We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Calcineurin inhibitors and hypertension: a role for pharmacogenetics?

    Arthur D Moes

    Department of Internal Medicine, Nephrology & Transplantation, Erasmus  Medical Center, PO Box 2040 – Room H-438, 3000 CA Rotterdam, The Netherlands

    ,
    Dennis A Hesselink

    Department of Internal Medicine, Nephrology & Transplantation, Erasmus  Medical Center, PO Box 2040 – Room H-438, 3000 CA Rotterdam, The Netherlands

    ,
    Robert Zietse

    Department of Internal Medicine, Nephrology & Transplantation, Erasmus  Medical Center, PO Box 2040 – Room H-438, 3000 CA Rotterdam, The Netherlands

    ,
    Ron HN van Schaik

    Department of Clinical Chemistry, Erasmus Medical Center, Rotterdam, The Netherlands

    ,
    Teun van Gelder

    Department of Internal Medicine, Nephrology & Transplantation, Erasmus  Medical Center, PO Box 2040 – Room H-438, 3000 CA Rotterdam, The Netherlands

    Department of Hospital Pharmacy, Clinical Pharmacology Unit, Erasmus Medical Center, Rotterdam, The Netherlands

    &
    Ewout J Hoorn

    *Author for correspondence:

    E-mail Address: e.j.hoorn@erasmusmc.nl

    Department of Internal Medicine, Nephrology & Transplantation, Erasmus  Medical Center, PO Box 2040 – Room H-438, 3000 CA Rotterdam, The Netherlands

    Published Online:https://doi.org/10.2217/pgs.14.87

    Hypertension is a common side effect of calcineurin inhibitors (CNIs), which are drugs used to prevent rejection after transplantation. Hypertension after kidney transplantation has been associated with earlier graft failure and higher cardiovascular mortality in the recipient. Recent data indicate that enzymes and transporters involved in CNI pharmacokinetics and pharmacodynamics, including CYP3A5, ABCB1, WNK4 and SPAK, are also associated with salt-sensitive hypertension. These insights raise the question whether polymorphisms in the genes encoding these proteins increase the risk of CNI-induced hypertension. Predicting who is at risk for CNI-induced hypertension may be useful for when selecting specific interventions, including dietary salt restriction, thiazide diuretics or a CNI-free immunosuppressive regimen. This review aims to explore the pharmacogenetics of CNI-induced hypertension, highlighting the knowns and unknowns.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Matas AJ, Smith JM, Skeans MA et al. OPTN/SRTR 2011 Annual Data Report: kidney. Am. J. Transplant. 13(Suppl. 1), 11–46 (2013).
    • 2 Stepkowski SM. Molecular targets for existing and novel immunosuppressive drugs. Expert Rev. Mol. Med. 2(4), 1–23 (2000).
    • 3 Jain A, Reyes J, Kashyap R et al. What have we learned about primary liver transplantation under tacrolimus immunosuppression? Long-term follow-up of the first 1000 patients. Ann. Surg. 230(3), 441–448 (1999).
    • 4 Textor SC, Canzanello VJ, Taler SJ et al. Cyclosporine-induced hypertension after transplantation. Mayo Clin. Proc. 69(12), 1182–1193 (1994).
    • 5 Canzanello VJ, Textor SC, Taler SJ et al. Late hypertension after liver transplantation: a comparison of cyclosporine and tacrolimus (FK 506). Liver Transpl. Surg. 4(4), 328–334 (1998).
    • 6 Opelz G, Dohler B, Collaborative Transplant Study. Improved long-term outcomes after renal transplantation associated with blood pressure control. Am. J. Transplant. 5(11), 2725–2731 (2005). • Large study on the association between post-transplant hypertension and outcomes.
    • 7 Kasiske BL, Anjum S, Shah R et al. Hypertension after kidney transplantation. Am. J. Kidney Dis. 43(6), 1071–1081 (2004).
    • 8 Hesselink DA, Van Schaik RH, Van Der Heiden IP et al. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin. Pharmacol. Ther. 74(3), 245–254 (2003).
    • 9 Yanagimachi M, Naruto T, Tanoshima R et al. Influence of CYP3A5 and ABCB1 gene polymorphisms on calcineurin inhibitor-related neurotoxicity after hematopoietic stem cell transplantation. Clin. Transplant. 24(6), 855–861 (2010).
    • 10 Naesens M, Lerut E, De Jonge H, Van Damme B, Vanrenterghem Y, Kuypers DR. Donor age and renal P-glycoprotein expression associate with chronic histological damage in renal allografts. J. Am. Soc. Nephrol. 20(11), 2468–2480 (2009).• Important study that links genetic polymorphism and histological analysis to clinical outcomes.
    • 11 Hoorn EJ, Walsh SB, McCormick JA, Zietse R, Unwin RJ, Ellison DH. Pathogenesis of calcineurin inhibitor-induced hypertension. J. Nephrol. 25(3), 269–275 (2012).• Review of the different mechanisms contributing to calcineurin inhibitor (CNI)-induced hypertension.
    • 12 Perico N, Dadan J, Remuzzi G. Endothelin mediates the renal vasoconstriction induced by cyclosporine in the rat. J. Am. Soc. Nephrol. 1(1), 76–83 (1990).
    • 13 Textor SC, Burnett JC Jr, Romero JC et al. Urinary endothelin and renal vasoconstriction with cyclosporine or FK506 after liver transplantation. Kidney Int. 47(5), 1426–1433 (1995).
    • 14 Takeda Y, Miyamori I, Furukawa K, Inaba S, Mabuchi H. Mechanisms of FK 506-induced hypertension in the rat. Hypertension 33(1), 130–136 (1999).
    • 15 Roullet JB, Xue H, McCarron DA, Holcomb S, Bennett WM. Vascular mechanisms of cyclosporin-induced hypertension in the rat. J. Clin. Invest. 93(5), 2244–2250 (1994).
    • 16 Marumo T, Nakaki T, Hishikawa K, Suzuki H, Kato R, Saruta T. Cyclosporin A inhibits nitric oxide synthase induction in vascular smooth muscle cells. Hypertension 25(4 Pt 2), 764–768 (1995).
    • 17 Hoorn EJ, Walsh SB, Unwin RJ, Ellison DH. Hypertension after kidney transplantation: calcineurin inhibitors increase salt-sensitivity. J. Hypertens. 30(4), 832–833 (2012).
    • 18 Hoorn EJ, Walsh SB, McCormick JA et al. The calcineurin inhibitor tacrolimus activates the renal sodium chloride cotransporter to cause hypertension. Nat. Med. 17(10), 1304–1309 (2011).• First study showing that tacrolimus activates a sodium transporter in the kidney and that this results in salt-sensitive hypertension.
    • 19 Ciresi DL, Lloyd MA, Sandberg SM, Heublein DM, Edwards BS. The sodium retaining effects of cyclosporine. Kidney Int. 41(6), 1599–1605 (1992).
    • 20 Canzanello VJ, Textor SC, Taler SJ et al. Renal sodium handling with cyclosporin A and FK506 after orthotopic liver transplantation. J. Am. Soc. Nephrol. 5(11), 1910–1917 (1995).
    • 21 Hadchouel J, Delaloy C, Faure S, Achard JM, Jeunemaitre X. Familial hyperkalemic hypertension. J. Am. Soc. Nephrol. 17(1), 208–217 (2006).
    • 22 Wilson FH, Disse-Nicodeme S, Choate KA et al. Human hypertension caused by mutations in WNK kinases. Science 293(5532), 1107–1112 (2001).
    • 23 Kahle KT, Wilson FH, Leng Q et al. WNK4 regulates the balance between renal NaCl reabsorption and K+ secretion. Nat. Genet. 35(4), 372–376 (2003).
    • 24 Moes AD, Van Der Lubbe N, Zietse R, Loffing J, Hoorn EJ. The sodium chloride cotransporter SLC12A3: new roles in sodium, potassium, and blood pressure regulation. Pflugers Arch. 466(1), 107–118 (2014).
    • 25 Hoorn EJ, Nelson JH, McCormick JA, Ellison DH. The WNK kinase network regulating sodium, potassium, and blood pressure. J. Am. Soc. Nephrol. 22(4), 605–614 (2011).
    • 26 McCormick JA, Mutig K, Nelson JH et al. A SPAK isoform switch modulates renal salt transport and blood pressure. Cell Metab. 14(3), 352–364 (2011).
    • 27 Colussi G, Bettinelli A, Tedeschi S et al. A thiazide test for the diagnosis of renal tubular hypokalemic disorders. Clin. J. Am. Soc. Nephrol. 2(3), 454–460 (2007).
    • 28 Melnikov S, Mayan H, Uchida S, Holtzman EJ, Farfel Z. Cyclosporine metabolic side effects: association with the WNK4 system. Eur. J. Clin. Invest. 41(10), 1113–1120 (2011).
    • 29 Picard N, Trompf K, Yang CL et al. Protein phosphatase 1 inhibitor-1 deficiency reduces phosphorylation of renal NaCl cotransporter and causes arterial hypotension. J. Am. Soc. Nephrol. 25(3), 511–522 (2013).
    • 30 Venkataramanan R, Swaminathan A, Prasad T et al. Clinical pharmacokinetics of tacrolimus. Clin. Pharmacokinet. 29(6), 404–430 (1995).
    • 31 Zhang Y, Benet LZ. The gut as a barrier to drug absorption: combined role of cytochrome P450 3A and P-glycoprotein. Clin. Pharmacokinet. 40(3), 159–168 (2001).
    • 32 Marks AR. Cellular functions of immunophilins. Physiol. Rev. 76(3), 631–649 (1996).
    • 33 Hesselink DA, Bouamar R, Elens L, Van Schaik RH, Van Gelder T. The role of pharmacogenetics in the disposition of and response to tacrolimus in solid organ transplantation. Clin. Pharmacokinet. 53(2), 123–139 (2014).
    • 34 Klimecki WT, Futscher BW, Grogan TM, Dalton WS. P-glycoprotein expression and function in circulating blood cells from normal volunteers. Blood 83(9), 2451–2458 (1994).
    • 35 Crettol S, Venetz JP, Fontana M et al. Influence of ABCB1 genetic polymorphisms on cyclosporine intracellular concentration in transplant recipients. Pharmacogenet. Genomics 18(4), 307–315 (2008).
    • 36 Vafadari R, Bouamar R, Hesselink DA et al. Genetic polymorphisms in ABCB1 influence the pharmacodynamics of tacrolimus. Ther. Drug Monit. 35(4), 459–465 (2013).
    • 37 Capron A, Mourad M, De Meyer M et al. CYP3A5 and ABCB1 polymorphisms influence tacrolimus concentrations in peripheral blood mononuclear cells after renal transplantation. Pharmacogenomics 11(5), 703–714 (2010).
    • 38 Kamdem LK, Streit F, Zanger UM et al. Contribution of CYP3A5 to the in vitro hepatic clearance of tacrolimus. Clin. Chem. 51(8), 1374–1381 (2005).
    • 39 Dai Y, Iwanaga K, Lin YS et al. In vitro metabolism of cyclosporine A by human kidney CYP3A5. Biochem. Pharmacol. 68(9), 1889–1902 (2004).
    • 40 Elens L, Bouamar R, Hesselink DA et al. A new functional CYP3A4 intron 6 polymorphism significantly affects tacrolimus pharmacokinetics in kidney transplant recipients. Clin. Chem. 57(11), 1574–1583 (2011).
    • 41 Kuehl P, Zhang J, Lin Y et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat. Genet. 27(4), 383–391 (2001).•• Important and one of the first studies on polymorphic CYP3A5 expression.
    • 42 Staatz CE, Goodman LK, Tett SE. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: part II. Clin. Pharmacokinet. 49(4), 207–221 (2010).
    • 43 Staatz CE, Goodman LK, Tett SE. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: part I. Clin. Pharmacokinet. 49(3), 141–175 (2010).
    • 44 Bochud M, Bovet P, Burnier M, Eap CB. CYP3A5 and ABCB1 genes and hypertension. Pharmacogenomics 10(3), 477–487 (2009).• Excellent review on the possible roles of CYP3A5 and ABCB1 in hypertension.
    • 45 Van Schaik RH, Van Der Heiden IP, Van Den Anker JN, Lindemans J. CYP3A5 variant allele frequencies in Dutch Caucasians. Clin. Chem. 48(10), 1668–1671 (2002).
    • 46 Moller A, Iwasaki K, Kawamura A et al. The disposition of 14C-labeled tacrolimus after intravenous and oral administration in healthy human subjects. Drug Metab. Dispos. 27(6), 633–636 (1999).
    • 47 Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc. Natl Acad. Sci. USA 84(21), 7735–7738 (1987).
    • 48 Watlington CO, Kramer LB, Schuetz EG et al. Corticosterone 6 beta-hydroxylation correlates with blood pressure in spontaneously hypertensive rats. Am. J. Physiol. 262(6 Pt 2), F927–F931 (1992).
    • 49 Adrogue HJ, Madias NE. Sodium and potassium in the pathogenesis of hypertension. N. Engl. J. Med. 356(19), 1966–1978 (2007).
    • 50 Ghosh S, Grogan WM, Basu A, Watlington C. Renal corticosterone 6 beta-hydroxylase in the spontaneously hypertensive rat. Biochim. Biophys. Acta 1182(2), 152–156 (1993).
    • 51 Givens RC, Lin YS, Dowling AL et al. CYP3A5 genotype predicts renal CYP3A activity and blood pressure in healthy adults. J. Appl. Physiol. (1985) 95(3), 1297–1300 (2003).
    • 52 Thompson EE, Kuttab-Boulos H, Witonsky D, Yang L, Roe BA, Di Rienzo A. CYP3A variation and the evolution of salt-sensitivity variants. Am. J. Hum. Genet. 75(6), 1059–1069 (2004).
    • 53 Ho H, Pinto A, Hall SD et al. Association between the CYP3A5 genotype and blood pressure. Hypertension 45(2), 294–298 (2005).
    • 54 Bochud M, Eap CB, Elston RC et al. Association of CYP3A5 genotypes with blood pressure and renal function in African families. J. Hypertens. 24(5), 923–929 (2006).
    • 55 Kivistö KT, Niemi M, Schaeffeler E et al. CYP3A5 genotype is associated with diagnosis of hypertension in elderly patients: data from the DEBATE Study. Am. J. Pharmacogenomics 5(3), 191–195 (2005).
    • 56 Fromm MF, Schmidt BM, Pahl A, Jacobi J, Schmieder RE. CYP3A5 genotype is associated with elevated blood pressure. Pharmacogenet. Genomics 15(10), 737–741 (2005).
    • 57 Kreutz R, Zuurman M, Kain S, Bolbrinker J, De Jong PE, Navis G. The role of the cytochrome P450 3A5 enzyme for blood pressure regulation in the general Caucasian population. Pharmacogenet. Genomics 15(12), 831–837 (2005).
    • 58 Langaee TY, Gong Y, Yarandi HN et al. Association of CYP3A5 polymorphisms with hypertension and antihypertensive response to verapamil. Clin. Pharmacol. Ther. 81(3), 386–391 (2007).
    • 59 Lieb W, Bolbrinker J, Doring A et al. No association of the CYP3A5*1 allele with blood pressure and left ventricular mass and geometry: the KORA/MONICA Augsburg echocardiographic substudy. Clin. Sci. (Lond.) 111(6), 365–372 (2006).
    • 60 Zhang L, Miyaki K, Wang W, Muramatsu M. CYP3A5 polymorphism and sensitivity of blood pressure to dietary salt in Japanese men. J. Hum. Hypertens. 24(5), 345–350 (2010).• Important study that combined genetic data (CYP3A5 polymorphism) with environmental data (salt intake).
    • 61 Parker RB, Yates CR, Laizure SC, Weber KT. P-glycoprotein modulates aldosterone plasma disposition and tissue uptake. J. Cardiovasc. Pharmacol. 47(1), 55–59 (2006).
    • 62 Widder JD, Guzik TJ, Mueller CF et al. Role of the multidrug resistance protein-1 in hypertension and vascular dysfunction caused by angiotensin II. Arterioscler. Thromb. Vasc. Biol. 27(4), 762–768 (2007).
    • 63 Eap CB, Bochud M, Elston RC et al. CYP3A5 and ABCB1 genes influence blood pressure and response to treatment, and their effect is modified by salt. Hypertension 49(5), 1007–1014 (2007).• Similar to [60], important study with focus on gene–environment interaction.
    • 64 Zolk O, Jacobi J, Pahl A, Fromm MF, Schmieder RE. MDR1 genotype-dependent regulation of the aldosterone system in humans. Pharmacogenet. Genomics 17(2), 137–144 (2007).
    • 65 Liu M, Li Y, Citterio L et al. A functional common polymorphism of the ABCB1 gene is associated with chronic kidney disease and hypertension in Chinese. Am. J. Hypertens. 26(12), 1428–1436 (2013).
    • 66 Kreutz R, Zurcher H, Kain S, Martus P, Offermann. G, Beige J. The effect of variable CYP3A5 expression on cyclosporine dosing, blood pressure and long-term graft survival in renal transplant patients. Pharmacogenetics 14(10), 665–671 (2004).
    • 67 Ferraresso M, Turolo S, Ghio L et al. Association between CYP3A5 polymorphisms and blood pressure in kidney transplant recipients receiving calcineurin inhibitors. Clin. Exp. Hypertens. 33(6), 359–365 (2011).
    • 68 Torio A, Auyanet I, Montes-Ares O et al. Effect of CYP3A51/3 polymorphism on blood pressure in renal transplant recipients. Transplant. Proc. 44(9), 2596–2598 (2012).
    • 69 Hoorn EJ, Van Der Lubbe N, Zietse R. The renal WNK kinase pathway: a new link to hypertension. Nephrol. Dial Transplant. 24(4), 1074–1077 (2009).
    • 70 Wang Y, O’Connell JR, Mcardle PF et al.From the cover: whole-genome association study identifies STK39 as a hypertension susceptibility geneProc. Natl Acad. Sci. USA 106(1), 226–231 (2009).
    • 71 Erlich PM, Cui J, Chazaro I et al. Genetic variants of WNK4 in whites and African Americans with hypertension. Hypertension 41(6), 1191–1195 (2003).
    • 72 Peng KC, Cluzeaud F, Bens M et al. Tissue and cell distribution of the multidrug resistance-associated protein (MRP) in mouse intestine and kidney. J. Histochem. Cytochem. 47(6), 757–768 (1999).
    • 73 Arroyo JP, Lagnaz D, Ronzaud C et al. Nedd4-2 modulates renal Na+-Cl- cotransporter via the aldosterone–SGK1–Nedd4–2 pathway. J. Am. Soc. Nephrol. 22(9), 1707–1719 (2011).
    • 74 Rao AD, Sun B, Saxena A et al. Polymorphisms in the serum- and glucocorticoid-inducible kinase 1 gene are associated with blood pressure and renin response to dietary salt intake. J. Hum. Hypertens. 27(3), 176–180 (2013).
    • 75 Kleinewietfeld M, Manzel A, Titze J et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496(7446), 518–522 (2013).
    • 76 Vincenti F, Larsen C, Durrbach A et al. Costimulation blockade with belatacept in renal transplantation. N. Engl. J. Med. 353(8), 770–781 (2005).
    • 77 Mourer JS, De Koning EJ, Van Zwet EW, Mallat MJ, Rabelink TJ, De Fijter JW. Impact of late calcineurin inhibitor withdrawal on ambulatory blood pressure and carotid intima media thickness in renal transplant recipients. Transplantation 96(1), 49–57 (2013).
    • 78 Thomas B, Taber DJ, Srinivas TR. Hypertension after kidney transplantation: a pathophysiologic approach. Curr. Hypertens. Rep. 15(5), 458–469 (2013).• Excellent review on all aspects of hypertension after kidney transplantation.
    • 79 Chatzikyrkou C, Menne J, Gwinner W et al. Pathogenesis and management of hypertension after kidney transplantation. J. Hypertens. 29(12), 2283–2294 (2011).
    • 80 Robert N, Wong GW, Wright JM. Effect of cyclosporine on blood pressure. Cochrane Database Syst. Rev. (1), CD007893 (2010).
    • 81 Cross NB, Webster AC, Masson P, O’Connell PJ, Craig JC. Antihypertensives for kidney transplant recipients: systematic review and meta-analysis of randomized controlled trials. Transplantation 88(1), 7–18 (2009).
    • 82 Paoletti E, Bellino D, Marsano L, Cassottana P, Rolla D, Ratto E. Effects of ACE inhibitors on long-term outcome of renal transplant recipients: a randomized controlled trial. Transplantation 95(6), 889–895 (2013).
    • 83 Ibrahim HN, Jackson S, Connaire J et al. Angiotensin II blockade in kidney transplant recipients. J. Am. Soc. Nephrol. 24(2), 320–327 (2013).
    • 84 Taber DJ, Srinivas TM, Pilch NA et al. Are thiazide diuretics safe and effective antihypertensive therapy in kidney transplant recipients? Am. J. Nephrol. 38(4), 285–291 (2013).