We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Targeting DNA repair pathways for cancer treatment: what’s new?

    Mark R Kelley

    Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA

    Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA

    Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA

    Herman B Wells Center for Pediatric Research, 1044 W. Walnut Street, R4-302 Indianapolis, IN 46202, USA

    ,
    Derek Logsdon

    Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA

    &
    Melissa L Fishel

    Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA

    Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA

    Published Online:https://doi.org/10.2217/fon.14.60

    ABSTRACT: 

    Disruptions in DNA repair pathways predispose cells to accumulating DNA damage. A growing body of evidence indicates that tumors accumulate progressively more mutations in DNA repair proteins as cancers progress. DNA repair mechanisms greatly affect the response to cytotoxic treatments, so understanding those mechanisms and finding ways to turn dysregulated repair processes against themselves to induce tumor death is the goal of all DNA repair inhibition efforts. Inhibition may be direct or indirect. This burgeoning field of research is replete with promise and challenge, as more intricacies of each repair pathway are discovered. In an era of increasing concern about healthcare costs, use of DNA repair inhibitors can prove to be highly effective stewardship of R&D resources and patient expenses.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Kaelin WG Jr. Synthetic lethality: a framework for the development of wiser cancer therapeutics. Genome Med. 1(10), 99 (2009).
    • 2 Bapat A, Fishel ML, Kelley MR. Going ape as an approach to cancer therapeutics. Antioxid. Redox Signal. 11(3), 651–668 (2009).
    • 3 Plummer R. Perspective on the pipeline of drugs being developed with modulation of DNA damage as a target. Clin. Cancer Res. 16(18), 4527–4531 (2010).
    • 4 Luo M, He H, Kelley MR, Georgiadis MM. Redox regulation of DNA repair: implications for human health and cancer therapeutic development. Antioxid. Redox Signal. 12(11), 1247–1269 (2010).
    • 5 Kaina B, Christmann M, Naumann S, Roos WP. MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair (Amst.) 6(8), 1079–1099 (2007).
    • 6 Kelley MR, Georgiadis MM, Fishel MLDNA repair and redox signaling. In: The Tumor Microenvironment. Bagley R (Ed.). Springer, NY, USA, 133–168 (2010).
    • 7 De Lartigue J. New life for PARP inhibitors: emerging agents leave mark at ASCO.www.onclive.com/publications/oncology-live/2013/august-2013/new-life-for-parp-inhibitors-emerging-agents-leave-mark-at-asco/4 • Documents the recent trials and tribulations in the use of PARP inhibitors with future directions.
    • 8 Bryant HE, Schultz N, Thomas HD et al. Specific tumor-killing of BRCA-deficient tumours with inhibitors of poly (ADP-ribose) polymerase. Nature 434(14), 913–917 (2005).
    • 9 Underhill C, Toulmonde M, Bonnefoi H. A review of PARP inhibitors: from bench to bedside. Ann. Oncol. 22(2), 268–279 (2011).
    • 10 Leung M, Rosen D, Fields S, Cesano A, Budman DR. Poly(ADP-ribose) polymerase-1 inhibition: preclinical and clinical development of synthetic lethality. Mol. Med. 17(7–8), 854–862 (2011).
    • 11 ClinicalTrials.gov. https://clinicaltrials.gov 
    • 12 O’Shaughnessy J, Osborne C, Pippen JE et al. Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N. Engl. J. Med. 364(3), 205–214 (2011).
    • 13 De Lartigue J. The PARP inhibitors: down but not out (2012). www.onclive.com/publications/oncology-live/2012/july-2012/the-parp-inhibitors-down-but-not-out/2
    • 14 Guha M. PARP inhibitors stumble in breast cancer. Nat. Biotechnol. 29(5), 373–374 (2011).
    • 15 Weaver AN, Yang ES. Beyond DNA repair: additional functions of PARP-1 in cancer. Front. Oncol. 3(290), 1–11 (2013).
    • 16 Papao G, Casale E, Montagnoli A, Circla A. PARP inhibitors in cancer therapy: an update. Expert Opin. Ther. Pat. 23(4), 503–514 (2013).
    • 17 Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG. PARP inhibition: PARP1 and beyond. Nat. Rev. Cancer 10(4), 293–301 (2010).
    • 18 AZD2461 (2013). www.selleckchem.com/products/azd2461.html
    • 19 Newswire GBioMarin provides updated Phase 1/2 data on BMN 673 in breast cancer at the european cancer congress 2013. 1, 1 (2013). www.marketwatch.com/story/biomarin-provides-updated-phase-12-data-on-bmn-673-in-breast-cancer-at-the-european-cancer-congress-2013-2013-09-29
    • 20 Murai J, Huang SY, Das BB et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 72(21), 5588–5599 (2012).
    • 21 McNeely S, Beckmann R, Lin AB. CHEK again: revisiting the development of CHK1 inhibitors for cancer therapy. Pharmacol. Ther. 142(1), 1–10, (2013).
    • 22 Fan CH, Liu WL, Cao H, Wen C, Chen L, Jiang G. O(6)-methylguanine DNA methyltransferase as a promising target for the treatment of temozolomide-resistant gliomas. Cell Death Dis. 4, e876 (2013).
    • 23 Golding SE, Rosenberg E, Adams BR et al. Dynamic inhibition of ATM kinase provides a strategy for glioblastoma multiforme radiosensitization and growth control. Cell Cycle 11(6), 1167–1173 (2012).
    • 24 Maxmen A. Beyond PARP inhibitors: agents in pipelines target DNA repair mechanisms. J. Natl Cancer Inst. 102(15), 1110–1111 (2010).
    • 25 Golding SE, Rosenberg E, Valerie N et al. Improved ATM kinase inhibitor KU-60019 radiosensitizes glioma cells, compromises insulin, AKT and ERK prosurvival signaling, and inhibits migration and invasion. Mol. Cancer Ther. 8(10), 2894–2902 (2009).
    • 26 Kaina B, Muhlhausen U, Piee-Staffa A et al. Inhibition of O6-methylguanine-DNA methyltransferase by glucose-conjugated inhibitors: comparison with nonconjugated inhibitors and effect on fotemustine and temozolomide-induced cell death. J. Pharmacol. Exp. Ther. 311(2), 585–593 (2004).
    • 27 Gerson SL. MGMT: its role in cancer aetiology and cancer therapeutics. Nat. Rev. Cancer 4(4), 296–307 (2004).
    • 28 Kelley MR, Fishel ML. DNA Repair and Cancer Therapeutics. In: Principles of Molecular Diagnostics and Personalized Cancer Medicine. Tan D, Lynch HT (Eds). Lippincott Williams & Wilkins, PA, USA, 566–579 (2013).
    • 29 Fortini P, Dogliotti E. Base damage and single-strand break repair: mechanisms and functional significance of short- and long-patch repair subpathways. DNA Repair 6(4), 398–409 (2007).
    • 30 Robertson AB, Klungland A, Rognes T, Leiros I. DNA repair in mammalian cells: base excision repair: the long and short of it. Cell. Mol. Life Sci. 66(6), 981–993 (2009).
    • 31 Fishel ML, Vascotto C, Kelley MR. DNA base excision repair therapeutics: summary of targets with a focus on APE1. In: DNA Repair and Cancer: From Bench to Clinic. Madhusudan S, Wilson DM (Eds). CRC Press, FL, USA, 233–287 (2013).•• Strong review of the DNA base excision repair (BER) pathway and implications for cancer therapies.
    • 32 Scalia M, Satriano C, Greca R, Stella AM, Rizzarelli E, Spina-Purrello V. PARP-1 inhibitors DPQ and PJ-34 negatively modulate proinflammatory commitment of human glioblastoma cells. Neurochem. Res. 38(1), 50–58 (2013).
    • 33 Srinivasan A, Gold B. Small-molecule inhibitors of DNA damage-repair pathways: an approach to overcome tumor resistance to alkylating anticancer drugs. Future Med. Chem. 4(9), 1093–1111 (2012).
    • 34 Kelley MR, Georgiadis MM, Fishel ML. APE1/Ref-1 role in redox signaling: translational applications of targeting the redox function of the DNA repair/redox protein APE1/Ref-1. Curr. Mol. Pharmacol. 5(1), 36–53 (2012).
    • 35 Jaiswal AS, Banerjee S, Aneja R, Sarkar FH, Ostrov DA, Narayan S. DNA polymerase beta as a novel target for chemotherapeutic intervention of colorectal cancer. PLoS ONE 6(2), e16691 (2011).
    • 36 Rai G, Vyjayanti VN, Dorjsuren D et al. Small molecule inhibitors of the human apurinic/apyrimidinic endonuclease 1 (APE1). National Center for Biotechnology Information, MD, USA, 27 (2010).
    • 37 Bapat A, Glass LS, Luo M et al. Novel small-molecule inhibitor of apurinic/apyrimidinic endonuclease 1 blocks proliferation and reduces viability of glioblastoma cells. J. Pharmacol. Exp. Ther. 334(3), 988–998 (2010).
    • 38 Abbotts R, Madhusudan S. Human AP endonuclease 1 (APE1): from mechanistic insights to druggable target in cancer. Cancer Treat. Rev. 36(5), 425–435 (2010).
    • 39 Gao Z, Maloney DJ, Dedkova LM, Hecht SM. Inhibitors of DNA polymerase beta: activity and mechanism. Bioorg. Med. Chem. 16(8), 4331–4340 (2008).
    • 40 Hegde ML, Hazra TK, Mitra S. Functions of disordered regions in mammalian early base excision repair proteins. Cell. Mol. Life Sci. 67(21), 3573–3587 (2010).
    • 41 Zou GM, Karikari C, Kabe Y, Handa H, Anders RA, Maitra A. The Ape-1/Ref-1 redox antagonist E3330 inhibits the growth of tumor endothelium and endothelial progenitor cells: therapeutic implications in tumor angiogenesis. J. Cell. Phys. 219(1), 209–218 (2009).
    • 42 Kelley MR, Fishel ML. DNA repair proteins as molecular targets for cancer therapeutics. Anticancer Agents Med. Chem. 8(4), 417–425 (2008).
    • 43 Tell G, Wilson DM 3rd. Targeting DNA repair proteins for cancer treatment. Cell. Mol. Life Sci. 67(21), 3569–3572 (2010).
    • 44 Tell G, Quadrifoglio F, Tiribelli C, Kelley MR. The many functions of APE1/Ref-1: not only a DNA repair enzyme. Antioxid. Redox Signal. 11(3), 601–620 (2009).• Strong review on the multifunctions of a critical DNA repair protein.
    • 45 Fishel ML, Jiang Y, Rajeshkumar NV et al. Impact of APE1/Ref-1 redox inhibition on pancreatic tumor growth. Mol. Cancer Ther. 10(9), 1698–1708 (2011).
    • 46 Cardoso AA, Jiang Y, Luo M et al. APE1/Ref-1 regulates STAT3 transcriptional activity and APE1/Ref-1–STAT3 dual-targeting effectively inhibits pancreatic cancer cell survival. PLoS ONE 7(10), e47462 (2012).• Novel report of a critical transcription factor under redox control by a multifunctional DNA repair and redox signaling protein.
    • 47 Methoxyamine clinical trials (2013). www.clinicaltrials.gov/ct2/results?term=methoxyamine+&Search=Search
    • 48 Reed AM, Fishel ML, Kelley MR. Small-molecule inhibitors of proteins involved in base excision repair potentiate the anti-tumorigenic effect of existing chemotherapeutics and irradiation. Future Oncol. 5(5), 713–726 (2009).
    • 49 Li M, Wilson DM 3rd. Human apurinic/apyrimidinic endonuclease 1. Antioxid Redox Signal. 20(4), 678–707 (2013).
    • 50 Sultana R, McNeill DR, Abbotts R et al. Synthetic lethal targeting of DNA double-strand break repair deficient cells by human apurinic/apyrimidinic endonuclease inhibitors. Int. J. Cancer 131(10), 2433–2444 (2012).
    • 51 Wilson DM 3rd, Simeonov A. Small molecule inhibitors of DNA repair nuclease activities of APE1. Cell. Mol. Life Sci. 67(21), 3621–3631 (2010).
    • 52 ApeX Therapeutics Research (2013). http://apextherapeutics.com/research.
    • 53 Tsutakawa SE, Classen S, Chapados BR et al. Human flap endonuclease structures, DNA double-base flipping, and a unified understanding of the FEN1 superfamily. Cell 145(2), 198–211 (2011).
    • 54 Van Pel DM, Barrett IJ, Shimizu Y et al. An evolutionarily conserved synthetic lethal interaction network identifies FEN1 as a broad-spectrum target for anticancer therapeutic development. PLoS Genet. 9(1), e1003254 (2013).
    • 55 Martin SA, Lord CJ, Ashworth A. Therapeutic targeting of the DNA mismatch repair pathway. Clin. Cancer Res. 16(21), 5107–5113 (2010).
    • 56 Li GM. Mechanisms and functions of DNA mismatch repair. Cell Res. 18(1), 85–98 (2008).
    • 57 Li YH, Wang X, Pan Y, Lee DH, Chowdhury D, Kimmelman AC. Inhibition of non-homologous end joining repair impairs pancreatic cancer growth and enhances radiation response. PLoS ONE 7(6), e39588 (2012).
    • 58 Methotrexate in Metastatic Colorectal Cancer With MSH2 Deficiency (MESH). http://clinicaltrials.gov/ct2/show/NCT00952016
    • 59 Martin SA, Hewish M, Sims D, Lord CJ, Ashworth A. Parallel high-throughput RNA interference screens identify PINK1 as a potential therapeutic target for the treatment of DNA mismatch repair-deficient cancers. Cancer Res. 71(5), 1836–1848 (2011).• Strong presentation of development of new therapeutic agents for a mismatch DNA repair target protein.
    • 60 Dianov G. Repair pathways for processing of 8-oxoguanine in DNA by mammalian cell extracts. J. Biol. Chem. 273(50), 33811–33816 (1998).
    • 61 Kinsella TJ. Coordination of DNA mismatch repair and base excision repair processing of chemotherapy and radiation damage for targeting resistant cancers. Clin. Cancer Res. 15(6), 1853–1859 (2009).
    • 62 Neher TM, Bodenmiller D, Fitch RW, Jalal SI, Turchi JJ. Novel irreversible small molecule inhibitors of replication protein A display single-agent activity and synergize with cisplatin. Mol. Cancer Ther. 10(10), 1796–1806 (2011).
    • 63 Shuck SC, Short EA, Turchi JJ. Eukaryotic nucleotide excision repair, from understanding mechanisms to influencing biology. Cell Res. 18(1), 64–72 (2008).
    • 64 Barakat KH, Tuszynski JA. Nucleotide excision repair inhibitors: still a long way to go. In: New Research Directions in DNA Repair. Chen C (Ed.). InTech, AZ, USA, 559–576 (2013).
    • 65 Barakat KH, Jordheim LP, Perez-Pineiro R, Wishart D, Dumontet C, Tuszynski JA. Virtual screening and biological evaluation of inhibitors targeting the XPA-ERCC1 interaction. PLoS ONE 7(12), e51329 (2012).
    • 66 UCN-01 clinical trials (2013). www.clinicaltrials.gov/ct2/results?term=UCN-01&pg=1.
    • 67 Barret JM, Cadou M, Hill BT. Inhibition of nucleotide excision repair and sensitisation of cells to DNA cross-linking anticancer drugs by F 11782, a novel fluorinated epipodophylloid. Biochem. Pharmacol. 63(2), 251–258 (2002).
    • 68 D’Incalci M, Galmarini CM. A review of trabectedin (ET-743): a unique mechanism of action. Mol. Cancer Ther. 9(8), 2157–2163 (2010).
    • 69 Trabectedin clinical trials (2013). www.clinicaltrials.gov/ct2/results?term=trabectedin+&Search=Search.
    • 70 Mcneil EM, Melton DW. DNA repair endonuclease ERCC1-XPF as a novel therapeutic target to overcome chemoresistance in cancer therapy. Nucleic Acids Res. 40(20), 9990–10004 (2012).
    • 71 Usanova S, Piee-Staffa A, Sied U et al. Cisplatin sensitivity of testis tumour cells is due to deficiency in interstrand-crosslink repair and low ERCC1-XPF expression. Mol. Cancer 9, 248 (2010).
    • 72 Krejci L, Altmannova V, Spirek M, Zhao X. Homologous recombination and its regulation. Nucleic Acids Res. 40(13), 5795–5818 (2012).
    • 73 Neal JA, Dang V, Douglas P, Wold MS, Lees-Miller SP, Meek K. Inhibition of homologous recombination by DNA-dependent protein kinase requires kinase activity, is titratable, and is modulated by autophosphorylation. Mol. Cell Biol. 31(8), 1719–1733 (2011).
    • 74 Chernikova SB, Game JC, Brown JM. Inhibiting homologous recombination for cancer therapy. Cancer Biol. Ther. 13(2), 61–68 (2012).
    • 75 Helleday T. Homologous recombination in cancer development, treatment and development of drug resistance. Carcinogenesis 31(6), 955–960 (2010).
    • 76 Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA. DNA repair pathways as targets for cancer therapy. Nat. Rev. Cancer 8(3), 193–204 (2008).
    • 77 Yan H, Toczylowski T, McCane J, Chen C, Liao S. Replication protein A promotes 5′→ 3′ end processing during homology-dependent DNA double-strand break repair. J. Cell Biol. 192(2), 251–261 (2011).
    • 78 Hass CS, Lam K, Wold MS. Repair-specific functions of replication protein A. J. Biol. Chem. 287(6), 3908–3918 (2012).• Clearly written manuscript detailing a critical protein in nucleotide excision repair that could be a valuable target for cancer therapeutics.
    • 79 Frank AO, Feldkamp MD, Kennedy JP et al. Discovery of a potent inhibitor of replication protein a protein–protein interactions using a fragment-linking approach. J. Med. Chem. 56(22), 9242–9250 (2013).
    • 80 Renodon-Cornire A, Weigel P, Le M, Fleury F. New potential therapeutic approaches by targeting Rad51-dependent homologous recombination. In: New Research Directions in DNA Repair. Chen C (Ed.). InTech, AZ, USA, 467–488 (2013).• Strong review of a target for homologous recombination (HR) and the potential for therapeutic indications.
    • 81 Chen G, Yuan S-SF, Liu W et al. Radiation-induced assembly of Rad51 and Rad52 recombination complex requires ATM and c-Abl. J. Biol. Chem. 274(18), 12748–12752 (1999).
    • 82 Budke B, Logan HL, Kalin JH et al. RI-1: a chemical inhibitor of RAD51 that disrupts homologous recombination in human cells. Nucleic Acids Res. 40(15), 7347–7357 (2012).
    • 83 Jhaveri K, Taldone T, Modi S, Chiosis G. Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochim. Bophys. Acta 1823(3), 742–755 (2012).
    • 84 Dinitto JP, Wu JC. Molecular mechanisms of drug resistance in tyrosine kinases cAbl and cKit. Crt. Rev. Biochem. Mol. Biol. 46(4), 295–309 (2011).
    • 85 Dar AC, Shokat KM. The evolution of protein kinase inhibitors from antagonists to agonists of cellular signaling. Ann. Rev. Biochem. 80, 769–795 (2011).
    • 86 Roberts RJ, Agius C, Saliba C, Bossier P, Sung YY. Heat shock proteins (chaperones) in fish and shellfish and their potential role in relation to fish health: a review. J. Fish Dis. 33(10), 789–801 (2010).
    • 87 Mittelman D, Sykoudis K, Hersh M, Lin Y, Wilson JH. Hsp90 modulates CAG repeat instability in human cells. Cell Stress Chaperones 15(5), 753–759 (2010).
    • 88 Messaoudi A, Peyrat JF, Brion JD, Alami M. Recent advances in Hsp90 inhibitors as antitumor agents. Anticancer Agents Med. Chem. 8, 761–782 (2008).
    • 89 Meek K, Dang V, Lees-Miller SP. Chapter 2 DNA-PK. 99, 33–58 (2008).
    • 90 Collis SJ, Deweese TL, Jeggo PA, Parker AR. The life and death of DNA-PK. Oncogene 24(6), 949–961 (2005).
    • 91 Weterings E, Chen DJ. The endless tale of non-homologous end-joining. Cell Res. 18(1), 114–124 (2008).
    • 92 Weinfeld M, Lees-Miller SP. DNA double-strand break repair by nonhomologous end joining and its clinical relevance. In: DNA Repair in Cancer Therapy: Molecular Targets and Clinical Applications. Kelley MR (Ed.). Academic Press, MA, USA, 161–181 (2012).
    • 93 Davidson D, Amrein L, Panasci L, Aloyz R. Small molecules, inhibitors of DNA-PK, targeting DNA repair, and beyond. Front. Pharmacol. 4, 5 (2013).•• Outstanding review of aspects of DNA repair pathways and upstream signaling targets that could be strong targets for anti-DNA repair therapy.
    • 94 Zhou X, Zhang X, Xie Y, Tanaka K, Wang B, Zhang H. DNA-PKcs inhibition sensitizes cancer cells to carbon-ion irradiation via telomere capping disruption. PLoS ONE 8(8), e72641 (2013).
    • 95 Srivastava M, Nambiar M, Sharma S et al. An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression. Cell 151(7), 1474–1487 (2012).
    • 96 Tavecchio M, Munck JM, Cano C, Newell DR, Curtin NJ. Further characterisation of the cellular activity of the DNA-PK inhibitor, NU7441, reveals potential cross-talk with homologous recombination. Cancer Chemother. Pharmacol. 69(1), 155–164 (2012).
    • 97 Mukherjee B, Tomimatsu N, Amancherla K, Camacho CV, Pichamoorthy N, Burma S. The dual PI3K/mTOR inhibitor NVP-BEZ235 is a potent inhibitor of ATM- and DNA-PKCs-mediated DNA damage responses. Neoplasia 14(1), 34–43 (2012).
    • 98 Freschauf GK, Karimi-Busheri F, Ulaczyk-Lesanko A et al. Identification of a small molecule inhibitor of the human DNA repair enzyme polynucleotide kinase/phosphatase. Cancer Res. 69(19), 7739–7746 (2009).
    • 99 Chen X, Zhong S, Zhu X et al. Rational design of human DNA ligase inhibitors that target cellular DNA replication and repair. Cancer Res. 68(9), 3169–3177 (2008).
    • 100 Park SB, Goldstein D, Krishnan AV et al. Chemotherapy-induced peripheral neurotoxicity: a critical analysis. CA Cancer J. Clin. 63(6), 419–437 (2013).
    • 101 Fallon MT. Neuropathic pain in cancer. Br. J. Anaesth. 111(1), 105–111 (2013).
    • 102 Alberti P, Rossi E, Cornblath DR et al. Physician-assessed and patient-reported outcome measures in chemotherapy-induced sensory peripheral neurotoxicity: two sides of the same coin. Ann. Oncol. 25(1), 257–264 (2013).
    • 103 Duarte DB, Vasko MR. The role of DNA damage and repair in neurotoxicity caused by cancer therapies. In: DNA Repair in Cancer Therapy: Molecular Targets and Clinical Applications. Kelley MR (Ed.). Academic Press, MA, USA, 283–299 (2012).
    • 104 Schroder S, Beckmann K, Franconi G et al. Can medical herbs stimulate regeneration or neuroprotection and treat neuropathic pain in chemotherapy-induced peripheral neuropathy? Evid. Based Complement. Alternat. Med. 2013, 423713 (2013).
    • 105 Schloss JM, Colosimo M, Airey C, Masci PP, Linnane AW, Vitetta L. Nutraceuticals and chemotherapy induced peripheral neuropathy (CIPN): a systematic review. Clin. Nutr. 32(6), 888–893 (2013).
    • 106 Vasko MR, Guo C, Thompson EL, Kelley MR. The repair function of the multifunctional DNA repair/redox protein APE1 is neuroprotective after ionizing radiation. DNA Repair 10(9), 942–952 (2011).
    • 107 Englander EW. DNA damage response in peripheral nervous system: coping with cancer therapy-induced DNA lesions. DNA Repair 12(8), 685–690 (2013).
    • 108 Fishel ML, Vasko MR, Kelley MR. DNA repair in neurons: so if they don’t divide what’s to repair? Mutat. Res. 614(1–2), 24–36 (2007).
    • 109 Fishel ML, Kelley MR. The DNA base excision repair protein Ape1/Ref-1 as a therapeutic and chemopreventive target. Mol. Aspects Med. 28(3–4), 375–395 (2007).
    • 110 Palanca A, Casafont I, Berciano MT, Lafarga M. Proteasome inhibition induces DNA damage and reorganizes nuclear architecture and protein synthesis machinery in sensory ganglion neurons. Cell. Mol. Life Sci. (71, 1961–1975 (2013).
    • 111 Azevedo MI, Pereira AF, Nogueira RB et al. The antioxidant effects of the flavonoids rutin and quercetin inhibit oxaliplatin-induced chronic painful peripheral neuropathy. Mol. Pain 9(1), 53 (2013).
    • 112 Dzagnidze A, Katsarava Z, Makhalova J et al. Repair capacity for platinum-DNA adducts determines the severity of cisplatin-induced peripheral neuropathy. J. Neurosci. 27(35), 9451–9457 (2007).
    • 113 Jiang Y, Guo C, Vasko MR, Kelley MR. Implications of apurinic/apyrimidinic endonuclease in reactive oxygen signaling response after cisplatin treatment of dorsal root ganglion neurons. Cancer Res. 68(15), 6425–6434 (2008).•• Another article in a string of publications implicating BER in chemotherapy-induced peripheral neuropathy and importance in understanding mechanisms of CIPN for future drug development.
    • 114 Ta LE, Schmelzer JD, Bieber AJ et al. A novel and selective poly (ADP-ribose) polymerase inhibitor ameliorates chemotherapy-induced painful neuropathy. PLoS ONE 8(1), e54161 (2013).
    • 115 Peddi SR, Chattopadhyay R, Naidu CV, Izumi T. The human apurinic/apyrimidinic endonuclease-1 suppresses activation of poly(adp-ribose) polymerase-1 induced by DNA single strand breaks. Toxicology 224(1–2), 44–55 (2006).
    • 116 Kono T, Hata T, Morita S et al. Goshajinkigan oxaliplatin neurotoxicity evaluation (GONE): a Phase 2, multicenter, randomized, double-blind, placebo-controlled trial of goshajinkigan to prevent oxaliplatin-induced neuropathy. Cancer Chemother. Pharmacol. 72(6), 1283–1290 (2013).
    • 117 Gilchrist LS, Marais L, Tanner L. Comparison of two chemotherapy-induced peripheral neuropathy measurement approaches in children. Support. Care Cancer 22(2), 359–366 (2013).
    • 118 Di Francia R, Siesto RS, Valente D et al. Current strategies to minimize toxicity of oxaliplatin: selection of pharmacogenomic panel tests. Anticancer Drugs 24(10), 1069–1078 (2013).
    • 119 Genentech & Inotek Enter into Exclusive Global Strategic Alliance for the Discovery, Development and Commercialization of PARP Inhibitors for Cancer (2006). www.gene.com/media/press-releases/9907/2006-07-25/genentech-inotek-enter-into-exclusive-gl 
    • 120 Tracon Pharma Programs (2013). www.traconpharma.com/progrms.php
    • 121 Sentinel Oncology R&D Programmes (2013). www.sentineloncology.com/pipeline
    • 122 Allison M. Haseltine’s DNA repair company steps out (2007). www.xconomy.com/boston/2007/12/07/haseltines-dna-repair-company-steps-out/ 
    • 123 Garber K. Mission therapeutics. Nat. Biotechnol. 30(3), 206 (2012).
    • 124 Ubiquitination: labelling the proteins (2008). www.sebiology.org/publications/Bulletin/March08/Ubiquitination.html?
    • 125 US FDA. Paving the Way for Personalized Medicine. FDA’s Role in a new Era of Medical Product Development. US Department of Health and Human Services, DC, USA, 1–61 (2013).
    • 126 Perry C, Sultana R, Madhusudan S. Personalized cancer medicine: DNA repair alterations are promising predictive biomarkers in cancer. In: DNA Repair in Cancer Therapy: Molecular Targets and Clinical Applications. Kelley MR (Ed.). Academic Press, MA, USA, 257–275 (2012).
    • 127 About Foundation Medicine (2013). www.foundationmedicine.com/about.php
    • 128 Ho AY, Atencio DP, Peters S et al. Genetic predictors of adverse radiotherapy effects: the Gene-PARE project. Int. J. Radiat. Oncol. Biol. Phys. 65(3), 646–655 (2006).
    • 129 Milanowska K, Krwawicz J, Papaj G et al. REPAIRtoire – a database of DNA repair pathways. Nucleic Acids Res. 39(Database issue), D788–D792 (2011).
    • 130 Morgenroth A, Vogg AT, Zlatopolskiy BD, Siluschek M, Oedekoven C, Mottaghy FM. Breaking the invulnerability of cancer stem cells: two-step strategy to kill the stem-like cell subpopulation of multiple myeloma. Mol. Cancer Ther. 13(1), 144–153 (2013).
    • 131 Rowe BP, Glazer PM. Emergence of rationally designed therapeutic strategies for breast cancer targeting DNA repair mechanisms. Breast Cancer Res. 12(203), 1–11 (2010).
    • 132 Aziz K, Nowsheen S, Georgakilas AG. Nanotechnology in cancer therapy: targeting the inhibition of key DNA repair pathways. Curr. Mol. Med. 10(7), 626–639 (2010).