-0610.1128/MCB.01753-06Search in Google Scholar PubMed PubMed Central

[32] Hu, D., Mayeda, A., Trembley, J.H., Lahti, J.M. and Kidd, V.J. CDK11 complexes promote pre-mRNA splicing. J. Biol. Chem. 278 (2003) 8623–8629. http://dx.doi.org/10.1074/jbc.M21005720010.1074/jbc.M210057200Search in Google Scholar PubMed

[33] Chen, H.H., Wang, Y.C. and Fann, M.J. Identification and characterization of the CDK12/cyclin L1 complex involved in alternative splicing regulation. Mol. Cell. Biol. 26 (2006) 2736–2745. http://dx.doi.org/10.1128/MCB.26.7.2736-2745.200610.1128/MCB.26.7.2736-2745.2006Search in Google Scholar PubMed PubMed Central

[34] Trembley, J.H., Hu, D., Hsu, L.C., Yeung, C.Y., Slaughter, C., Lahti, J.M. and Kidd, V.J. PITSLRE p110 protein kinases associate with transcription complexes and affect their activity. J. Biol. Chem. 277 (2002) 2589–2596. http://dx.doi.org/10.1074/jbc.M10975520010.1074/jbc.M109755200Search in Google Scholar PubMed

[35] Wendt, K.S., Yoshida, K., Itoh, T., Bando, M., Koch, B., Schirghuber, E., Tsutsumi, S., Nagae, G., Ishihara, K., Mishiro, T., Yahata, K., Imamoto, F., Aburatani, H., Nakao, M., Imamoto, N., Maeshima, K., Shirahige, K. and Peters, J.M. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451 (2008) 796–801. http://dx.doi.org/10.1038/nature0663410.1038/nature06634Search in Google Scholar PubMed

[36] Spremo-Potparevic, B., Zivkovic, L., Djelic, N. and Bajic, V. Analysis of premature centromere division (PCD) of the X chromosome in Alzheimer patients through the cell cycle. Exp. Gerontol. 39 (2004) 849–854. http://dx.doi.org/10.1016/j.exger.2004.01.01210.1016/j.exger.2004.01.012Search in Google Scholar PubMed

[37] Zivkovic, L., Spremo-Potparevic, B., Djelic, N. and Bajic, V. Analysis of premature centromere division (PCD) of the chromosome 18 in peripheral blood lymphocytes in Alzheimer disease patients. Mech. Ageing Dev. 127 (2006) 892–896. http://dx.doi.org/10.1016/j.mad.2006.09.00410.1016/j.mad.2006.09.004Search in Google Scholar PubMed

[38] Bajic, V.P., Spremo-Potparevic, B., Zivkovic, L., Djelic, N. and Smith, M.A. Is the time dimension of the cell cycle re-entry in AD regulated by centromere cohesion dynamics? Biosci. Hypotheses 1 (2008) 156–161. http://dx.doi.org/10.1016/j.bihy.2008.03.00610.1016/j.bihy.2008.03.006Search in Google Scholar PubMed PubMed Central

[39] Migliore, L., Testa, A., Scarpato, R., Pavese, N., Petrozzi, L. and Bonuccelli, U. Spontaneous and induced aneuploidy in peripheral blood lymphocytes of patients with Alzheimer’s disease. Hum. Genet. 101 (1997) 299–305. http://dx.doi.org/10.1007/s00439005063210.1007/s004390050632Search in Google Scholar PubMed

[40] Sternberger, L.A. Immunocytochemistry, Wiley, New York, 1986. Search in Google Scholar

[41] Wang, X., Su, B., Siedlak, S.L., Moreira, P.I., Fujioka, H., Wang, Y., Casadesus, G. and Zhu, X. Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 19318–19323. http://dx.doi.org/10.1073/pnas.080487110510.1073/pnas.0804871105Search in Google Scholar PubMed PubMed Central

[42] Su, B., Wang, X., Drew, K.L., Perry, G., Smith, M.A. and Zhu, X. Physiological regulation of tau phosphorylation during hibernation. J. Neurochem. 105 (2008) 2098–2108. http://dx.doi.org/10.1111/j.1471-4159.2008.05294.x10.1111/j.1471-4159.2008.05294.xSearch in Google Scholar PubMed PubMed Central

[43] Wang, X., Su, B., Fujioka, H. and Zhu, X. Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer’s disease patients. Am. J. Pathol. 173 (2008) 470–482. http://dx.doi.org/10.2353/ajpath.2008.07120810.2353/ajpath.2008.071208Search in Google Scholar

[44] Zhu, X., McShea, A., Harris, P.L., Raina, A.K., Castellani, R.J., Funk, J.O., Shah, S., Atwood, C., Bowen, R., Bowser, R., Morelli, L., Perry, G. and Smith, M.A. Elevated expression of a regulator of the G2/M phase of the cell cycle, neuronal CIP-1-associated regulator of cyclin B, in Alzheimer’s disease. J. Neurosci. Res. 75 (2004) 698–703. http://dx.doi.org/10.1002/jnr.2002810.1002/jnr.20028Search in Google Scholar

[45] Harris, P.L., Zhu, X., Pamies, C., Rottkamp, C.A., Ghanbari, H.A., McShea, A., Feng, Y., Ferris, D.K. and Smith, M.A. Neuronal polo-like kinase in Alzheimer disease indicates cell cycle changes. Neurobiol. Aging 21 (2000) 837–841. http://dx.doi.org/10.1016/S0197-4580(00)00218-910.1016/S0197-4580(00)00218-9Search in Google Scholar

[46] Previll, L.A., Crosby, M.E., Castellani, R.J., Bowser, R., Perry, G., Smith, M.A. and Zhu, X. Increased expression of p130 in Alzheimer disease. Neurochem. Res. 32 (2007) 639–644. http://dx.doi.org/10.1007/s11064-006-9146-310.1007/s11064-006-9146-3Search in Google Scholar PubMed

[47] Ogawa, O., Zhu, X., Lee, H.G., Raina, A., Obrenovich, M.E., Bowser, R., Ghanbari, H.A., Castellani, R.J., Perry, G. and Smith, M.A. Ectopic localization of phosphorylated histone H3 in Alzheimer’s disease: a mitotic catastrophe? Acta Neuropathol. (Berl). 105 (2003) 524–528. 10.1007/s00401-003-0684-3Search in Google Scholar PubMed

[48] Bonda, D.J., Bajic, V.P., Spremo-Potparevic, B., Casadesus, G., Zhu, X., Smith, M.A. and Lee, H.G. Cell Cycle Aberrations and Neurodegeneration: A Review. Neuropathol. Appl. Neurobiol. 36 (2010) 157–163. http://dx.doi.org/10.1111/j.1365-2990.2010.01064.x10.1111/j.1365-2990.2010.01064.xSearch in Google Scholar PubMed PubMed Central

[49] Zhu, X., Raina, A.K., Lee, H.G., Chao, M., Nunomura, A., Tabaton, M., Petersen, R.B., Perry, G. and Smith, M.A. Oxidative stress and neuronal adaptation in Alzheimer disease: the role of SAPK pathways. Antioxid. Redox Signal. 5 (2003) 571–576. http://dx.doi.org/10.1089/15230860377031022010.1089/152308603770310220Search in Google Scholar PubMed

[50] Mosch, B., Morawski, M., Mittag, A., Lenz, D., Tarnok, A. and Arendt, T. Aneuploidy and DNA replication in the normal human brain and Alzheimer’s disease. J. Neurosci. 27 (2007) 6859–6867. http://dx.doi.org/10.1523/JNEUROSCI.0379-07.200710.1523/JNEUROSCI.0379-07.2007Search in Google Scholar PubMed PubMed Central

[51] Yang, Y., Geldmacher, D.S. and Herrup, K. DNA replication precedes neuronal cell death in Alzheimer’s disease. J. Neurosci. 21 (2001) 2661–2668. Search in Google Scholar

[52] Zhu, X., Siedlak, S.L., Wang, Y., Perry, G., Castellani, R.J., Cohen, M.L. and Smith, M.A. Neuronal binucleation in Alzheimer disease hippocampus. Neuropathol. Appl. Neurobiol. 34 (2008) 457–465. http://dx.doi.org/10.1111/j.1365-2990.2007.00908.x10.1111/j.1365-2990.2007.00908.xSearch in Google Scholar PubMed

[53] Spremo-Potparevic, B., Zivkovic, L., Djelic, N., Plecas-Solarovic, B., Smith, M.A. and Bajic, V. Premature centromere division of the X chromosome in neurons in Alzheimer’s disease. J. Neurochem. 106 (2008) 2218–2223. http://dx.doi.org/10.1111/j.1471-4159.2008.05555.x10.1111/j.1471-4159.2008.05555.xSearch in Google Scholar PubMed PubMed Central

[54] Cash, A.D., Aliev, G., Siedlak, S.L., Nunomura, A., Fujioka, H., Zhu, X., Raina, A.K., Vinters, H.V., Tabaton, M., Johnson, A.B., Paula-Barbosa, M., Avila, J., Jones, P.K., Castellani, R.J., Smith, M.A. and Perry, G. Microtubule reduction in Alzheimer’s disease and aging is independent of tau filament formation. Am. J. Pathol. 162 (2003) 1623–1627. http://dx.doi.org/10.1016/S0002-9440(10)64296-410.1016/S0002-9440(10)64296-4Search in Google Scholar

[55] Lee, H.G., Ueda, M., Miyamoto, Y., Yoneda, Y., Perry, G., Smith, M.A. and Zhu, X. Aberrant localization of importin alpha1 in hippocampal neurons in Alzheimer disease. Brain Res. 1124 (2006) 1–4. http://dx.doi.org/10.1016/j.brainres.2006.09.08410.1016/j.brainres.2006.09.084Search in Google Scholar PubMed

Published Online: 2011-7-23
Published in Print: 2011-9-1

© 2011 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 2.6.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-011-0011-2/html
Scroll to top button