We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Mechanism of lymph node metastasis in prostate cancer

    Kaustubh Datta

    † Author for correspondence

    Department of Biochemistry & Molecular Biology, Gugg 17–93, Mayo Clinic Foundation, 200 First Street SW, Rochester, MN 55905, USA.

    ,
    Michael Muders

    Institute of Pathology, University Hospital Carl-Gustav-Carus, Dresden, Germany

    ,
    Heyu Zhang

    Department of Urologic Research, Biochemistry & Molecular Biology. Mayo Clinic Cancer Center, Mayo Clinic Foundation, Rochester, MN, USA

    &
    Donald J Tindall

    Department of Urologic Research, Biochemistry & Molecular Biology. Mayo Clinic Cancer Center, Mayo Clinic Foundation, Rochester, MN, USA

    Published Online:https://doi.org/10.2217/fon.10.33

    Detection of lymph node metastases indicates poor prognosis for prostate cancer patients. Therefore, elucidation of the mechanism(s) of lymph node metastasis is important to understand the progression of prostate cancer and also to develop therapeutic interventions. In this article, the known mechanisms for lymph node metastasis are discussed and the involvement of lymphatic vessels in prostate cancer lymph node metastasis is comprehensively summarized. In addition, contradictory findings regarding the importance of lymphangiogenesis in facilitating lymph node metastasis in prostate cancer are pointed out and reconcilation is attempted.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Brower V: Researchers tackle metastasis, cancer’s last frontier. J. Natl Cancer Inst.99(2),109–111 (2007).
    • Alitalo K, Carmeliet P: Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell1(3),219–227 (2002).▪▪ Discusses the contribution of tumor lymphatics to lymph node and distant metastasis very elegantly.
    • Sleeman J, Schmid A, Thiele W: Tumor lymphatics. Semin. Cancer Biol.19(5),285–297 (2009).▪▪ Discusses the contribution of tumor lymphatics to lymph node and distant metastasis very elegantly.
    • Sleeman JP, Thiele W: Tumor metastasis and the lymphatic vasculature. Int. J. Cancer125(12),2747–2756 (2009).
    • Karkkainen MJ, Makinen T, Alitalo K: Lymphatic endothelium: a new frontier of metastasis research. Nat. Cell Biol.4(1),E2–E5 (2002).
    • Pepper MS: Lymphangiogenesis and tumor metastasis: myth or reality? Clin. Cancer Res.7(3),462–468 (2001).
    • Cai T, Nesi G, Tinacci G et al.: Clinical importance of lymph node density in predicting outcome of prostate cancer patients. J. Surg. Res (2009) (Epub ahead of print).▪ Describes the prognostic significance of lymph node metastasis in prostate cancer.
    • Cheng L, Zincke H, Blute ML, Bergstralh EJ, Scherer B, Bostwick DG: Risk of prostate carcinoma death in patients with lymph node metastasis. Cancer91(1),66–73 (2001).▪ Describes the prognostic significance of lymph node metastasis in prostate cancer.
    • Da Pozzo LF, Cozzarini C, Briganti A et al.: Long-term follow-up of patients with prostate cancer and nodal metastases treated by pelvic lymphadenectomy and radical prostatectomy: the positive impact of adjuvant radiotherapy. Eur. Urol.55(5),1003–1011 (2009).
    • 10  Burkhard FC, Studer UE: Regional lymph node staging in prostate cancer: prognostic and therapeutic implications. Surg. Oncol.18(3),213–218 (2009).
    • 11  Briganti A, Blute ML, Eastham JH et al.: Pelvic lymph node dissection in prostate cancer. Eur. Urol.55(6),1251–1265 (2009).
    • 12  Briganti A, Karnes JR, Da Pozzo LF et al.: Two positive nodes represent a significant cut-off value for cancer specific survival in patients with node positive prostate cancer. A new proposal based on a two-institution experience on 703 consecutive N+ patients treated with radical prostatectomy, extended pelvic lymph node dissection and adjuvant therapy. Eur. Urol.55(2),261–270 (2009).▪ Describes the prognostic significance of lymph node metastasis in prostate cancer.
    • 13  Cochran AJ, Huang RR, Lee J, Itakura E, Leong SP, Essner R: Tumour-induced immune modulation of sentinel lymph nodes. Nat. Rev. Immunol.6(9),659–670 (2006).
    • 14  Huang RR, Wen DR, Guo J et al.: Selective modulation of paracortical dendritic cells and T-lymphocytes in breast cancer sentinel lymph nodes. Breast J.6(4),225–232 (2000).
    • 15  Tammela T, Petrova TV, Alitalo K: Molecular lymphangiogenesis: new players. Trends Cell Biol.15(8),434–441 (2005).
    • 16  Alitalo K, Tammela T, Petrova TV: Lymphangiogenesis in development and human disease. Nature438(7070),946–953 (2005).
    • 17  Stacker SA, Baldwin ME, Achen MG: The role of tumor lymphangiogenesis in metastatic spread. FASEB J.16(9),922–934 (2002).
    • 18  Bolenz C, Fernandez MI, Tilki D et al.: The role of lymphangiogenesis in lymphatic tumour spread of urological cancers. BJU Int.104(5),592–597 (2009).
    • 19  Karkkainen MJ, Haiko P, Sainio K et al.: Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat. Immunol.5(1),74–80 (2004).
    • 20  Dvorak HF: VPF/VEGF and the angiogenic response. Semin. Perinatol.24(1),75–78 (2000).
    • 21  Karpanen T, Egeblad M, Karkkainen MJ et al.: Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res.61(5),1786–1790 (2001).
    • 22  Stacker SA, Caesar C, Baldwin ME et al.: VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat. Med.7(2),186–191 (2001).
    • 23  Achen MG, Stacker SA: Molecular control of lymphatic metastasis. Ann. NY Acad. Sci.1131,225–234 (2008).
    • 24  Achen MG, Jeltsch M, Kukk E et al.: Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc. Natl Acad. Sci. USA95(2),548–553 (1998).
    • 25  Mandriota SJ, Jussila L, Jeltsch M et al.: Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J.20(4),672–682 (2001).
    • 26  Joukov V, Pajusola K, Kaipainen A et al.: A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J.15(7),1751 (1996).
    • 27  Kaipainen A, Korhonen J, Mustonen T et al.: Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc. Natl Acad. Sci. USA92(8),3566–3570 (1995).
    • 28  Kukk E, Lymboussaki A, Taira S et al.: VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development122(12),3829–3837 (1996).
    • 29  He Y, Rajantie I, Pajusola K et al.: Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels. Cancer Res.65(11),4739–4746 (2005).
    • 30  Karpanen T, Heckman CA, Keskitalo S et al.: Functional interaction of VEGF-C and VEGF-D with neuropilin receptors. FASEB J.20(9),1462–1472 (2006).
    • 31  Caunt M, Mak J, Liang WC et al.: Blocking neuropilin-2 function inhibits tumor cell metastasis. Cancer Cell13(4),331–342 (2008).
    • 32  Su JL, Yang PC, Shih JY et al.: The VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer cells. Cancer Cell9(3),209–223 (2006).
    • 33  Muders MH, Zhang H, Wang E, Tindall DJ, Datta K: Vascular endothelial growth factor-C protects prostate cancer cells from oxidative stress by the activation of mammalian target of rapamycin complex-2 and AKT-1. Cancer Res.69(15),6042–6048 (2009).
    • 34  Nagy JA, Vasile E, Feng D et al.: Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J. Exp. Med.196(11),1497–1506 (2002).
    • 35  Bjorndahl MA, Cao R, Burton JB et al.: Vascular endothelial growth factor-a promotes peritumoral lymphangiogenesis and lymphatic metastasis. Cancer Res.65(20),9261–9268 (2005).
    • 36  Lohela M, Helotera H, Haiko P, Dumont DJ, Alitalo K: Transgenic induction of vascular endothelial growth factor-C is strongly angiogenic in mouse embryos but leads to persistent lymphatic hyperplasia in adult tissues. Am. J. Pathol.173(6),1891–1901 (2008).
    • 37  Benest AV, Harper SJ, Herttuala SY, Alitalo K, Bates DO: VEGF-C induced angiogenesis preferentially occurs at a distance from lymphangiogenesis. Cardiovasc. Res.78(2),315–323 (2008).
    • 38  McColl BK, Paavonen K, Karnezis T et al.: Proprotein convertases promote processing of VEGF-D, a critical step for binding the angiogenic receptor VEGFR-2. FASEB J.21(4),1088–1098 (2007).
    • 39  Scavelli C, Vacca A, Di Pietro G, Dammacco F, Ribatti D: Crosstalk between angiogenesis and lymphangiogenesis in tumor progression. Leukemia18(6),1054–1058 (2004).
    • 40  Laakkonen P, Waltari M, Holopainen T et al.: Vascular endothelial growth factor receptor 3 is involved in tumor angiogenesis and growth. Cancer Res.67(2),593–599 (2007).
    • 41  Gale NW, Thurston G, Hackett SF et al.: Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by angiopoietin-1. Dev. Cell3(3),411–423 (2002).
    • 42  Tammela T, Saaristo A, Lohela M et al.: Angiopoietin-1 promotes lymphatic sprouting and hyperplasia. Blood105(12),4642–4648 (2005).
    • 43  Cao R, Bjorndahl MA, Religa P et al.: PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell6(4),333–345 (2004).
    • 44  Tang Y, Zhang D, Fallavollita L, Brodt P: Vascular endothelial growth factor C expression and lymph node metastasis are regulated by the type I insulin-like growth factor receptor. Cancer Res.63(6),1166–1171 (2003).
    • 45  Matsuo M, Yamada S, Koizumi K, Sakurai H, Saiki I: Tumour-derived fibroblast growth factor-2 exerts lymphangiogenic effects through Akt/mTOR/p70S6kinase pathway in rat lymphatic endothelial cells. Eur. J. Cancer43(11),1748–1754 (2007).
    • 46  Cao R, Bjorndahl MA, Gallego MI et al.: Hepatocyte growth factor is a lymphangiogenic factor with an indirect mechanism of action. Blood107(9),3531–3536 (2006).
    • 47  Kajiya K, Hirakawa S, Ma B, Drinnenberg I, Detmar M: Hepatocyte growth factor promotes lymphatic vessel formation and function. EMBO J.24(16),2885–2895 (2005).
    • 48  Avraamides CJ, Garmy-Susini B, Varner JA: Integrins in angiogenesis and lymphangiogenesis. Nat. Rev. Cancer8(8),604–617 (2008).
    • 49  Zhang X, Groopman JE, Wang JF: Extracellular matrix regulates endothelial functions through interaction of VEGFR-3 and integrin α5β1. J. Cell. Physiol.202(1),205–214 (2005).
    • 50  Furtado GC, Marinkovic T, Martin AP et al.: Lymphotoxin beta receptor signaling is required for inflammatory lymphangiogenesis in the thyroid. Proc. Natl Acad. Sci. USA104(12),5026–5031 (2007).
    • 51  Partanen TA, Alitalo K, Miettinen M: Lack of lymphatic vascular specificity of vascular endothelial growth factor receptor 3 in 185 vascular tumors. Cancer86(11),2406–2412 (1999).
    • 52  Banerji S, Ni J, Wang SX et al.: LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J. Cell Biol.144(4),789–801 (1999).
    • 53  Breiteneder-Geleff S, Soleiman A, Kowalski H et al.: Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. Am. J. Pathol.154(2),385–394 (1999).
    • 54  Wigle JT, Harvey N, Detmar M et al.: An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J.21(7),1505–1513 (2002).
    • 55  Zeng Y, Opeskin K, Horvath LG, Sutherland RL, Williams ED: Lymphatic vessel density and lymph node metastasis in prostate cancer. Prostate65(3),222–230 (2005).
    • 56  Kimura Y, Watanabe M, Ohga T et al.: Vascular endothelial growth factor C expression correlates with lymphatic involvement and poor prognosis in patients with esophageal squamous cell carcinoma. Oncol. Rep.10(6),1747–1751 (2003).
    • 57  Jia YT, Li ZX, He YT, Liang W, Yang HC, Ma HJ: Expression of vascular endothelial growth factor-C and the relationship between lymphangiogenesis and lymphatic metastasis in colorectal cancer. World J. Gastroenterol.10(22),3261–3263 (2004).
    • 58  Clarijs R, Schalkwijk L, Ruiter DJ, de Waal RM: Lack of lymphangiogenesis despite coexpression of VEGF-C and its receptor Flt-4 in uveal melanoma. Invest. Ophthalmol. Vis. Sci.42(7),1422–1428 (2001).
    • 59  Wong SY, Haack H, Crowley D, Barry M, Bronson RT, Hynes RO: Tumor-secreted vascular endothelial growth factor-C is necessary for prostate cancer lymphangiogenesis, but lymphangiogenesis is unnecessary for lymph node metastasis. Cancer Res.65(21),9789–9798 (2005).
    • 60  Isaka N, Padera TP, Hagendoorn J, Fukumura D, Jain RK: Peritumor lymphatics induced by vascular endothelial growth factor-C exhibit abnormal function. Cancer Res.64(13),4400–4404 (2004).
    • 61  Leu AJ, Berk DA, Lymboussaki A, Alitalo K, Jain RK: Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. Cancer Res.60(16),4324–4327 (2000).
    • 62  Skobe M, Hawighorst T, Jackson DG et al.: Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat. Med.7(2),192–198 (2001).
    • 63  Kyzas PA, Geleff S, Batistatou A, Agnantis NJ, Stefanou D: Evidence for lymphangiogenesis and its prognostic implications in head and neck squamous cell carcinoma. J. Pathol.206(2),170–177 (2005).
    • 64  Bolzoni Villaret A, Schreiber A, Facchetti F et al.: Immunostaining patterns of CD31 and podoplanin in previously untreated advanced oral/oropharyngeal cancer: prognostic implications. Head Neck (2009) (Epub ahead of print).
    • 65  Hirakawa S: From tumor lymphangiogenesis to lymphvascular niche. Cancer Sci.100(6),983–989 (2009).
    • 66  Hirakawa S, Brown LF, Kodama S, Paavonen K, Alitalo K, Detmar M: VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood109(3),1010–1017 (2007).
    • 67  Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF, Detmar M: VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J. Exp. Med.201(7),1089–1099 (2005).
    • 68  Tsurusaki T, Kanda S, Sakai H et al.: Vascular endothelial growth factor-C expression in human prostatic carcinoma and its relationship to lymph node metastasis. Br. J. Cancer80(1–2),309–313 (1999).
    • 69  Jennbacken K, Vallbo C, Wang W, Damber JE: Expression of vascular endothelial growth factor C (VEGF-C) and VEGF receptor-3 in human prostate cancer is associated with regional lymph node metastasis. Prostate65(2),110–116 (2005).
    • 70  Zeng Y, Opeskin K, Baldwin ME et al.: Expression of vascular endothelial growth factor receptor-3 by lymphatic endothelial cells is associated with lymph node metastasis in prostate cancer. Clin. Cancer Res.10(15),5137–5144 (2004).
    • 71  Weidner N, Carroll PR, Flax J, Blumenfeld W, Folkman J: Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am. J. Pathol.143(2),401–409 (1993).
    • 72  Li R, Younes M, Wheeler TM et al.: Expression of vascular endothelial growth factor receptor-3 (VEGFR-3) in human prostate. Prostate58(2),193–199 (2004).
    • 73  Trojan L, Michel MS, Rensch F, Jackson DG, Alken P, Grobholz R: Lymph and blood vessel architecture in benign and malignant prostatic tissue: lack of lymphangiogenesis in prostate carcinoma assessed with novel lymphatic marker lymphatic vessel endothelial hyaluronan receptor (LYVE-1). J. Urol.172(1),103–107 (2004).
    • 74  Trojan L, Rensch F, Voss M et al.: The role of the lymphatic system and its specific growth factor, vascular endothelial growth factor C, for lymphogenic metastasis in prostate cancer. BJU Int.98(4),903–906 (2006).
    • 75  Roma AA, Magi-Galluzzi C, Kral MA, Jin TT, Klein EA, Zhou M: Peritumoral lymphatic invasion is associated with regional lymph node metastases in prostate adenocarcinoma. Mod. Pathol.19(3),392–398 (2006).
    • 76  Marks A, Sutherland DR, Bailey D et al.: Characterization and distribution of an oncofetal antigen (M2A antigen) expressed on testicular germ cell tumours. Br. J. Cancer80(3–4),569–578 (1999).
    • 77  Kahn HJ, Bailey D, Marks A: Monoclonal antibody D2-40, a new marker of lymphatic endothelium, reacts with Kaposi’s sarcoma and a subset of angiosarcomas. Mod. Pathol.15(4),434–440 (2002).
    • 78  Kahn HJ, Marks A: A new monoclonal antibody, D2-40, for detection of lymphatic invasion in primary tumors. Lab. Invest.82(9),1255–1257 (2002).
    • 79  Schacht V, Dadras SS, Johnson LA, Jackson DG, Hong YK, Detmar M: Up-regulation of the lymphatic marker podoplanin, a mucin-type transmembrane glycoprotein, in human squamous cell carcinomas and germ cell tumors. Am. J. Pathol.166(3),913–921 (2005).
    • 80  Cheng L, Bishop E, Zhou H et al.: Lymphatic vessel density in radical prostatectomy specimens. Hum. Pathol.39(4),610–615 (2008).
    • 81  Kuroda K, Horiguchi A, Asano T, Asano T, Hayakawa M: Prediction of lymphatic invasion by peritumoral lymphatic vessel density in prostate biopsy cores. Prostate68(10),1057–1063 (2008).
    • 82  Li J, Wang E, Rinaldo F, Datta K: Upregulation of VEGF-C by androgen depletion: the involvement of IGF-IR-FOXO pathway. Oncogene24(35),5510–5520 (2005).
    • 83  Rinaldo F, Li J, Wang E, Muders M, Datta K: RalA regulates vascular endothelial growth factor-C (VEGF-C) synthesis in prostate cancer cells during androgen ablation. Oncogene26(12),1731–1738 (2007).
    • 84  Yano A, Fujii Y, Iwai A, Kawakami S, Kageyama Y, Kihara K: Glucocorticoids suppress tumor lymphangiogenesis of prostate cancer cells. Clin. Cancer Res.12(20 Pt 1),6012–6017 (2006).
    • 85  Zhang H, Muders MH, Li J, Rinaldo F, Tindall DJ, Datta K: Loss of NKX3.1 favors vascular endothelial growth factor-C expression in prostate cancer. Cancer Res.68(21),8770–8778 (2008).
    • 86  Bowen C, Bubendorf L, Voeller HJ et al.: Loss of NKX3.1 expression in human prostate cancers correlates with tumor progression. Cancer Res.60(21),6111–6115 (2000).
    • 87  Aslan G, Irer B, Tuna B, Yorukoglu K, Saatcioglu F, Celebi I: Analysis of NKX3.1 expression in prostate cancer tissues and correlation with clinicopathologic features. Pathol. Res. Pract.202(2),93–98 (2006).
    • 88  Asatiani E, Huang WX, Wang A et al.: Deletion, methylation, and expression of the NKX3.1 suppressor gene in primary human prostate cancer. Cancer Res.65(4),1164–1173 (2005).
    • 89  Prescott JL, Blok L, Tindall DJ: Isolation and androgen regulation of the human homeobox cDNA, NKX3.1. Prostate35(1),71–80 (1998).
    • 90  Nadiminty N, Dutt S, Tepper C, Gao AC: Microarray analysis reveals potential target genes of NF-kB2/p52 in LNCaP prostate cancer cells. Prostate70(3),276–287 (2010).
    • 91  Di JM, Zhou J, Zhou XL et al.: Cyclooxygenase-2 expression is associated with vascular endothelial growth factor-C and lymph node metastases in human prostate cancer. Arch. Med. Res.40(4),268–275 (2009).
    • 92  Tilki D, Irmak S, Oliveira-Ferrer L et al.: CEA-related cell adhesion molecule-1 is involved in angiogenic switch in prostate cancer. Oncogene25(36),4965–4974 (2006).
    • 93  Brakenhielm E, Burton JB, Johnson M et al.: Modulating metastasis by a lymphangiogenic switch in prostate cancer. Int. J. Cancer121(10),2153–2161 (2007).
    • 94  Burton JB, Priceman SJ, Sung JL et al.: Suppression of prostate cancer nodal and systemic metastasis by blockade of the lymphangiogenic axis. Cancer Res.68(19),7828–7837 (2008).
    • 95  Joukov V, Kumar V, Sorsa T et al.: A recombinant mutant vascular endothelial growth factor-C that has lost vascular endothelial growth factor receptor-2 binding, activation, and vascular permeability activities. J. Biol. Chem.273(12),6599–6602 (1998).
    • 96  Zeng Y, Opeskin K, Goad J, Williams ED: Tumor-induced activation of lymphatic endothelial cells via vascular endothelial growth factor receptor-2 is critical for prostate cancer lymphatic metastasis. Cancer Res.66(19),9566–9575 (2006).
    • 97  Lin J, Lalani AS, Harding TC et al.: Inhibition of lymphogenous metastasis using adeno-associated virus-mediated gene transfer of a soluble VEGFR-3 decoy receptor. Cancer Res.65(15),6901–6909 (2005).
    • 98  Tuomela J, Valta M, Seppanen J, Tarkkonen K, Vaananen HK, Harkonen P: Overexpression of vascular endothelial growth factor C increases growth and alters the metastatic pattern of orthotopic PC-3 prostate tumors. BMC Cancer9,362 (2009).
    • 99  Wiley HE, Gonzalez EB, Maki W, Wu MT, Hwang ST: Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J. Natl Cancer Inst.93(21),1638–1643 (2001).
    • 100  Shields JD, Emmett MS, Dunn DB et al.: Chemokine-mediated migration of melanoma cells towards lymphatics – a mechanism contributing to metastasis. Oncogene26(21),2997–3005 (2007).