We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Multigene predictors of tacrolimus exposure in kidney transplant recipients

    Rebecca A Pulk

    Department of Experimental & Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA

    ,
    David S Schladt

    Department of Nephrology & Chronic Disease Research Group, Minneapolis Medical Research Foundation, Hennepin County Medical Center, MN, USA

    ,
    William S Oetting

    Department of Experimental & Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA

    ,
    Weihua Guan

    Division of Biostatistics, School of Public Health, University of Minnesota, MN, USA

    ,
    Ajay K Israni

    Department of Nephrology & Chronic Disease Research Group, Minneapolis Medical Research Foundation, Hennepin County Medical Center, MN, USA

    ,
    Arthur J Matas

    Division of Transplantation, Department of Surgery, University of Minnesota, MN, USA

    ,
    Rory P Remmel

    Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, MN, USA

    &
    Pamala A Jacobson

    *Author for correspondence:

    E-mail Address: jacob117@umn.edu

    Department of Experimental & Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA

    Published Online:https://doi.org/10.2217/pgs.15.42

    Aim: Determine the effect of the genetic variants beyond CYP3A5*3 on tacrolimus disposition. Patients & methods: We studied genetic correlates of tacrolimus trough concentrations with POR*28, CYP3A4*22 and ABCC2 haplotypes in a large, ethnically diverse kidney transplant cohort (n = 2008). Results: Subjects carrying one or more CYP3A5*1 alleles had lower tacrolimus trough concentrations (p = 9.2 × 10-75). The presence of one or two POR*28 alleles was associated with a 4.63% reduction in tacrolimus trough concentrations after adjusting for CYP3A5*1 and clinical factors (p = 0.037). In subset analyses, POR*28 was significant only in CYP3A5*3/*3 carriers (p = 0.03). The CYP3A4*22 variant and the ABBC2 haplotypes were not associated. Conclusion: This study confirmed that CYP3A5*1 was associated with lower tacrolimus trough concentrations. POR*28 was associated with decreased tacrolimus trough concentrations although the effect was small possibly through enhanced CYP3A4 enzyme activity. CYP3A4*22 and ABCC2 haplotypes did not influence tacrolimus trough concentrations.

    Original submitted 19 December 2014; Revision submitted 2 April 2015

    References

    • 1 Iwasaki K. Metabolism of tacrolimus (FK506) and recent topics in clinical pharmacokinetics. Drug Metab. Pharmacokinet. 22(5), 328–335 (2007).
    • 2 Dai Y, Hebert MF, Isoherranen N et al. Effect of CYP3A5 polymorphism on tacrolimus metabolic clearance in vitro. Drug Metab. Dispos. 34(5), 836–847 (2006).
    • 3 Thervet E, Loriot MA, Barbier S et al. Optimization of initial tacrolimus dose using pharmacogenetic testing. Clin. Pharmacol. Ther. 87(6), 721–726 (2010).
    • 4 Passey C, Birnbaum AK, Brundage RC, Oetting WS, Israni AK, Jacobson PA. Dosing equation for tacrolimus using genetic variants and clinical factors. Br. J. Clin. Pharmacol. 72(6), 948–957 (2011).
    • 5 Passey C, Birnbaum AK, Brundage RC et al. Validation of tacrolimus equation to predict troughs using genetic and clinical factors. Pharmacogenomics 13(10), 1141–1147 (2012).
    • 6 Boughton O, Borgulya G, Cecconi M, Fredericks S, Moreton-Clack M, MacPhee IA. A published pharmacogenetic algorithm was poorly predictive of tacrolimus clearance in an independent cohort of renal transplant recipients. Br. J. Clin. Pharmacol. 76(3), 425–431 (2013).
    • 7 Elens L, Hesselink DA, van Schaik RH, van Gelder T. The CYP3A4*22 allele affects the predictive value of a pharmacogenetic algorithm predicting tacrolimus predose concentrations. Br. J. Clin. Pharmacol. 75(6), 1545–1547 (2013).
    • 8 Clinicaltrials.gov: NCT01714440 (2015). www.clinicaltrials.gov.
    • 9 Jacobson PA, Oetting WS, Brearley AM et al. Novel polymorphisms associated with tacrolimus trough concentrations: results from a multicenter kidney transplant consortium. Transplantation 91(3), 300–308 (2011).
    • 10 Jacobson PA, Schladt D, Oetting WS et al. Lower calcineurin inhibitor doses in older compared with younger kidney transplant recipients yield similar troughs. Am. J. Transplant. 12(12), 3326–3336 (2012).
    • 11 Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68(4), 978–989 (2001).
    • 12 Ogasawara K, Chitnis SD, Gohh RY, Christians U, Akhlaghi F. Multidrug resistance-associated protein 2 (MRP2/ABCC2) haplotypes significantly affect the pharmacokinetics of tacrolimus in kidney transplant recipients. Clin. Pharmacokinet. 52(9), 751–762 (2013).
    • 13 Laechelt S, Turrini E, Ruehmkorf A, Siegmund W, Cascorbi I, Haenisch S. Impact of ABCC2 haplotypes on transcriptional and posttranscriptional gene regulation and function. Pharmacogenomics J. 11(1), 25–34 (2011).
    • 14 Shen AL, O'Leary KA, Kasper CB. Association of multiple developmental defects and embryonic lethality with loss of microsomal NADPH-cytochrome P450 oxidoreductase. J. Biol. Chem. 277(8), 6536–6541 (2002).
    • 15 Gu J, Weng Y, Zhang QY et al. Liver-specific deletion of the NADPH-cytochrome P450 reductase gene: impact on plasma cholesterol homeostasis and the function and regulation of microsomal cytochrome P450 and heme oxygenase. J. Biol. Chem. 278(28), 25895–25901 (2003).
    • 16 Henderson CJ, Otto DM, Carrie D et al. Inactivation of the hepatic cytochrome P450 system by conditional deletion of hepatic cytochrome P450 reductase. J. Biol. Chem. 278(15), 13480–13486 (2003).
    • 17 Scott RR, Miller WL. Genetic and clinical features of p450 oxidoreductase deficiency. Horm. Res. 69(5), 266–275 (2008).
    • 18 Hart SN, Wang S, Nakamoto K, Wesselman C, Li Y, Zhong XB. Genetic polymorphisms in cytochrome P450 oxidoreductase influence microsomal P450-catalyzed drug metabolism. Pharmacogenet. Genomics 18(1), 11–24 (2008).
    • 19 Hu L, Zhuo W, He YJ, Zhou HH, Fan L. Pharmacogenetics of P450 oxidoreductase: implications in drug metabolism and therapy. Pharmacogenet. Genomics 22(11), 812–819 (2012).
    • 20 P450 oxidoreductase (POR) allele nomenclature (2015). www.cypalleles.ki.se/por.htm.
    • 21 Huang N, Agrawal V, Giacomini KM, Miller WL. Genetics of P450 oxidoreductase: sequence variation in 842 individuals of four ethnicities and activities of 15 missense mutations. Proc. Natl Acad. Sci. USA 105(5), 1733–1738 (2008).
    • 22 Sandee D, Morrissey K, Agrawal V et al. Effects of genetic variants of human P450 oxidoreductase on catalysis by CYP2D6 in vitro. Pharmacogenet. Genomics 20(11), 677–686 (2010).
    • 23 Subramanian M, Agrawal V, Sandee D, Tam HK, Miller WL, Tracy TS. Effect of P450 oxidoreductase variants on the metabolism of model substrates mediated by CYP2C9.1, CYP2C9.2, and CYP2C9.3. Pharmacogenet. Genomics 22(8), 590–597 (2012).
    • 24 Agrawal V, Choi JH, Giacomini KM, Miller WL. Substrate-specific modulation of CYP3A4 activity by genetic variants of cytochrome P450 oxidoreductase. Pharmacogenet. Genomics 20(10), 611–618 (2010).
    • 25 Ghosal A, Hapangama N, Yuan Y et al. Rapid determination of enzyme activities of recombinant human cytochromes P450, human liver microsomes and hepatocytes. Biopharm. Drug Dispos. 24(9), 375–384 (2003).
    • 26 Elens L, Sombogaard F, Hesselink DA, van Schaik RH, van Gelder T. Single-nucleotide polymorphisms in P450 oxidoreductase and peroxisome proliferator-activated receptor-alpha are associated with the development of new-onset diabetes after transplantation in kidney transplant recipients treated with tacrolimus. Pharmacogenet. Genomics 23(12), 649–657 (2013).
    • 27 Oneda B, Crettol S, Jaquenoud Sirot E, Bochud M, Ansermot N, Eap CB. The P450 oxidoreductase genotype is associated with CYP3A activity in vivo as measured by the midazolam phenotyping test. Pharmacogenet. Genomics 19(11), 877–883 (2009).
    • 28 de Jonge H, Metalidis C, Naesens M, Lambrechts D, Kuypers DR. The P450 oxidoreductase *28 SNP is associated with low initial tacrolimus exposure and increased dose requirements in CYP3A5-expressing renal recipients. Pharmacogenomics 12(9), 1281–1291 (2011).
    • 29 Zhang JJ, Zhang H, Ding XL, Ma S, Miao LY. Effect of the P450 oxidoreductase 28 polymorphism on the pharmacokinetics of tacrolimus in Chinese healthy male volunteers. Eur. J. Clin. Pharmacol. 69(4), 807–812 (2013).
    • 30 Elens L, Hesselink DA, Bouamar R et al. Impact of POR*28 on the pharmacokinetics of tacrolimus and cyclosporine A in renal transplant patients. Ther. Drug Monit. 36(1), 71–79 (2014).
    • 31 Lesche D, Sigurdardottir V, Setoud R et al. CYP3A5*3 and POR*28 genetic variants influence the required dose of tacrolimus in heart transplant recipients. Ther. Drug Monit. 36(6), 710–715 (2014).
    • 32 Kuypers DR, de Loor H, Naesens M, Coopmans T, de Jonge H. Combined effects of CYP3A5*1, POR*28, and CYP3A4*22 single nucleotide polymorphisms on early concentration-controlled tacrolimus exposure in de-novo renal recipients. Pharmacogenet. Genomics 24(12), 597–606 (2014).
    • 33 Lunde I, Bremer S, Midtvedt K et al. The influence of CYP3A, PPARA, and POR genetic variants on the pharmacokinetics of tacrolimus and cyclosporine in renal transplant recipients. Eur. J. Clin. Pharmacol. 70(6), 685–693 (2014).
    • 34 Wang D, Guo Y, Wrighton SA, Cooke GE, Sadee W. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J. 11(4), 274–286 (2011).
    • 35 Okubo M, Murayama N, Shimizu M, Shimada T, Guengerich FP, Yamazaki H. CYP3A4 intron 6 C>T polymorphism (CYP3A4*22) is associated with reduced CYP3A4 protein level and function in human liver microsomes. J. Toxicol. Sci. 38(3), 349–354 (2013).
    • 36 Elens L, Bouamar R, Hesselink DA, Haufroid V, van Gelder T, van Schaik RH. The new CYP3A4 intron 6 C>T polymorphism (CYP3A4*22) is associated with an increased risk of delayed graft function and worse renal function in cyclosporine-treated kidney transplant patients. Pharmacogenet. Genomics 22(5), 373–380 (2012).
    • 37 Elens L, Bouamar R, Hesselink DA et al. A new functional CYP3A4 intron 6 polymorphism significantly affects tacrolimus pharmacokinetics in kidney transplant recipients. Clin. Chem. 57(11), 1574–1583 (2011).
    • 38 Elens L, van Schaik RH, Panin N et al. Effect of a new functional CYP3A4 polymorphism on calcineurin inhibitors’ dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenomics 12(10), 1383–1396 (2011).
    • 39 Elens L, van Gelder T, Hesselink DA, Haufroid V, van Schaik RH. CYP3A4*22: promising newly identified CYP3A4 variant allele for personalizing pharmacotherapy. Pharmacogenomics 14(1), 47–62 (2013).
    • 40 Elens L, Capron A, van Schaik RH et al. Impact of CYP3A4*22 allele on tacrolimus pharmacokinetics in early period after renal transplantation: toward updated genotype-based dosage guidelines. Ther. Drug Monit. 35(5), 608–616 (2013).
    • 41 Gijsen VM, van Schaik RH, Elens L et al. CYP3A4*22 and CYP3A combined genotypes both correlate with tacrolimus disposition in pediatric heart transplant recipients. Pharmacogenomics 14(9), 1027–1036 (2013).
    • 42 Santoro AB, Struchiner CJ, Felipe CR, Tedesco-Silva H, Medina-Pestana JO, Suarez-Kurtz G. CYP3A5 genotype, but not CYP3A4*1b, CYP3A4*22, or hematocrit, predicts tacrolimus dose requirements in Brazilian renal transplant patients. Clin. Pharmacol. Ther. 94(2), 201–202 (2013).
    • 43 Suarez-Kurtz G, Vargens DD, Santoro AB et al. Global pharmacogenomics: distribution of CYP3A5 polymorphisms and phenotypes in the Brazilian population. PLoS ONE 9(1), e83472 (2014).
    • 44 Moes DJ, Swen JJ, den Hartigh J et al. Effect of CYP3A4*22, CYP3A5*3, and CYP3A Combined Genotypes on Cyclosporine, Everolimus, and Tacrolimus Pharmacokinetics in Renal Transplantation. CPT Pharmacometrics Syst. Pharmacol. 3, e100 (2014).
    • 45 Staatz CE, Goodman LK, Tett SE. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: part I. Clin. Pharmacokinet. 49(3), 141–175 (2010).
    • 46 Staatz CE, Goodman LK, Tett SE. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: part II. Clin. Pharmacokinet. 49(4), 207–221 (2010).
    • 47 Takano M, Yumoto R, Murakami T. Expression and function of efflux drug transporters in the intestine. Pharmacol. Ther. 109(1–2), 137–161 (2006).
    • 48 Lampen A, Christians U, Gonschior AK et al. Metabolism of the macrolide immunosuppressant, tacrolimus, by the pig gut mucosa in the Ussing chamber. Br. J. Pharmacol. 117(8), 1730–1734 (1996).
    • 49 Naesens M, Kuypers DR, Verbeke K, Vanrenterghem Y. Multidrug resistance protein 2 genetic polymorphisms influence mycophenolic acid exposure in renal allograft recipients. Transplantation 82(8), 1074–1084 (2006).
    • 50 Hesselink DA, van Hest RM, Mathot RA et al. Cyclosporine interacts with mycophenolic acid by inhibiting the multidrug resistance-associated protein 2. Am. J. Transplant. 5(5), 987–994 (2005).
    • 51 Gomes AM, Winter S, Klein K et al. Pharmacogenomics of human liver cytochrome P450 oxidoreductase: multifactorial analysis and impact on microsomal drug oxidation. Pharmacogenomics 10(4), 579–599 (2009).