We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/fon.10.157

The role of chromatin-modifying factors in cancer biology emerged exponentially in the last 10 years, and increased attention has been focused on Polycomb group (PcG) proteins and their enzymatic activities. PcG proteins are repressive chromatin modifiers required for proliferation and development. The frequent deregulation of PcG activities in human tumors has direct oncogenic effects and results, essential for cancer cell proliferation. Here we will review the recent findings regarding PcG proteins in prospective tumor development, focusing on the molecular mechanisms that deregulate PcG expression in different tumors, at the downstream pathways to PcG expression (that contribute to cancer development) and at the mechanisms that regulate PcG recruitment to specific targets. Finally, we will speculate on the benefit of PcG inhibition for cancer treatment, reviewing potential pharmacological strategies.

Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

Bibliography

  • Simon JA, Kingston RE: Mechanisms of polycomb gene silencing: knowns and unknowns. Nat. Rev. Mol. Cell Biol.10(10),697–708 (2009).
  • Simon J: Locking in stable states of gene expression: transcriptional control during Drosophila development. Curr. Opin. Cell Biol.7(3),376–385 (1995).
  • Schwartz YB, Pirrotta V: Polycomb complexes and epigenetic states. Curr. Opin. Cell Biol.20(3),266–273 (2008).
  • Orlando V, Paro R: Chromatin multiprotein complexes involved in the maintenance of transcription patterns. Curr. Opin. Genet. Dev.5(2),174–179 (1995).
  • Kennison JA: The Polycomb and trithorax group proteins of Drosophila: trans-regulators of homeotic gene function. Annu. Rev. Genet.29,289–303 (1995).
  • Morey L, Helin K: Polycomb group protein-mediated repression of transcription. Trends Biochem. Sci.35(6),323–332 (2010).
  • Francis NJ, Saurin AJ, Shao Z, Kingston RE: Reconstitution of a functional core polycomb repressive complex. Mol. Cell.8(3),545–556 (2001).
  • King IF, Francis NJ, Kingston RE: Native and recombinant polycomb group complexes establish a selective block to template accessibility to repress transcription in vitro. Mol. Cell Biol.22(22),7919–7928 (2002).
  • Shao Z, Raible F, Mollaaghababa R et al.: Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell98(1),37–46 (1999).
  • 10  Voncken JW, Roelen BA, Roefs M et al.: Rnf2 (Ring1b) deficiency causes gastrulation arrest and cell cycle inhibition. Proc. Natl Acad. Sci. USA100(5),2468–2473 (2003).
  • 11  van der Lugt NM, Domen J, Linders K et al.: Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. Genes Dev.8(7),757–769 (1994).
  • 12  Cao R, Wang L, Wang H et al.: Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science298(5595),1039–1043 (2002).▪▪ Along with [13–15], identifies Polycomb repressive complex (PRC)2-dependent H3K27 methyltransferase activity.
  • 13  Czermin B, Melfi R, McCabe D, Seitz V, Imhof A, Pirrotta V: Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell111(2),185–196 (2002).▪▪ Along with [12,14,15], identifies PRC2-dependent H3K27 methyltransferase activity.
  • 14  Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D: Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev.16(22),2893–2905 (2002).▪▪ Along with [12,13,15], identifies PRC2-dependent H3K27 methyltransferase activity.
  • 15  Muller J, Hart CM, Francis NJ et al.: Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell111(2),197–208 (2002).▪▪ Along with [12–14], identifies PRC2-dependent H3K27 methyltransferase activity.
  • 16  Faust C, Lawson KA, Schork NJ, Thiel B, Magnuson T: The Polycomb-group gene eed is required for normal morphogenetic movements during gastrulation in the mouse embryo. Development125(22),4495–4506 (1998).
  • 17  O’Carroll D, Erhardt S, Pagani M, Barton SC, Surani MA, Jenuwein T: The polycomb-group gene Ezh2 is required for early mouse development. Mol. Cell Biol.21(13),4330–4336 (2001).
  • 18  Pasini D, Bracken AP, Jensen MR, Denchi EL, Helin K: Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J.23(20),4061–4071 (2004).
  • 19  Cao R, Wang H, He J, Erdjument-Bromage H, Tempst P, Zhang Y: Role of hPHF1 in H3K27 methylation and Hox gene silencing. Mol. Cell Biol.28(5),1862–1872 (2008).
  • 20  Sarma K, Margueron R, Ivanov A, Pirrotta V, Reinberg D: Ezh2 requires PHF1 to efficiently catalyze H3 lysine 27 trimethylation in vivo. Mol. Cell Biol.28(8),2718–2731 (2008).
  • 21  Li G, Margueron R, Ku M, Chambon P, Bernstein BE, Reinberg D: Jarid2 and PRC2, partners in regulating gene expression. Genes Dev.24(4),368–380 (2010).▪▪ Along with [22,24–26], identifies Jarid2 as a novel component and regulator of PRC2 recruitment.
  • 22  Shen X, Kim W, Fujiwara Y et al.: Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells. Cell139(7),1303–1314 (2009).▪▪ Along with [21,24–26], identifies Jarid2 as a novel component and regulator of PRC2 recruitment.
  • 23  Walker E, Chang WY, Hunkapiller J et al.: Polycomb-like 2 associates with PRC2 and regulates transcriptional networks during mouse embryonic stem cell self-renewal and differentiation. Cell Stem Cell6(2),153–166 (2010).
  • 24  Landeira D, Sauer S, Poot R et al.: Jarid2 is a PRC2 component in embryonic stem cells required for multilineage differentiation and recruitment of PRC1 and RNA polymerase II to developmental regulators. Nat. Cell Biol.12(6),618–624 (2010).▪▪ Along with [21,22,25,26], identifies Jarid2 as a novel component and regulator of PRC2 recruitment.
  • 25  Pasini D, Cloos PA, Walfridsson J et al.: JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature464(7286),306–310 (2010).▪▪ Along with [21,22,24,26], identifies Jarid2 as a novel component and regulator of PRC2 recruitment.
  • 26  Peng JC, Valouev A, Swigut T et al.: Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell139(7),1290–1302 (2009).▪▪ Along with [21,22,24,25], identifies Jarid2 as a novel component and regulator of PRC2 recruitment.
  • 27  Bernstein BE, Mikkelsen TS, Xie X et al.: A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell125(2),315–326 (2006).
  • 28  Boyer LA, Plath K, Zeitlinger J et al.: Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature441(7091),349–353 (2006).▪▪ Along with [29,30], identifies PcG target genes in mammalian cells, demonstrating that PcG proteins directly control the expression of essential regulators of development and cell fate.
  • 29  Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K: Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev.20(9),1123–1136 (2006).▪▪ Along with [28,30], identifies PcG target genes in mammalian cells, demonstrating that PcG proteins directly control the expression of essential regulators of development and cell fate.
  • 30  Lee TI, Jenner RG, Boyer LA et al.: Control of developmental regulators by Polycomb in human embryonic stem cells. Cell125(2),301–313 (2006).▪▪ Along with [28,29], identifies PcG target genes in mammalian cells, demonstrating that PcG proteins directly control the expression of essential regulators of development and cell fate.
  • 31  Mikkelsen TS, Ku M, Jaffe DB et al.: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature448(7153),553–560 (2007).
  • 32  Mohn F, Weber M, Rebhan M et al.: Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol. Cell.30(6),755–766 (2008).▪ Characterizes PRC2 activity throughout embryonic stem cell differentiation.
  • 33  Squazzo SL, O’Geen H, Komashko VM et al.: Suz12 binds to silenced regions of the genome in a cell-type-specific manner. Genome Res.16(7),890–900 (2006).
  • 34  Luger K: Structure and dynamic behavior of nucleosomes. Curr. Opin. Genet. Dev.13(2),127–135 (2003).
  • 35  Jenuwein T, Allis CD: Translating the histone code. Science293(5532),1074–1080 (2001).
  • 36  Hansen KH, Helin K: Epigenetic inheritance through self-recruitment of the polycomb repressive complex 2. Epigenetics4(3),133–138 (2009).
  • 37  Waddington CH: The epigenotype. Endeavour1,18–20 (1942).
  • 38  Levenson JM, Sweatt JD: Epigenetic mechanisms in memory formation. Nat. Rev. Neurosci.6(2),108–118 (2005).
  • 39  Keverne B: Monoallelic gene expression and mammalian evolution. Bioessays31(12),1318–1326 (2009).
  • 40  Sparmann A, van Lohuizen M: Polycomb silencers control cell fate, development and cancer. Nat. Rev. Cancer6(11),846–856 (2006).
  • 41  Cao R, Zhang Y: SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol. Cell15(1),57–67 (2004).
  • 42  Cao R, Tsukada Y, Zhang Y: Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol. Cell20(6),845–854 (2005).
  • 43  Bernstein E, Duncan EM, Masui O, Gil J, Heard E, Allis CD: Mouse polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Mol. Cell. Biol.26(7),2560–2569 (2006).
  • 44  Wang H, Wang L, Erdjument-Bromage H et al.: Role of histone H2A ubiquitination in Polycomb silencing. Nature431(7010),873–878 (2004).▪▪ Identifies PRC1 H2A ubiquitin ligase activity.
  • 45  Francis NJ, Kingston RE, Woodcock CL: Chromatin compaction by a polycomb group protein complex. Science306(5701),1574–1577 (2004).
  • 46  Kuzmichev A, Jenuwein T, Tempst P, Reinberg D: Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Mol. Cell14(2),183–193 (2004).
  • 47  Kuzmichev A, Margueron R, Vaquero A et al.: Composition and histone substrates of polycomb repressive group complexes change during cellular differentiation. Proc. Natl Acad. Sci. USA102(6),1859–1864 (2005).
  • 48  Hanahan D, Weinberg RA: The hallmarks of cancer. Cell100(1),57–70 (2000).
  • 49  Mantovani A: Cancer: inflaming metastasis. Nature457(7225),36–37 (2009).
  • 50  Carver BS, Pandolfi PP: Mouse modeling in oncologic preclinical and translational research. Clin. Cancer Res.12(18),5305–5311 (2006).
  • 51  Degenhardt K, White E: A mouse model system to genetically dissect the molecular mechanisms regulating tumorigenesis. Clin. Cancer Res.12(18),5298–5304 (2006).
  • 52  Fomchenko EI, Holland EC: Mouse models of brain tumors and their applications in preclinical trials. Clin. Cancer Res.12(18),5288–5297 (2006).
  • 53  Olive KP, Tuveson DA: The use of targeted mouse models for preclinical testing of novel cancer therapeutics. Clin. Cancer Res.12(18),5277–5287 (2006).
  • 54  Rangarajan A, Weinberg RA: Opinion: comparative biology of mouse versus human cells: modeling human cancer in mice. Nat. Rev. Cancer.3(12),952–959 (2003).
  • 55  Karakosta A, Golias C, Charalabopoulos A, Peschos D, Batistatou A, Charalabopoulos K: Genetic models of human cancer as a multistep process. Paradigm models of colorectal cancer, breast cancer, and chronic myelogenous and acute lymphoblastic leukaemia. J. Exp. Clin. Cancer Res.24(4),505–514 (2005).
  • 56  Krivtsov AV, Armstrong SA: MLL translocations, histone modifications and leukaemia stem-cell development. Nat. Rev. Cancer7(11),823–833 (2007).
  • 57  Bracken AP, Helin K: Polycomb group proteins: navigators of lineage pathways led astray in cancer. Nat. Rev. Cancer9(11),773–784 (2009).
  • 58  van Lohuizen M, Verbeek S, Scheijen B, Wientjens E, van der Gulden H, Berns A: Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell65(5),737–752 (1991).▪▪ Along with [59], identifies BMI1 oncogenic activity.
  • 59  Haupt Y, Alexander WS, Barri G, Klinken SP, Adams JM: Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in E mu-myc transgenic mice. Cell65(5),753–763 (1991).▪▪ Along with [58], identifies BMI1 oncogenic activity.
  • 60  Varambally S, Dhanasekaran SM, Zhou M et al.: The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature419(6907),624–629 (2002).▪▪ Identifies putative EZH2 oncogenic functions.
  • 61  Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K: EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J.22(20),5323–5335 (2003).▪▪ Characterizes of the role of the pRB–E2F pathway in regulating the expression of PRC2 components in normal and cancer cells.
  • 62  Bernard D, Martinez-Leal JF, Rizzo S et al.: CBX7 controls the growth of normal and tumor-derived prostate cells by repressing the Ink4a/Arf locus. Oncogene24(36),5543–5551 (2005).
  • 63  van Leenders GJ, Dukers D, Hessels D et al.: Polycomb-group oncogenes EZH2, BMI1, and RING1 are overexpressed in prostate cancer with adverse pathologic and clinical features. Eur. Urol.52(2),455–463 (2007).
  • 64  Karanikolas BD, Figueiredo ML, Wu L: Comprehensive evaluation of the role of EZH2 in the growth, invasion, and aggression of a panel of prostate cancer cell lines. Prostate70(6),675–688 (2010).
  • 65  Yu J, Cao Q, Mehra R et al.: Integrative genomics analysis reveals silencing of β-adrenergic signaling by Polycomb in prostate cancer. Cancer Cell12(5),419–431 (2007).▪▪ Identifies ADRB2 as direct PcG target in prostate and breast cancer.
  • 66  Karanikolas BD, Figueiredo ML, Wu L: Polycomb group protein enhancer of zeste 2 is an oncogene that promotes the neoplastic transformation of a benign prostatic epithelial cell line. Mol. Cancer Res.7(9),1456–1465 (2009).
  • 67  Wang W, Yuasa T, Tsuchiya N et al.: The novel tumor-suppressor Mel-18 in prostate cancer: its functional polymorphism, expression and clinical significance. Int. J. Cancer125(12),2836–2843 (2009).
  • 68  Guo WJ, Datta S, Band V, Dimri GP: Mel-18, a polycomb group protein, regulates cell proliferation and senescence via transcriptional repression of Bmi-1 and c-Myc oncoproteins. Mol. Biol. Cell.18(2),536–546 (2007).
  • 69  Kajiume T, Ninomiya Y, Ishihara H, Kanno R, Kanno M: Polycomb group gene mel-18 modulates the self-renewal activity and cell cycle status of hematopoietic stem cells. Exp. Hematol.32(6),571–578 (2004).
  • 70  Park IK, Qian D, Kiel M et al.: Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature423(6937),302–305 (2003).
  • 71  Berezovska OP, Glinskii AB, Yang Z, Li XM, Hoffman RM, Glinsky GV: Essential role for activation of the Polycomb group (PcG) protein chromatin silencing pathway in metastatic prostate cancer. Cell Cycle5(16),1886–1901 (2006).
  • 72  Saramaki OR, Tammela TL, Martikainen PM, Vessella RL, Visakorpi T: The gene for polycomb group protein enhancer of zeste homolog 2 (EZH2) is amplified in late-stage prostate cancer. Genes Chromosomes Cancer45(7),639–645 (2006).
  • 73  Varambally S, Cao Q, Mani RS et al.: Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science322(5908),1695–1699 (2008).▪ Identifies Mir-101 as a direct regulator of EZH2 expression in cancer cells.
  • 74  Beke L, Nuytten M, Van Eynde A, Beullens M, Bollen M: The gene encoding the prostatic tumor suppressor PSP94 is a target for repression by the Polycomb group protein EZH2. Oncogene26(31),4590–4595 (2007).
  • 75  Min J, Zaslavsky A, Fedele G et al.: An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappaB. Nat. Med.16(3),286–294 (2010).
  • 76  Yu J, Rhodes DR, Tomlins SA et al.: A Polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Res.67(22),10657–10663 (2007).
  • 77  Furnari FB, Fenton T, Bachoo RM et al.: Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev.21(21),2683–2710 (2007).
  • 78  Abdouh M, Facchino S, Chatoo W, Balasingam V, Ferreira J, Bernier G: BMI1 sustains human glioblastoma multiforme stem cell renewal. J. Neurosci.29(28),8884–8896 (2009).
  • 79  Godlewski J, Nowicki MO, Bronisz A et al.: Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res.68(22),9125–9130 (2008).
  • 80  Korur S, Huber RM, Sivasankaran B et al.: GSK3β regulates differentiation and growth arrest in glioblastoma. PLoS One4(10),E7443 (2009).
  • 81  Suva ML, Riggi N, Janiszewska M et al.: EZH2 is essential for glioblastoma cancer stem cell maintenance. Cancer Res.69(24),9211–9218 (2009).
  • 82  Bruggeman SW, Hulsman D, Tanger E et al.: Bmi1 controls tumor development in an Ink4a/Arf-independent manner in a mouse model for glioma. Cancer Cell.12(4),328–341 (2007).▪ Characterization of Ink4a-Arf-independent functions of Bmi1 in a model of brain tumor.
  • 83  Hayry V, Tanner M, Blom T et al.: Copy number alterations of the polycomb gene BMI1 in gliomas. Acta Neuropathol.116(1),97–102 (2008).
  • 84  Ochiai H, Takenobu H, Nakagawa A et al.: Bmi1 is a MYCN target gene that regulates tumorigenesis through repression of KIF1Bb and TSLC1 in neuroblastoma. Oncogene29(18),2681–2690 (2010).
  • 85  Bruggeman SW, Hulsman D, van Lohuizen M: Bmi1 deficient neural stem cells have increased integrin dependent adhesion to self-secreted matrix. Biochim. Biophys. Acta1790(5),351–360 (2009).
  • 86  Wiederschain D, Chen L, Johnson B et al.: Contribution of Polycomb homologues Bmi-1 and Mel-18 to medulloblastoma pathogenesis. Mol. Cell Biol.27(13),4968–4979 (2007).
  • 87  Collett K, Eide GE, Arnes J et al.: Expression of enhancer of zeste homologue 2 is significantly associated with increased tumor cell proliferation and is a marker of aggressive breast cancer. Clin. Cancer Res.12(4),1168–1174 (2006).
  • 88  Kleer CG, Cao Q, Varambally S et al.: EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl Acad. Sci. USA100(20),11606–11611 (2003).
  • 89  Ding L, Erdmann C, Chinnaiyan AM, Merajver SD, Kleer CG: Identification of EZH2 as a molecular marker for a precancerous state in morphologically normal breast tissues. Cancer Res.66(8),4095–4099 (2006).
  • 90  Silva J, Garcia JM, Pena C et al.: Implication of polycomb members Bmi-1, Mel-18, and Hpc-2 in the regulation of p16INK4a, p14ARF, h-TERT, and c-Myc expression in primary breast carcinomas. Clin. Cancer Res.12(23),6929–6936 (2006).
  • 91  Lee JY, Jang KS, Shin DH et al.: Mel-18 negatively regulates INK4a/ARF-independent cell cycle progression via Akt inactivation in breast cancer. Cancer Res.68(11),4201–4209 (2008).
  • 92  Hoenerhoff MJ, Chu I, Barkan D et al.: BMI1 cooperates with H-RAS to induce an aggressive breast cancer phenotype with brain metastases. Oncogene28(34),3022–3032 (2009).
  • 93  Puppe J, Drost R, Liu X et al.: BRCA1-deficient mammary tumor cells are dependent on EZH2 expression and sensitive to Polycomb Repressive Complex 2-inhibitor 3-deazaneplanocin A. Breast Cancer Res.11(4),R63 (2009).
  • 94  Li X, Gonzalez ME, Toy K, Filzen T, Merajver SD, Kleer CG: Targeted overexpression of EZH2 in the mammary gland disrupts ductal morphogenesis and causes epithelial hyperplasia. Am. J. Pathol.175(3),1246–1254 (2009).
  • 95  Ben-Porath I, Thomson MW, Carey VJ et al.: An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat. Genet.40(5),499–507 (2008).
  • 96  Gupta RA, Shah N, Wang KC et al.: Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature464(7291),1071–1076 (2010).▪ Characterization of the role of the long noncoding RNA HOTAIR in cancer development through direct regulation of PRC2 localization.
  • 97  Rinn JL, Kertesz M, Wang JK et al.: Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell129(7),1311–1323 (2007).▪ Identifies HOTAIR to be a regulator of the HOXD locus through direct binding to the PRC2 complex.
  • 98  Lessard J, Schumacher A, Thorsteinsdottir U, van Lohuizen M, Magnuson T, Sauvageau G: Functional antagonism of the Polycomb-group genes eed and Bmi1 in hemopoietic cell proliferation. Genes Dev.13(20),2691–2703 (1999).
  • 99  Su IH, Basavaraj A, Krutchinsky AN et al.: Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nat. Immunol.4(2),124–131 (2003).
  • 100  Bea S, Tort F, Pinyol M et al.: BMI-1 gene amplification and overexpression in hematological malignancies occur mainly in mantle cell lymphomas. Cancer Res.61(6),2409–2412 (2001).
  • 101  Raaphorst FM, van Kemenade FJ, Blokzijl T et al.: Coexpression of BMI-1 and EZH2 Polycomb group genes in Reed-Sternberg cells of Hodgkin’s disease. Am. J. Pathol.157(3),709–715 (2000).
  • 102  van Kemenade FJ, Raaphorst FM, Blokzijl T et al.: Coexpression of BMI-1 and EZH2 polycomb-group proteins is associated with cycling cells and degree of malignancy in B-cell non-Hodgkin lymphoma. Blood97(12),3896–3901 (2001).
  • 103  Visser HP, Gunster MJ, Kluin-Nelemans HC et al.: The Polycomb group protein EZH2 is upregulated in proliferating, cultured human mantle cell lymphoma. Br. J. Haematol.112(4),950–958 (2001).
  • 104  van Galen JC, Muris JJ, Oudejans JJ et al.: Expression of the polycomb-group gene BMI1 is related to an unfavourable prognosis in primary nodal DLBCL. J. Clin. Pathol.60(2),167–172 (2007).
  • 105  Alkema MJ, Jacobs H, van Lohuizen M, Berns A: Pertubation of B and T cell development and predisposition to lymphomagenesis in Emu Bmi1 transgenic mice require the Bmi1 RING finger. Oncogene15(8),899–910 (1997).
  • 106  Sander S, Bullinger L, Klapproth K et al.: MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood112(10),4202–4212 (2008).
  • 107  Morin RD, Johnson NA, Severson TM et al.: Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat. Genet.42(2),181–185 (2010).▪▪ Identifies loss-of-functional mutations of the EZH2 catalytic domain in B-cell lymphomas.
  • 108  Scott CL, Gil J, Hernando E et al.: Role of the chromobox protein CBX7 in lymphomagenesis. Proc. Natl Acad. Sci. USA104(13),5389–5394 (2007).
  • 109  Redner RL: Variations on a theme: the alternate translocations in APL. Leukemia16(10),1927–1932 (2002).
  • 110  Villa R, Pasini D, Gutierrez A et al.: Role of the polycomb repressive complex 2 in acute promyelocytic leukemia. Cancer Cell11(6),513–525 (2007).
  • 111  Boukarabila H, Saurin AJ, Batsche E et al.: The PRC1 Polycomb group complex interacts with PLZF/RARα to mediate leukemic transformation. Genes Dev.23(10),1195–1206 (2009).
  • 112  Chowdhury M, Mihara K, Yasunaga S, Ohtaki M, Takihara Y, Kimura A: Expression of Polycomb-group (PcG) protein BMI-1 predicts prognosis in patients with acute myeloid leukemia. Leukemia21(5),1116–1122 (2007).
  • 113  Mohty M, Yong AS, Szydlo RM, Apperley JF, Melo JV: The polycomb group BMI1 gene is a molecular marker for predicting prognosis of chronic myeloid leukemia. Blood110(1),380–383 (2007).
  • 114  Sawa M, Yamamoto K, Yokozawa T et al.: BMI-1 is highly expressed in M0-subtype acute myeloid leukemia. Int. J. Hematol.82(1),42–47 (2005).
  • 115  Lessard J, Sauvageau G: Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature423(6937),255–260 (2003).▪▪ Demonstrates that BMI1 is required for the maintenance of cancer stem cells.
  • 116  Fiskus W, Wang Y, Sreekumar A et al.: Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells. Blood114(13),2733–2743 (2009).
  • 117  Tokimasa S, Ohta H, Sawada A et al.: Lack of the Polycomb-group gene rae28 causes maturation arrest at the early B-cell developmental stage. Exp. Hematol.29(1),93–103 (2001).
  • 118  Ernst T, Chase AJ, Score J et al.: Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat. Genet.42(8),722–726 (2010).
  • 119  Nikoloski G, Langemeijer SM, Kuiper RP et al.: Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat. Genet.42(8),665–667 (2010).▪▪ Identifies EZH2 homozygous loss of function mutations in myeloid disorders.
  • 120  Breuer RH, Snijders PJ, Smit EF et al.: Increased expression of the EZH2 polycomb group gene in BMI-1-positive neoplastic cells during bronchial carcinogenesis. Neoplasia6(6),736–743 (2004).
  • 121  Breuer RH, Snijders PJ, Sutedja GT et al.: Expression of the p16(INK4a) gene product, methylation of the p16(INK4a) promoter region and expression of the polycomb-group gene BMI-1 in squamous cell lung carcinoma and premalignant endobronchial lesions. Lung Cancer48(3),299–306 (2005).
  • 122  Dovey JS, Zacharek SJ, Kim CF, Lees JA: Bmi1 is critical for lung tumorigenesis and bronchioalveolar stem cell expansion. Proc. Natl Acad. Sci. USA105(33),11857–11862 (2008).
  • 123  Hussain M, Rao M, Humphries AE et al.: Tobacco smoke induces polycomb-mediated repression of Dickkopf-1 in lung cancer cells. Cancer Res.69(8),3570–3578 (2009).
  • 124  Sasaki M, Ikeda H, Itatsu K et al.: The overexpression of polycomb group proteins Bmi1 and EZH2 is associated with the progression and aggressive biological behavior of hepatocellular carcinoma. Lab. Invest.88(8),873–882 (2008).
  • 125  Steele JC, Torr EE, Noakes KL et al.: The polycomb group proteins, BMI-1 and EZH2, are tumour-associated antigens. Br. J. Cancer95(9),1202–1211 (2006).
  • 126  Kang MK, Kim RH, Kim SJ et al.: Elevated Bmi-1 expression is associated with dysplastic cell transformation during oral carcinogenesis and is required for cancer cell replication and survival. Br. J. Cancer96(1),126–133 (2007).
  • 127  Kidani K, Osaki M, Tamura T et al.: High expression of EZH2 is associated with tumor proliferation and prognosis in human oral squamous cell carcinomas. Oral Oncol.45(1),39–46 (2009).
  • 128  Cai GH, Wang K, Miao Q, Peng YS, Chen XY: Expression of polycomb protein EZH2 in multistage tissues of gastric carcinogenesis. J. Dig. Dis.11(2),88–93 (2010).
  • 129  Li W, Li Y, Tan Y, Ma K, Cui J: Bmi-1 is critical for the proliferation and invasiveness of gastric carcinoma cells. J. Gastroenterol. Hepatol.25(3),568–575 (2010).
  • 130  Mimori K, Ogawa K, Okamoto M, Sudo T, Inoue H, Mori M: Clinical significance of enhancer of zeste homolog 2 expression in colorectal cancer cases. Eur. J. Surg. Oncol.31(4),376–380 (2005).
  • 131  Tateishi K, Ohta M, Kanai F et al.: Dysregulated expression of stem cell factor Bmi1 in precancerous lesions of the gastrointestinal tract. Clin. Cancer Res.12(23),6960–6966 (2006).
  • 132  Sasaki H, Setoguchi T, Matsunoshita Y, Gao H, Hirotsu M, Komiya S: The knock-down of overexpressed EZH2 and BMI-1 does not prevent osteosarcoma growth. Oncol. Rep.23(3),677–684 (2010).
  • 133  Arisan S, Buyuktuncer ED, Palavan-Unsal N, Caskurlu T, Cakir OO, Ergenekon E: Increased expression of EZH2, a polycomb group protein, in bladder carcinoma. Urol. Int.75(3),252–257 (2005).
  • 134  Raman JD, Mongan NP, Tickoo SK, Boorjian SA, Scherr DS, Gudas LJ: Increased expression of the polycomb group gene, EZH2, in transitional cell carcinoma of the bladder. Clin. Cancer Res.11(24 Pt 1),8570–8576 (2005).
  • 135  Shafaroudi AM, Mowla SJ, Ziaee SA, Bahrami AR, Atlasi Y, Malakootian M: Overexpression of BMI1, a Polycomb group repressor protein, in bladder tumors: a preliminary report. Urol. J.5(2),99–105 (2008).
  • 136  Weikert S, Christoph F, Kollermann J et al.: Expression levels of the EZH2 polycomb transcriptional repressor correlate with aggressiveness and invasive potential of bladder carcinomas. Int. J. Mol. Med.16(2),349–353 (2005).
  • 137  McHugh JB, Fullen DR, Ma L, Kleer CG, Su LD: Expression of polycomb group protein EZH2 in nevi and melanoma. J. Cutan. Pathol.34(8),597–600 (2007).
  • 138  Bachmann IM, Puntervoll HE, Otte AP, Akslen LA: Loss of BMI-1 expression is associated with clinical progress of malignant melanoma. Mod. Pathol.21(5),583–590 (2008).
  • 139  Song LB, Li J, Liao WT et al.: The Polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells. J. Clin. Invest.119(12),3626–3636 (2009).
  • 140  Friedman JM, Liang G, Liu CC et al.: The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res.69(6),2623–2629 (2009).
  • 141  Hinz S, Kempkensteffen C, Weikert S et al.: EZH2 polycomb transcriptional repressor expression correlates with methylation of the APAF-1 gene in superficial transitional cell carcinoma of the bladder. Tumour Biol.28(3),151–157 (2007).
  • 142  Karamitopoulou E, Pallante P, Zlobec I et al.: Loss of the CBX7 protein expression correlates with a more aggressive phenotype in pancreatic cancer. Eur. J. Cancer46(8),1438–1444 (2010).
  • 143  Deshpande AM, Akunowicz JD, Reveles XT et al.: PHC3, a component of the hPRC-H complex, associates with E2F6 during G0 and is lost in osteosarcoma tumors. Oncogene26(12),1714–1722 (2007).
  • 144  Koontz JI, Soreng AL, Nucci M et al.: Frequent fusion of the JAZF1 and JJAZ1 genes in endometrial stromal tumors. Proc. Natl Acad. Sci. USA98(11),6348–6353 (2001).
  • 145  Micci F, Panagopoulos I, Bjerkehagen B, Heim S: Consistent rearrangement of chromosomal band 6p21 with generation of fusion genes JAZF1/PHF1 and EPC1/PHF1 in endometrial stromal sarcoma. Cancer Res.66(1),107–112 (2006).
  • 146  Li H, Wang J, Mor G, Sklar J: A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells. Science321(5894),1357–1361 (2008).
  • 147  Ringrose L, Paro R: Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development134(2),223–232 (2007).
  • 148  Ringrose L, Rehmsmeier M, Dura JM, Paro R: Genome-wide prediction of Polycomb/Trithorax response elements in Drosophila melanogaster. Dev. Cell5(5),759–771 (2003).
  • 149  Negre N, Hennetin J, Sun LV et al.: Chromosomal distribution of PcG proteins during Drosophila development. PLoS Biol.4(6),E170 (2006).
  • 150  Sing A, Pannell D, Karaiskakis A et al.: A vertebrate Polycomb response element governs segmentation of the posterior hindbrain. Cell138(5),885–897 (2009).
  • 151  Woo CJ, Kharchenko PV, Daheron L, Park PJ, Kingston RE: A region of the human HOXD cluster that confers polycomb-group responsiveness. Cell140(1),99–110 (2009).
  • 152  Pasini D, Hansen KH, Christensen J, Agger K, Cloos PA, Helin K: Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and Polycomb-Repressive Complex 2. Genes Dev.22(10),1345–1355 (2008).
  • 153  Herranz N, Pasini D, Diaz VM et al.: Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor. Mol. Cell Biol.28(15),4772–4781 (2008).
  • 154  Shi B, Liang J, Yang X et al.: Integration of estrogen and Wnt signaling circuits by the polycomb group protein EZH2 in breast cancer cells. Mol. Cell Biol.27(14),5105–5119 (2007).
  • 155  Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT: Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science322(5902),750–756 (2008).
  • 156  Yap KL, Li S, Munoz-Cabello AM et al.: Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol. Cell.38(5),662–674 (2010).▪ Demonstrates that CBX7 binds an antisense noncoding transcript of the INK4A-ARF locus to regulate p16 and ARF repression.
  • 157  Tsai MC, Manor O, Wan Y et al.: Long noncoding RNA as modular scaffold of histone modification complexes. Science329(5992),689–693 (2010).
  • 158  Bracken AP, Kleine-Kohlbrecher D, Dietrich N et al.: The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev.21(5),525–530 (2007).▪▪ Demonstrates the mechanisms of PcG regulation at the INK4A-ARF locus during cellular senescence.
  • 159  Dietrich N, Bracken AP, Trinh E et al.: Bypass of senescence by the polycomb group protein CBX8 through direct binding to the INK4A-ARF locus. EMBO J.26(6),1637–1648 (2007).
  • 160  Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M: The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature397(6715),164–168 (1999).
  • 161  Gil J, Peters G: Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nat. Rev. Mol. Cell Biol.7(9),667–677 (2006).
  • 162  Gil J, Bernard D, Martinez D, Beach D: Polycomb CBX7 has a unifying role in cellular lifespan. Nat. Cell Biol.6(1),67–72 (2004).
  • 163  Jacobs JJ, Scheijen B, Voncken JW, Kieboom K, Berns A, van Lohuizen M: Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev.13(20),2678–2690 (1999).
  • 164  Bruggeman SW, Valk-Lingbeek ME, van der Stoop PP et al.: Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice. Genes Dev.19(12),1438–1443 (2005).
  • 165  Chen H, Gu X, Su IH et al.: Polycomb protein Ezh2 regulates pancreatic β-cell Ink4a/Arf expression and regeneration in diabetes mellitus. Genes Dev.23(8),975–985 (2009).
  • 166  Ezhkova E, Pasolli HA, Parker JS et al.: Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell136(6),1122–1135 (2009).
  • 167  Liu J, Cao L, Chen J et al.: Bmi1 regulates mitochondrial function and the DNA damage response pathway. Nature459(7245),387–392 (2009).▪ Demonstrates that the developmental defects in BMI1-null mice depend on deregulation of mitochondrial functions and activation of the DNA damage response.
  • 168  Vonlanthen S, Heighway J, Altermatt HJ et al.: The bmi-1 oncoprotein is differentially expressed in non-small-cell lung cancer and correlates with INK4A-ARF locus expression. Br. J. Cancer84(10),1372–1376 (2001).
  • 169  Dukers DF, van Galen JC, Giroth C et al.: Unique polycomb gene expression pattern in Hodgkin’s lymphoma and Hodgkin’s lymphoma-derived cell lines. Am. J. Pathol.164(3),873–881 (2004).
  • 170  Young NP, Jacks T: Tissue-specific p19Arf regulation dictates the response to oncogenic K-ras. Proc. Natl Acad. Sci. USA107(22),10184–10189 (2010).
  • 171  Douglas D, Hsu JH, Hung L et al.: BMI-1 promotes ewing sarcoma tumorigenicity independent of CDKN2A repression. Cancer Res.68(16),6507–6515 (2008).
  • 172  Christman JK: 5-Azacytidine and 5-aza-2´-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene21(35),5483–5495 (2002).
  • 173  Klose RJ, Bird AP: Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci.31(2),89–97 (2006).
  • 174  Kangaspeska S, Stride B, Metivier R et al.: Transient cyclical methylation of promoter DNA. Nature452(7183),112–115 (2008).
  • 175  Metivier R, Gallais R, Tiffoche C et al.: Cyclical DNA methylation of a transcriptionally active promoter. Nature452(7183),45–50 (2008).
  • 176  Rai K, Huggins IJ, James SR, Karpf AR, Jones DA, Cairns BR: DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell135(7),1201–1212 (2008).
  • 177  Tahiliani M, Koh KP, Shen Y et al.: Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science324(5929),930–935 (2009).
  • 178  Jones PA, Baylin SB: The fundamental role of epigenetic events in cancer. Nat. Rev. Genet.3(6),415–428 (2002).
  • 179  Laird PW: Cancer epigenetics. Hum. Mol. Genet.14,R65–R76 (2005).
  • 180  Schwabe M, Lubbert M: Epigenetic lesions in malignant melanoma. Curr. Pharm. Biotechnol.8(6),382–387 (2007).
  • 181  Vire E, Brenner C, Deplus R et al.: The Polycomb group protein EZH2 directly controls DNA methylation. Nature439(7078),871–874 (2006).▪▪ Demonstrates the interactions of EZH2 with DNA methyltransferases.
  • 182  Paul TA, Bies J, Small D, Wolff L: Signatures of polycomb repression and reduced H3K4 trimethylation are associated with p15INK4b DNA methylation in AML. Blood115(15),3098–3108 (2010).
  • 183  Reynolds PA, Sigaroudinia M, Zardo G et al.: Tumor suppressor p16INK4A regulates polycomb-mediated DNA hypermethylation in human mammary epithelial cells. J. Biol. Chem.281(34),24790–24802 (2006).
  • 184  McGarvey KM, Greene E, Fahrner JA, Jenuwein T, Baylin SB: DNA methylation and complete transcriptional silencing of cancer genes persist after depletion of EZH2. Cancer Res.67(11),5097–5102 (2007).
  • 185  Mohammad HP, Cai Y, McGarvey KM et al.: Polycomb CBX7 promotes initiation of heritable repression of genes frequently silenced with cancer-specific DNA hypermethylation. Cancer Res.69(15),6322–6330 (2009).
  • 186  Kondo Y, Shen L, Cheng AS et al.: Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat. Genet.40(6),741–750 (2008).▪▪ Demonstrates the PRC2-dependent and DNA methylation-independent repression of tumor suppressive genes in prostate cancer.
  • 187  Ohm JE, McGarvey KM, Yu X et al.: A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat. Genet.39(2),237–242 (2007).
  • 188  Schlesinger Y, Straussman R, Keshet I et al.: Polycomb-mediated methylation on Lys27 of histone H3 premarks genes for de novo methylation in cancer. Nat. Genet.39(2),232–236 (2007).
  • 189  Tan J, Yang X, Zhuang L et al.: Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev.21(9),1050–1063 (2007).
  • 190  Sun F, Chan E, Wu Z, Yang X, Marquez VE, Yu Q: Combinatorial pharmacologic approaches target EZH2-mediated gene repression in breast cancer cells. Mol. Cancer Ther.8(12),3191–3202 (2009).
  • 191  Miranda TB, Cortez CC, Yoo CB et al.: DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol. Cancer Ther.8(6),1579–1588 (2009).
  • 192  Margueron R, Justin N, Ohno K et al.: Role of the polycomb protein EED in the propagation of repressive histone marks. Nature461(7265),762–767 (2009).▪▪ Demonstrates the direct interaction of EED with trimethylated H3K27.
  • 201  The Conserved Domain database www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml
  • 202  PubMed database www.ncbi.nlm.nih.gov/pubmed