We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/pgs.12.44

Large differences are observed in chemotherapy response between breast cancer patients, with a substantial part of this variability being explained by genetic factors. Polymorphisms in genes encoding drug-metabolizing enzymes, drug transporters and drug targets influence the pharmacokinetics and pharmacodynamics of these anticancer drugs, leading to differences in therapeutic efficacy. Pharmacogenetic investigations of breast cancer therapeutics focused on these candidate loci have been performed. This article summarizes the status of research to identify polymorphisms in genes that influence response to the chemotherapeutic agents used in breast cancer treatment and suggests future directions for this line of research. Understanding the genetic factors that predispose patients to poor treatment outcomes will help guide individualized therapeutic strategies to obtain maximal benefit.

Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

References

  • Desantis C, Siegel R, Bandi P, Jemal A. Breast cancer statistics, 2011. CA Cancer J. Clin.61(6),409–418 (2011).
  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J. Clin.59(4),225–249 (2009).
  • Choueiri TK, Alemany CA, Abou-Jawde RM, Budd GT. Role of aromatase inhibitors in the treatment of breast cancer. Clin. Ther.26(8),1199–1214 (2004).
  • Leveque D, Gigou L, Bergerat JP. Clinical pharmacology of trastuzumab. Curr. Clin. Pharmacol.3(1),51–55 (2008).
  • Plosker GL, Keam SJ. Trastuzumab – a review of its use in the management of HER2-positive metastatic and early-stage breast cancer. Drugs66(4),449–475 (2006).
  • Zhou SF, Di YM, Chan E et al. Clinical pharmacogenetics and potential application in personalized medicine. Curr. Drug Metab.9(8),738–784 (2008).
  • Evans WE, Relling MV. Moving towards individualized medicine with pharmacogenomics. Nature429(6990),464–468 (2004).▪ Excellent review presenting an overview of pharmacogenetics and the future of individualized medicine.
  • Evans WE, Mcleod HL. Pharmacogenomics – drug disposition, drug targets, and side effects. N. Engl. J. Med.348(6),538–549 (2003).
  • O’Donnell PH, Ratain MJ. Germline pharmacogenomics in oncology: decoding the patient for targeting therapy. Mol. Oncol. doi:10.1016/j.molonc.2012.01.005 (2012) (Epub ahead of print).
  • 10  Crown J. Docetaxel: overview of an active drug for breast cancer. Oncologist6(Suppl. 3),1–4 (2001).
  • 11  Oshiro C, Marsh S, Mcleod H, Carrillo M, Klein T, Altman R. Taxane pathway. Pharmacogenet. Genomics19(12),979–983 (2009).
  • 12  Kuhn JG. Pharmacology and pharmacokinetics of paclitaxel. Ann. Pharmacother.28(Suppl. 5),S15–S17 (1994).
  • 13  Bosch TM, Huitema AD, Doodeman VD et al. Pharmacogenetic screening of CYP3A and ABCB1 in relation to population pharmacokinetics of docetaxel. Clin. Cancer Res.12(19),5786–5793 (2006).
  • 14  Tran A, Jullien V, Alexandre J et al. Pharmacokinetics and toxicity of docetaxel: role of CYP3A, MDR1, and GST polymorphisms. Clin. Pharmacol. Ther.79(6),570–580 (2006).
  • 15  Baker SD, Verweij J, Cusatis GA et al. Pharmacogenetic pathway analysis of docetaxel elimination. Clin. Pharmacol. Ther.85(2),155–163 (2009).
  • 16  Henningsson A, Marsh S, Loos WJ et al. Association of CYP2C8, CYP3A4, CYP3A5, and ABCB1 polymorphisms with the pharmacokinetics of paclitaxel. Clin. Cancer Res.11(22),8097–8104 (2005).
  • 17  Marsh S, Somlo G, Li X et al. Pharmacogenetic analysis of paclitaxel transport and metabolism genes in breast cancer. Pharmacogenomics J.7(5),362–365 (2007).
  • 18  Rizzo R, Spaggiari F, Indelli M et al. Association of CYP1B1 with hypersensitivity induced by taxane therapy in breast cancer patients. Breast Cancer Res. Treat.124(2),593–598 (2010).
  • 19  Iscan M, Klaavuniemi T, Coban T, Kapucuoglu N, Pelkonen O, Raunio H. The expression of cytochrome P450 enzymes in human breast tumors and normal breast tissue. Breast Cancer Res. Treat.70(1),47–54 (2001).
  • 20  Mcfadyen MC, Cruickshank ME, Miller ID et al. Cytochrome P450 CYP1B1 over-expression in primary and metastatic ovarian cancer. Br. J. Cancer85(2),242–246 (2001).
  • 21  Mckay JA, Melvin WT, Ah-See AK et al. Expression of cytochrome P450 CYP1B1 in breast cancer. FEBS Lett.374(2),270–272 (1995).
  • 22  Landi MT, Bergen AW, Baccarelli A et al.CYP1A1 and CYP1B1 genotypes, haplotypes, and TCDD-induced gene expression in subjects from Seveso, Italy. Toxicology207(2),191–202 (2005).
  • 23  Shimada T, Watanabe J, Kawajiri K et al. Catalytic properties of polymorphic human cytochrome P450 1B1 variants. Carcinogenesis20(8),1607–1613 (1999).
  • 24  Sissung TM, Danesi R, Price DK et al. Association of the CYP1B1*3 allele with survival in patients with prostate cancer receiving docetaxel. Mol. Cancer Ther.7(1),19–26 (2008).
  • 25  Gehrmann M, Schmidt M, Brase JC, Roos P, Hengstler JG. Prediction of paclitaxel resistance in breast cancer: is CYP1B1*3 a new factor of influence? Pharmacogenomics9(7),969–974 (2008).
  • 26  Hoffmeyer S, Burk O, Von Richter O et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc. Natl Acad. Sci. USA97(7),3473–3478 (2000).
  • 27  Chang H, Rha SY, Jeung HC et al. Association of the ABCB1 gene polymorphisms 2677G>T/A and 3435C>T with clinical outcomes of paclitaxel monotherapy in metastatic breast cancer patients. Ann. Oncol.20(2),272–277 (2009).
  • 28  Marsh S, Paul J, King CR, Gifford G, Mcleod HL, Brown R. Pharmacogenetic assessment of toxicity and outcome after platinum plus taxane chemotherapy in ovarian cancer: The Scottish Randomised Trial in Ovarian Cancer. J. Clin. Oncol.25(29),4528–4535 (2007).▪▪ Largest ovarian cancer and taxane/platinum pharmacogenetic study carried out to date and highlights the need for validation of putative pharmacogenetic markers in well-defined sample sets before clinical implementation can be considered.
  • 29  Innocenti F, Iyer L, Ramirez J, Green MD, Ratain MJ. Epirubicin glucuronidation is catalyzed by human UDP-glucuronosyltransferase 2B7. Drug Metab. Dispos.29(5),686–692 (2001).
  • 30  Kaklamani VG, Gradishar WJ. Epirubicin versus doxorubicin: which is the anthracycline of choice for the treatment of breast cancer? Clin. Breast Cancer4(Suppl. 1),S26–S33 (2003).
  • 31  Gianni L, Herman EH, Lipshultz SE, Minotti G, Sarvazyan N, Sawyer DB. Anthracycline cardiotoxicity: from bench to bedside. J. Clin. Oncol.26(22),3777–3784 (2008).
  • 32  Doyle JJ, Neugut AI, Jacobson JS, Grann VR, Hershman DL. Chemotherapy and cardiotoxicity in older breast cancer patients: a population-based study. J. Clin. Oncol.23(34),8597–8605 (2005).
  • 33  Pinder MC, Duan Z, Goodwin JS, Hortobagyi GN, Giordano SH. Congestive heart failure in older women treated with adjuvant anthracycline chemotherapy for breast cancer. J. Clin. Oncol.25(25),3808–3815 (2007).
  • 34  Hershman D, Neugut AI, Jacobson JS et al. Acute myeloid leukemia or myelodysplastic syndrome following use of granulocyte colony-stimulating factors during breast cancer adjuvant chemotherapy. J. Natl Cancer Inst.99(3),196–205 (2007).
  • 35  Patt DA, Duan Z, Fang S, Hortobagyi GN, Giordano SH. Acute myeloid leukemia after adjuvant breast cancer therapy in older women: understanding risk. J. Clin. Oncol.25(25),3871–3876 (2007).
  • 36  Fan L, Goh BC, Wong CI et al. Genotype of human carbonyl reductase CBR3 correlates with doxorubicin disposition and toxicity. Pharmacogenet. Genomics18(7),621–631 (2008).
  • 37  Lal S, Sandanaraj E, Wong ZW et al.CBR1 and CBR3 pharmacogenetics and their influence on doxorubicin disposition in Asian breast cancer patients. Cancer Sci.99(10),2045–2054 (2008).
  • 38  Lal S, Wong ZW, Sandanaraj E et al. Influence of ABCB1 and ABCG2 polymorphisms on doxorubicin disposition in Asian breast cancer patients. Cancer Sci.99(4),816–823 (2008).
  • 39  Lal S, Wong ZW, Jada SR et al. Novel SLC22A16 polymorphisms and influence on doxorubicin pharmacokinetics in Asian breast cancer patients. Pharmacogenomics8(6),567–575 (2007).
  • 40  Sweeney C, Ambrosone CB, Joseph L et al. Association between a glutathione S-transferase A1 promoter polymorphism and survival after breast cancer treatment. Int. J. Cancer103(6),810–814 (2003).
  • 41  Ambrosone CB, Sweeney C, Coles BF et al. Polymorphisms in glutathione S-transferases (GSTM1 and GSTT1) and survival after treatment for breast cancer. Cancer Res.61(19),7130–7135 (2001).
  • 42  Sweeney C, Mcclure GY, Fares MY et al. Association between survival after treatment for breast cancer and glutathione S-transferase P1 Ile105Val polymorphism. Cancer Res.60(20),5621–5624 (2000).
  • 43  Romero A, Martin M, Oliva B et al. Glutathione S-transferase P1 c.313A > G polymorphism could be useful in the prediction of doxorubicin response in breast cancer patients. Ann. Oncol. doi:10.1093/annonc/mdr483 (2011) (Epub ahead of print).
  • 44  Parmar S, Stingl JC, Huber-Wechselberger A et al. Impact of UGT2B7 His268Tyr polymorphism on the outcome of adjuvant epirubicin treatment in breast cancer. Breast Cancer Res.13(3),R57 (2011).
  • 45  Schilsky RL. Biochemical and clinical pharmacology of 5-fluorouracil. Oncology (Williston Park)12(10 Suppl. 7),13–18 (1998).
  • 46  Bergman AM, Kuiper CM, Noordhuis P et al. Antiproliferative activity and mechanism of action of fatty acid derivatives of gemcitabine in leukemia and solid tumor cell lines and in human xenografts. Nucleosides Nucleotides Nucleic Acids23(8–9),1329–1333 (2004).
  • 47  Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer3(5),330–338 (2003).
  • 48  Johnston PG, Kaye S. Capecitabine: a novel agent for the treatment of solid tumors. Anticancer Drugs12(8),639–646 (2001).
  • 49  Ershler WB. Capecitabine monotherapy: safe and effective treatment for metastatic breast cancer. Oncologist11(4),325–335 (2006).
  • 50  Iacopetta B, Grieu F, Joseph D, Elsaleh H. A polymorphism in the enhancer region of the thymidylate synthase promoter influences the survival of colorectal cancer patients treated with 5-fluorouracil. Br. J. Cancer85(6),827–830 (2001).
  • 51  Hitre E, Budai B, Adleff V et al. Influence of thymidylate synthase gene polymorphisms on the survival of colorectal cancer patients receiving adjuvant 5-fluorouracil. Pharmacogenet. Genomics15(10),723–730 (2005).
  • 52  Marsh S. Thymidylate synthase pharmacogenetics. Invest. New Drugs23(6),533–537 (2005).
  • 53  Paez D, Pare L, Altes A et al. Thymidylate synthase germline polymorphisms in rectal cancer patients treated with neoadjuvant chemoradiotherapy based on 5-fluorouracil. J. Cancer Res. Clin. Oncol136(11),1681–1689 (2010).
  • 54  Capitain O, Boisdron-Celle M, Poirier AL, Abadie-Lacourtoisie S, Morel A, Gamelin E. The influence of fluorouracil outcome parameters on tolerance and efficacy in patients with advanced colorectal cancer. Pharmacogenomics J.8(4),256–267 (2008).
  • 55  Farina-Sarasqueta A, Gosens MJ, Moerland E et al.TS gene polymorphisms are not good markers of response to 5-FU therapy in stage III colon cancer patients. Cell Oncol. (Dordr.)34(4),327–335 (2010).
  • 56  Deenen MJ, Tol J, Burylo AM et al. Relationship between single nucleotide polymorphisms and haplotypes in DPYD and toxicity and efficacy of capecitabine in advanced colorectal cancer. Clin. Cancer Res.17(10),3455–3468 (2011).
  • 57  Pare L, Altes A, Ramon Y Cajal T et al. Influence of thymidylate synthase and methylenetetrahydrofolate reductase gene polymorphisms on the disease-free survival of breast cancer patients receiving adjuvant 5-fluorouracil/methotrexate-based therapy. Anticancer Drugs18(7),821–825 (2007).
  • 58  Horie N, Aiba H, Oguro K, Hojo H, Takeishi K. Functional analysis and DNA polymorphism of the tandemly repeated sequences in the 5´-terminal regulatory region of the human gene for thymidylate synthase. Cell Struct. Funct.20(3),191–197 (1995).
  • 59  Mandola MV, Stoehlmacher J, Muller-Weeks S et al. A novel single nucleotide polymorphism within the 5´ tandem repeat polymorphism of the thymidylate synthase gene abolishes USF-1 binding and alters transcriptional activity. Cancer Res.63(11),2898–2904 (2003).
  • 60  Kawakami K, Omura K, Kanehira E, Watanabe Y. Polymorphic tandem repeats in the thymidylate synthase gene is associated with its protein expression in human gastrointestinal cancers. AntiCancer Res.19(4B),3249–3252 (1999).
  • 61  Frosst P, Blom HJ, Milos R et al. A candidate genetic risk factor for vascular disease. a common mutation in methylenetetrahydrofolate reductase. Nat. Genet.10(1),111–113 (1995).
  • 62  Van Der Put NM, Gabreels F, Stevens EM et al. A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am. J. Hum. Genet.62(5),1044–1051 (1998).
  • 63  Shrubsole MJ, Shu XO, Ruan ZX et al. MTHFR genotypes and breast cancer survival after surgery and chemotherapy. a report from the Shanghai Breast Cancer Study. Breast Cancer Res. Treat.91(1),73–79 (2005).
  • 64  Largillier R, Etienne-Grimaldi MC, Formento JL et al. Pharmacogenetics of capecitabine in advanced breast cancer patients. Clin. Cancer Res.12(18),5496–5502 (2006).
  • 65  Ribelles N, Lopez-Siles J, Sanchez A et al. A carboxylesterase 2 gene polymorphism as predictor of capecitabine on response and time to progression. Curr. Drug Metab.9(4),336–343 (2008).
  • 66  Heinemann V. Role of gemcitabine in the treatment of advanced and metastatic breast cancer. Oncology64(3),191–206 (2003).
  • 67  Jones J, Takeda A, Tan SC, Cooper K, Loveman E, Clegg A. Gemcitabine for the treatment of metastatic breast cancer. Health Technol. Assess.13(Suppl. 2),1–7 (2009).
  • 68  Mini E, Nobili S, Caciagli B, Landini I, Mazzei T. Cellular pharmacology of gemcitabine. Ann. Oncol.17(Suppl. 5),v7–v12 (2006).
  • 69  Raynal C, Ciccolini J, Mercier C et al. High-resolution melting analysis of sequence variations in the cytidine deaminase gene (CDA) in patients with cancer treated with gemcitabine. Ther. Drug Monit.32(1),53–60 (2010).
  • 70  Ueno H, Kaniwa N, Okusaka T et al. Homozygous CDA*3 is a major cause of life-threatening toxicities in gemcitabine-treated Japanese cancer patients. Br. J. Cancer100(6),870–873 (2009).
  • 71  Maring JG, Wachters FM, Slijfer M et al. Pharmacokinetics of gemcitabine in non-small-cell lung cancer patients. impact of the 79A>C cytidine deaminase polymorphism. Eur. J. Clin. Pharmacol.66(6),611–617 (2010).
  • 72  Tibaldi C, Giovannetti E, Tiseo M et al. Correlation of cytidine deaminase polymorphisms and activity with clinical outcome in gemcitabine-/platinum-treated advanced non-small-cell lung cancer patients. Ann. Oncol.23(3),670–677 (2012).
  • 73  Okazaki T, Javle M, Tanaka M, Abbruzzese JL, Li D. Single nucleotide polymorphisms of gemcitabine metabolic genes and pancreatic cancer survival and drug toxicity. Clin. Cancer Res.16(1),320–329 (2010).
  • 74  Mercier C, Evrard A, Ciccolini J. Genotype-based methods for anticipating gemcitabine-related severe toxicities may lead to false-negative results. J. Clin. Oncol.25(30),4855; author reply 4855–4856 (2007).
  • 75  Giovannetti E, Tibaldi C, Falcone A, Danesi R, Peters GJ. Impact of cytidine deaminase polymorphisms on toxicity after gemcitabine: the question is still ongoing. J. Clin. Oncol.28(14),e221–e222; author reply e223–e225 (2010).
  • 76  Dong S, Guo AL, Chen ZH et al.RRM1 single nucleotide polymorphism -37C-->A correlates with progression-free survival in NSCLC patients after gemcitabine-based chemotherapy. J. Hematol. Oncol.3,10 (2010).
  • 77  Rodriguez J, Boni V, Hernandez A et al. Association of RRM1 -37A>C polymorphism with clinical outcome in colorectal cancer patients treated with gemcitabine-based chemotherapy. Eur. J. Cancer47(6),839–847 (2011).
  • 78  Yeo W, Soong RC, Chuah BY et al. Correlation of RRM1 promoter region single nucleotide polymorphisms (SNPs) with response and outcome in breast cancer patients treated with gemcitabine-based chemotherapy. J. Clin. Oncol.26(Suppl.), abstract 14513 (2008).
  • 79  Chang TK, Weber GF, Crespi CL, Waxman DJ. Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res.53(23),5629–5637 (1993).
  • 80  Roy P, Yu LJ, Crespi CL, Waxman DJ. Development of a substrate-activity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles. Drug Metab. Dispos.27(6),655–666 (1999).
  • 81  Ahmed AR, Hombal SM. Cyclophosphamide (Cytoxan). A review on relevant pharmacology and clinical uses. J. AM. Acad. Dermatol.11(6),1115–1126 (1984).
  • 82  Dirven HA, Van Ommen B, Van Bladeren PJ. Glutathione conjugation of alkylating cytostatic drugs with a nitrogen mustard group and the role of glutathione S-transferases. Chem. Res. Toxicol.9(2),351–360 (1996).
  • 83  Bray J, Sludden J, Griffin MJ et al. Influence of pharmacogenetics on response and toxicity in breast cancer patients treated with doxorubicin and cyclophosphamide. Br. J. Cancer102(6),1003–1009 (2010).
  • 84  Yao S, Barlow WE, Albain KS et al. Gene polymorphisms in cyclophosphamide metabolism pathway, treatment-related toxicity, and disease-free survival in SWOG 8897 clinical trial for breast cancer. Clin. Cancer Res.16(24),6169–6176 (2010).
  • 85  Gor PP, Su HI, Gray RJ et al. Cyclophosphamide-metabolizing enzyme polymorphisms and survival outcomes after adjuvant chemotherapy for node-positive breast cancer: a retrospective cohort study. Breast Cancer Res.12(3),R26 (2010).
  • 86  Rabik CA, Dolan ME. Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat. Rev.33(1),9–23 (2007).
  • 87  Crown JP. The platinum agents: a role in breast cancer treatment? Semin. Oncol.28(1 Suppl. 3),28–37 (2001).
  • 88  Smith IE, Talbot DC. Cisplatin and its analogues in the treatment of advanced breast cancer: a review. Br. J. Cancer65(6),787–793 (1992).
  • 89  Byrski T, Huzarski T, Dent R et al. Response to neoadjuvant therapy with cisplatin in BRCA1-positive breast cancer patients. Breast Cancer Res. Treat.115(2),359–363 (2009).
  • 90  Byrski T, Gronwald J, Huzarski T et al. Pathologic complete response rates in young women with BRCA1-positive breast cancers after neoadjuvant chemotherapy. J. Clin. Oncol.28(3),375–379 (2010).
  • 91  Carey LA. Targeted chemotherapy? Platinum in BRCA1-dysfunctional breast cancer. J. Clin. Oncol.28(3),361–363 (2010).
  • 92  Shiraishi K, Kohno T, Tanai C et al. Association of DNA repair gene polymorphisms with response to platinum-based doublet chemotherapy in patients with non-small-cell lung cancer. J. Clin. Oncol.28(33),4945–4952 (2010).
  • 93  Chen S, Huo X, Lin Y et al. Association of MDR1 and ERCC1 polymorphisms with response and toxicity to cisplatin-based chemotherapy in non-small-cell lung cancer patients. Int. J. Hyg. Environ. Health213(2),140–145 (2010).
  • 94  Park DJ, Zhang W, Stoehlmacher J et al.ERCC1 gene polymorphism as a predictor for clinical outcome in advanced colorectal cancer patients treated with platinum-based chemotherapy. Clin. Adv. Hematol. Oncol.1(3),162–166 (2003).
  • 95  Yao CY, Huang XE, Li C et al. Lack of influence of XRCC1 and XPD gene polymorphisms on outcome of platinum-based chemotherapy for advanced non small cell lung cancers. Asian Pac. J. Cancer Prev.10(5),859–864 (2009).
  • 96  Chua W, Goldstein D, Lee CK et al. Molecular markers of response and toxicity to FOLFOX chemotherapy in metastatic colorectal cancer. Br. J. Cancer101(6),998–1004 (2009).
  • 97  Yin M, Yan J, Martinez-Balibrea E et al.ERCC1 and ERCC2 polymorphisms predict clinical outcomes of oxaliplatin-based chemotherapies in gastric and colorectal cancer. a systemic review and meta-analysis. Clin. Cancer Res.17(6),1632–1640 (2011).▪ This paper presents an important meta-analysis of the ERCC1 and ERCC2 genes and platinum outcome in gastric and colorectal cancer.
  • 98  Yin M, Yan J, Voutsina A et al. No evidence of an association of ERCC1 and ERCC2 polymorphisms with clinical outcomes of platinum-based chemotherapies in non-small cell lung cancer: a meta-analysis. Lung Cancer72(3),370–377 (2011).
  • 99  Wei SZ, Zhan P, Shi MQ et al. Predictive value of ERCC1 and XPD polymorphism in patients with advanced non-small cell lung cancer receiving platinum-based chemotherapy: a systematic review and meta-analysis. Med. Oncol.28(1),315–321 (2011).
  • 100  Schroth W, Antoniadou L, Fritz P et al. Breast cancer treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes. J. Clin. Oncol.25(33),5187–5193 (2007).
  • 101  Rae JM, Goetz MP, Hayes DF et al.CYP2D6 genotype and tamoxifen response. Breast Cancer Res.7(5),E6 (2005).
  • 102  Goetz MP, Rae JM, Suman VJ et al. Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes. J. Clin. Oncol.23(36),9312–9318 (2005).
  • 103  Goetz M, Berry D, Klein T, International Tamoxifen Pharmacogenomics Consortium. Adjuvant tamoxifen treatment outcome according to cytochrome P450 2D6 (CYP2D6) phenotype in early stage breast cancer: findings from the International Tamoxifen Pharmacogenomics Consortium. Cancer Res.69(24 Suppl. 3), (Abstract) (2009).
  • 104  Regan MM, Leyland-Jones B, Bouzyk M et al.CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer: The Breast International Group 1–98 Trial. J. Natl Cancer Inst. doi:10.1093/jnci/djs125 (2012) (Epub ahead of print).
  • 105  Rae JM, Drury S, Hayes DF et al.CYP2D6 and UGT2B7 genotype and risk of recurrence in tamoxifen-treated breast cancer patients. J. Natl Cancer Inst. doi:10.1093/jnci/djs126 (2012) (Epub ahead of print).
  • 106  Kiyotani K, Mushiroda T, Hosono N et al. Lessons for pharmacogenomics studies. association study between CYP2D6 genotype and tamoxifen response. Pharmacogenet. Genomics20(9),565–568 (2010).
  • 107  Daly AK. Genome-wide association studies in pharmacogenomics. Nat. Rev. Genet.11(4),241–246 (2010)
  • 108  Kiyotani K, Mushiroda T, Tsunoda T et al. A genome-wide association study identifies locus at 10q22 associated with clinical outcomes of adjuvant tamoxifen therapy for breast cancer patients in Japanese. Hum. Mol. Genet.21(7),1665–1672 (2012).▪ Application of genome-wide association studies to breast cancer pharmacogenomics, identifying an association of the 10q22 locus with clinical outcomes following adjuvant tamoxifen treatment.
  • 109  Srinivasan Y, Sasa M, Honda J et al. Genome-wide association study of epirubicin-induced leukopenia in Japanese patients. Pharmacogenet. Genomics21(9),552–558 (2011).
  • 110  Spraggs CF, Budde LR, Briley LP et al.HLA-DQA1*02.01 is a major risk factor for lapatinib-induced hepatotoxicity in women with advanced breast cancer. J. Clin. Oncol.29(6),667–673 (2011).
  • 111  Ingle JN, Schaid DJ, Goss PE et al. Genome-wide associations and functional genomic studies of musculoskeletal adverse events in women receiving aromatase inhibitors. J. Clin. Oncol.28(31),4674–4682 (2010).
  • 112  Ramsey LB, Bruun GH, Yang W et al. Rare versus common variants in pharmacogenetics: SLCO1B1 variation and methotrexate disposition. Genome Res.22(1),1–8 (2012).▪▪ The study serves as a proof-of-principle for the follow-up of a gene hit from a genome-wide association study in pharmacogenomics. The findings support the hypothesis that a combination of common and rare variants is likely to be important in the determination of pharmacogenetic phenotypes.
  • 113  Cirulli ET, Goldstein DB. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat. Rev. Genet.11(6),415–425 (2010).
  • 114  Ma BB, Hui EP, Mok TS. Population-based differences in treatment outcome following anticancer drug therapies. Lancet Oncol.11(1),75–84 (2010).
  • 115  Engen RM, Marsh S, Van Booven DJ, Mcleod HL. Ethnic differences in pharmacogenetically relevant genes. Curr. Drug Targets7(12),1641–1648 (2006).
  • 116  Van Kuilenburg AB, Haasjes J, Richel DJ et al. Clinical implications of dihydropyrimidine dehydrogenase (DPD) deficiency in patients with severe 5-fluorouracil-associated toxicity: identification of new mutations in the DPD gene. Clin. Cancer Res.6(12),4705–4712 (2000).
  • 117  Van Kuilenburg AB. Dihydropyrimidine dehydrogenase and the efficacy and toxicity of 5-fluorouracil. Eur. J. Cancer40(7),939–950 (2004).
  • 118  Yen JL, Mcleod HL. Should DPD analysis be required prior to prescribing fluoropyrimidines? Eur. J. Cancer43(6),1011–1016 (2007).
  • 119  Marsh S, Collie-Duguid ES, Li T, Liu X, Mcleod HL. Ethnic variation in the thymidylate synthase enhancer region polymorphism among Caucasian and Asian populations. Genomics58(3),310–312 (1999).
  • 120  Ingelman-Sundberg M, Gomez A. The past, present and future of pharmacoepigenomics. Pharmacogenomics11(5),625–627 (2010).▪▪ Covers the potential implication of epigenetics in human diseases and pharmacogenetics and future perspectives on this research field.
  • 121  Hudson TJ, Anderson W, Artez A et al. International network of cancer genome projects. Nature464(7291),993–998 (2010).
  • 122  McDonagh EM, Whirl-Carrillo M, Garten Y, Altman RB, Klein TE. From pharmacogenomic knowledge acquisition to clinical applications: the PharmGKB as a clinical pharmacogenomic biomarker resource. Biomark. Med.5(6),795–806 (2011).
  • 201  US FDA. Table of pharmacogenomic biomarkers in drug labels (2011). www.fda.gov/Drugs/ScienceResearch/ResearchAreas/Pharmacogenetics/ucm083378.htm