We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Impact of heat-shock protein 90 on cancer metastasis

    Shinji Tsutsumi

    Urologic Oncology Branch, National Cancer Institute, 9000 Rockville Pike, Bldg. 10/CRC, 1-5940, Bethesda, MD, 20892-1107, USA

    ,
    Kristin Beebe

    Urologic Oncology Branch, National Cancer Institute, 9000 Rockville Pike, Bldg. 10/CRC, 1-5940, Bethesda, MD, 20892-1107, USA

    &
    Len Neckers

    † Author for correspondence

    Urologic Oncology Branch, National Cancer Institute, 9000 Rockville Pike, Bldg. 10/CRC, 1-5940, Bethesda, MD, 20892-1107, USA.

    Published Online:https://doi.org/10.2217/fon.09.30

    Cancer metastasis is the result of complex processes, including alteration of cell adhesion/motility in the microenvironment and neoangiogenesis, that are necessary to support cancer growth in tissues distant from the primary tumor. The molecular chaperone heat-shock protein 90 (Hsp90), also termed the ‘cancer chaperone’, plays a crucial role in maintaining the stability and activity of numerous signaling proteins involved in these processes. Small-molecule Hsp90 inhibitors display anticancer activity both in vitro and in vivo, and multiple Phase II and Phase III clinical trials of several structurally distinct Hsp90 inhibitors are currently underway. In this review, we will highlight the importance of Hsp90 in cancer metastasis and the therapeutic potential of Hsp90 inhibitors as antimetastasis drugs.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Bacac M, Stamenkovic I: Metastatic cancer cell. Annu. Rev. Pathol.3,221–247 (2008).
    • Weigelt B, Peterse JL, van ’t Veer LJ: Breast cancer metastasis: markers and models. Nat. Rev. Cancer5,591–602 (2005).
    • Romanucci M, Marinelli A, Sarli G, Della Salda L: Heat shock protein expression in canine malignant mammary tumours. BMC Cancer6,171 (2006).
    • Kamal A, Thao L, Sensintaffar J et al.: A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature425,407–410 (2003).
    • Neckers L: Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol. Med.8,S55–S61 (2002).
    • Pratt WB, Toft DO: Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp. Biol. Med. (Maywood)228,111–133 (2003).
    • Pearl LH, Prodromou C: Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu. Rev. Biochem.75,271–294 (2006).▪ Comprehensive review of Hsp90 structure and function.
    • Taldone T, Gozman A, Maharaj R, Chiosis G: Targeting Hsp90: small-molecule inhibitors and their clinical development. Curr. Opin. Pharmacol.8,370–374 (2008).▪ Good current summary of Hsp90 inhibitors in clinical development.
    • Sharp S, Workman P: Inhibitors of the HSP90 molecular chaperone: current status. Adv. Cancer Res.95,323–348 (2006).
    • 10  Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP: Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell89,239–250 (1997).▪▪ Describes the first co-crystallization of Hsp90 with geldanamycin.
    • 11  Grenert JP, Sullivan WP, Fadden P et al.: The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J. Biol. Chem.272,23843–23850 (1997).
    • 12  Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM: Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc. Natl Acad. Sci. USA91,8324–8328 (1994).▪▪ The initial identification of geldanamycin as an Hsp90 inhibitor.
    • 13  Workman P, Burrows F, Neckers L, Rosen N: Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann. NY Acad. Sci.1113,202–216 (2007).
    • 14  Felding-Habermann B: Integrin adhesion receptors in tumor metastasis. Clin. Exp. Metastasis20,203–213 (2003).
    • 15  Arnaout MA, Goodman SL, Xiong JP: Structure and mechanics of integrin-based cell adhesion. Curr. Opin. Cell Biol.19,495–507 (2007).
    • 16  Mitra SK, Hanson DA, Schlaepfer DD: Focal adhesion kinase: in command and control of cell motility. Nat. Rev. Mol. Cell Biol.6,56–68 (2005).
    • 17  McLean GW, Carragher NO, Avizienyte E et al.: The role of focal-adhesion kinase in cancer – a new therapeutic opportunity. Nat. Rev. Cancer5,505–515 (2005).
    • 18  Ochel HJ, Schulte TW, Nguyen P, Trepel J, Neckers L: The benzoquinone ansamycin geldanamycin stimulates proteolytic degradation of focal adhesion kinase. Mol. Genet. Metab.66,24–30 (1999).
    • 19  Rousseau S, Houle F, Kotanides H et al.: Vascular endothelial growth factor (VEGF)-driven actin-based motility is mediated by VEGFR2 and requires concerted activation of stress-activated protein kinase 2 (SAPK2/p38) and geldanamycin-sensitive phosphorylation of focal adhesion kinase. J. Biol. Chem.275,10661–10672 (2000).
    • 20  Masson-Gadais B, Houle F, Laferriere J, Huot J: Integrin αvβ3, requirement for VEGFR2-mediated activation of SAPK2/p38 and for Hsp90-dependent phosphorylation of focal adhesion kinase in endothelial cells activated by VEGF. Cell Stress Chaperones8,37–52 (2003).
    • 21  Koga F, Tsutsumi S, Neckers LM: Low dose geldanamycin inhibits hepatocyte growth factor and hypoxia-stimulated invasion of cancer cells. Cell Cycle6,1393–1402 (2007).
    • 22  Hannigan G, Troussard AA, Dedhar S: Integrin-linked kinase: a cancer therapeutic target unique among its ILK. Nat. Rev. Cancer5,51–63 (2005).
    • 23  Aoyagi Y, Fujita N, Tsuruo T: Stabilization of integrin-linked kinase by binding to Hsp90. Biochem. Biophys. Res. Commun.331,1061–1068 (2005).
    • 24  Yamazaki D, Kurisu S, Takenawa T: Regulation of cancer cell motility through actin reorganization. Cancer Sci.96,379–386 (2005).
    • 25  Overall CM, Lopez-Otin C: Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat. Rev. Cancer2,657–672 (2002).
    • 26  Anand-Apte B, Zetter B: Signaling mechanisms in growth factor-stimulated cell motility. Stem Cells15,259–267 (1997).
    • 27  Yu D, Hung MC: Overexpression of ErbB2 in cancer and ErbB2-targeting strategies. Oncogene19,6115–6121 (2000).
    • 28  Santin AD, Bellone S, Gokden M et al.: Overexpression of HER-2/neu in uterine serous papillary cancer. Clin. Cancer Res.8,1271–1279 (2002).
    • 29  Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL: Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science235,177–182 (1987).
    • 30  Ross JS, Fletcher JA: The HER-2/neu oncogene in breast cancer: prognostic factor, predictive factor, and target for therapy. Stem Cells16,413–428 (1998).
    • 31  Chavany C, Mimnaugh E, Miller P et al.: p185erbB2 binds to GRP94 in vivo. Dissociation of the p185erbB2/GRP94 heterocomplex by benzoquinone ansamycins precedes depletion of p185erbB2. J. Biol. Chem.271,4974–4977 (1996).
    • 32  Xu W, Mimnaugh E, Rosser MF et al.: Sensitivity of mature Erbb2 to geldanamycin is conferred by its kinase domain and is mediated by the chaperone protein Hsp90. J. Biol. Chem.276,3702–3708 (2001).
    • 33  Miller P, DiOrio C, Moyer M et al.: Depletion of the erbB-2 gene product p185 by benzoquinoid ansamycins. Cancer Res.54,2724–2730 (1994).
    • 34  Citri A, Alroy I, Lavi S et al.: Drug-induced ubiquitylation and degradation of ErbB receptor tyrosine kinases: implications for cancer therapy. EMBO J.21,2407–2417 (2002).
    • 35  Xu W, Mimnaugh EG, Kim JS, Trepel JB, Neckers LM: Hsp90, not Grp94, regulates the intracellular trafficking and stability of nascent ErbB2. Cell Stress Chaperones7,91–96 (2002).
    • 36  Shimamura T, Lowell AM, Engelman JA, Shapiro GI: Epidermal growth factor receptors harboring kinase domain mutations associate with the heat shock protein 90 chaperone and are destabilized following exposure to geldanamycins. Cancer Res.65,6401–6408 (2005).
    • 37  Xu W, Soga S, Beebe K et al.: Sensitivity of epidermal growth factor receptor and ErbB2 exon 20 insertion mutants to Hsp90 inhibition. Br. J. Cancer97,741–744 (2007).
    • 38  Xu W, Yuan X, Xiang Z, Mimnaugh E, Marcu M, Neckers L: Surface charge and hydrophobicity determine ErbB2 binding to the Hsp90 chaperone complex. Nat. Struct. Mol. Biol.12,120–126 (2005).▪ Identifies the motif in the ErbB2 kinase domain that determines Hsp90 binding and geldanamycin sensitivity.
    • 39  Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF: Met, metastasis, motility and more. Nat. Rev. Mol. Cell Biol.4,915–925 (2003).
    • 40  Maulik G, Kijima T, Ma PC et al.: Modulation of the c-Met/hepatocyte growth factor pathway in small cell lung cancer. Clin. Cancer Res.8,620–627 (2002).
    • 41  Webb CP, Hose CD, Koochekpour S et al.: The geldanamycins are potent inhibitors of the hepatocyte growth factor/scatter factor-met-urokinase plasminogen activator-plasmin proteolytic network. Cancer Res.60,342–349 (2000).
    • 42  Zhang H, Yee D: The therapeutic potential of agents targeting the type I insulin-like growth factor receptor. Expert Opin. Investig. Drugs13,1569–1577 (2004).
    • 43  Yuen JS, Cockman ME, Sullivan M et al.: The VHL tumor suppressor inhibits expression of the IGF1R and its loss induces IGF1R upregulation in human clear cell renal carcinoma. Oncogene26,6499–6508 (2007).
    • 44  Nielsen TO, Andrews HN, Cheang M et al.: Expression of the insulin-like growth factor I receptor and urokinase plasminogen activator in breast cancer is associated with poor survival: potential for intervention with 17-allylamino geldanamycin. Cancer Res.64,286–291 (2004).
    • 45  Klinakis A, Szabolcs M, Chen G, Xuan S, Hibshoosh H, Efstratiadis A: Igf1r as a therapeutic target in a mouse model of basal-like breast cancer. Proc. Natl Acad. Sci. USA106,2359–2364 (2009).
    • 46  Bagatell R, Beliakoff J, David CL, Marron MT, Whitesell L: Hsp90 inhibitors deplete key anti-apoptotic proteins in pediatric solid tumor cells and demonstrate synergistic anticancer activity with cisplatin. Int. J. Cancer113,179–188 (2005).
    • 47  Lang SA, Moser C, Gaumann A et al.: Targeting heat shock protein 90 in pancreatic cancer impairs insulin-like growth factor-I receptor signaling, disrupts an interleukin-6/signal-transducer and activator of transcription 3/hypoxia-inducible factor-1α autocrine loop, and reduces orthotopic tumor growth. Clin. Cancer Res.13,6459–6468 (2007).
    • 48  Carpenter G: Receptor tyrosine kinase substrates: src homology domains and signal transduction. FASEB J.6,3283–3289 (1992).
    • 49  Ishizawar R, Parsons SJ: c-Src and cooperating partners in human cancer. Cancer Cell6,209–214 (2004).
    • 50  Xu Y, Singer MA, Lindquist S: Maturation of the tyrosine kinase c-src as a kinase and as a substrate depends on the molecular chaperone Hsp90. Proc. Natl Acad. Sci. USA96,109–114 (1999).
    • 51  Bijlmakers MJ, Marsh M: Hsp90 is essential for the synthesis and subsequent membrane association, but not the maintenance, of the Src-kinase p56(lck). Mol. Biol. Cell11,1585–1595 (2000).
    • 52  Koga F, Xu W, Karpova TS et al.: Hsp90 inhibition transiently activates Src kinase and promotes Src-dependent Akt and Erk activation. Proc. Natl Acad. Sci. USA103,11318–11322 (2006).
    • 53  Xu W, Yuan X, Beebe K, Xiang Z, Neckers L: Loss of Hsp90 association up-regulates Src-dependent ErbB2 activity. Mol. Cell Biol.27,220–228 (2007).
    • 54  Price JT, Quinn JM, Sims NA et al.: The heat shock protein 90 inhibitor, 17-allylamino-17-demethoxygeldanamycin, enhances osteoclast formation and potentiates bone metastasis of a human breast cancer cell line. Cancer Res.65,4929–4938 (2005).▪▪ Initial description of Hsp90 inhibitor enhancement of bone metastasis in mice.
    • 55  Yano A, Tsutsumi S, Soga S et al.: Inhibition of Hsp90 activates osteoclast c-Src signaling and promotes growth of prostate carcinoma cells in bone. Proc. Natl Acad. Sci. USA105,15541–15546 (2008).
    • 56  Samuels Y, Ericson K: Oncogenic PI3K and its role in cancer. Curr. Opin. Oncol.18,77–82 (2006).
    • 57  Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB: Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat. Rev. Drug Discov.4,988–1004 (2005).
    • 58  Qiao M, Sheng S, Pardee AB: Metastasis and AKT activation. Cell Cycle7,2991–2996 (2008).
    • 59  Fujita N, Sato S, Ishida A, Tsuruo T: Involvement of Hsp90 in signaling and stability of 3-phosphoinositide-dependent kinase-1. J. Biol. Chem.277,10346–10353 (2002).
    • 60  Sato S, Fujita N, Tsuruo T: Modulation of Akt kinase activity by binding to Hsp90. Proc. Natl Acad. Sci. USA97,10832–10837 (2000).
    • 61  Nimmanapalli R, O’Bryan E, Bhalla K: Geldanamycin and its analogue 17-allylamino-17-demethoxygeldanamycin lowers Bcr–Abl levels and induces apoptosis and differentiation of Bcr–Abl-positive human leukemic blasts. Cancer Res.61,1799–1804 (2001).
    • 62  Solit DB, Basso AD, Olshen AB, Scher HI, Rosen N: Inhibition of heat shock protein 90 function down-regulates Akt kinase and sensitizes tumors to Taxol. Cancer Res.63,2139–2144 (2003).
    • 63  Etienne-Manneville S, Hall A: Rho GTPases in cell biology. Nature420,629–635 (2002).
    • 64  Tu S, Wu WJ, Wang J, Cerione RA: Epidermal growth factor-dependent regulation of Cdc42 is mediated by the Src tyrosine kinase. J. Biol. Chem.278,49293–49300 (2003).
    • 65  Higuchi M, Masuyama N, Fukui Y, Suzuki A, Gotoh Y: Akt mediates Rac/Cdc42-regulated cell motility in growth factor-stimulated cells and in invasive PTEN knockout cells. Curr. Biol.11,1958–1962 (2001).
    • 66  Wymann MP, Marone R: Phosphoinositide 3-kinase in disease: timing, location, and scaffolding. Curr. Opin. Cell Biol.17,141–149 (2005).
    • 67  Modzelewska K, Newman LP, Desai R, Keely PJ: Ack1 mediates Cdc42-dependent cell migration and signaling to p130Cas. J. Biol. Chem.281,37527–37535 (2006).
    • 68  Yang W, Jansen JM, Lin Q, Canova S, Cerione RA, Childress C: Interaction of activated Cdc42-associated tyrosine kinase ACK2 with HSP90. Biochem. J.382,199–204 (2004).
    • 69  Mahajan NP, Whang YE, Mohler JL, Earp HS: Activated tyrosine kinase Ack1 promotes prostate tumorigenesis: role of Ack1 in polyubiquitination of tumor suppressor Wwox. Cancer Res.65,10514–10523 (2005).
    • 70  Minn AJ, Gupta GP, Siegel PM et al.: Genes that mediate breast cancer metastasis to lung. Nature436,518–524 (2005).
    • 71  Mook OR, Frederiks WM, Van Noorden CJ: The role of gelatinases in colorectal cancer progression and metastasis. Biochim. Biophys. Acta1705,69–89 (2004).
    • 72  Wang Y: The role and regulation of urokinase-type plasminogen activator receptor gene expression in cancer invasion and metastasis. Med. Res. Rev.21,146–170 (2001).
    • 73  Kim MS, Kwak HJ, Lee JW et al.: 17-Allylamino-17-demethoxygeldanamycin down-regulates hyaluronic acid-induced glioma invasion by blocking matrix metalloproteinase-9 secretion. Mol. Cancer Res.6,1657–1665 (2008).
    • 74  Saaristo A, Karpanen T, Alitalo K: Mechanisms of angiogenesis and their use in the inhibition of tumor growth and metastasis. Oncogene19,6122–6129 (2000).
    • 75  Rankin EB, Giaccia AJ: The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ.15,678–685 (2008).
    • 76  Bratslavsky G, Sudarshan S, Neckers L, Linehan WM: Pseudohypoxic pathways in renal cell carcinoma. Clin. Cancer Res.13,4667–4671 (2007).
    • 77  Isaacs JS, Jung YJ, Neckers L: Aryl hydrocarbon nuclear translocator (ARNT) promotes oxygen-independent stabilization of hypoxia-inducible factor-1α by modulating an Hsp90-dependent regulatory pathway. J. Biol. Chem.279,16128–16135 (2004).
    • 78  Mabjeesh NJ, Post DE, Willard MT et al.: Geldanamycin induces degradation of hypoxia-inducible factor 1α protein via the proteosome pathway in prostate cancer cells. Cancer Res.62,2478–2482 (2002).
    • 79  Isaacs JS, Jung YJ, Mimnaugh EG, Martinez A, Cuttitta F, Neckers LM: Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 α-degradative pathway. J. Biol. Chem.277,29936–29944 (2002).
    • 80  Karkkainen MJ, Petrova TV: Vascular endothelial growth factor receptors in the regulation of angiogenesis and lymphangiogenesis. Oncogene19,5598–5605 (2000).
    • 81  Le Boeuf F, Houle F, Huot J: Regulation of vascular endothelial growth factor receptor 2-mediated phosphorylation of focal adhesion kinase by heat shock protein 90 and Src kinase activities. J. Biol. Chem.279,39175–39185 (2004).
    • 82  Kaur G, Belotti D, Burger AM et al.: Antiangiogenic properties of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin: an orally bioavailable heat shock protein 90 modulator. Clin. Cancer Res.10,4813–4821 (2004).
    • 83  Sanderson S, Valenti M, Gowan S et al.: Benzoquinone ansamycin heat shock protein 90 inhibitors modulate multiple functions required for tumor angiogenesis. Mol. Cancer Ther.5,522–532 (2006).
    • 84  Yu J, Ustach C, Kim HR: Platelet-derived growth factor signaling and human cancer. J. Biochem. Mol. Biol.36,49–59 (2003).
    • 85  Andrae J, Gallini R, Betsholtz C: Role of platelet-derived growth factors in physiology and medicine. Genes Dev.22,1276–1312 (2008).
    • 86  Matei D, Satpathy M, Cao L, Lai YC, Nakshatri H, Donner DB: The platelet-derived growth factor receptor α is destabilized by geldanamycins in cancer cells. J. Biol. Chem.282,445–453 (2007).
    • 87  Tsutsumi S, Neckers L: Extracellular heat shock protein 90: a role for a molecular chaperone in cell motility and cancer metastasis. Cancer Sci.98,1536–1539 (2007).
    • 88  Becker B, Multhoff G, Farkas B et al.: Induction of Hsp90 protein expression in malignant melanomas and melanoma metastases. Exp. Dermatol.13,27–32 (2004).
    • 89  Cheng CF, Fan J, Fedesco M et al.: Transforming growth factor a (TGFα)-stimulated secretion of HSP90α: using the receptor LRP-1/CD91 to promote human skin cell migration against a TGFβ-rich environment during wound healing. Mol. Cell Biol.28,3344–3358 (2008).
    • 90  Li W, Li Y, Guan S et al.: Extracellular heat shock protein-90α: linking hypoxia to skin cell motility and wound healing. EMBO J.26,1221–1233 (2007).
    • 91  Yang Y, Rao R, Shen J et al.: Role of acetylation and extracellular location of heat shock protein 90α in tumor cell invasion. Cancer Res.68,4833–4842 (2008).
    • 92  Lei H, Venkatakrishnan A, Yu S, Kazlauskas A: Protein kinase A-dependent translocation of Hsp90 α impairs endothelial nitric-oxide synthase activity in high glucose and diabetes. J. Biol. Chem.282,9364–9371 (2007).
    • 93  Nickel W: Unconventional secretory routes: direct protein export across the plasma membrane of mammalian cells. Traffic6,607–614 (2005).
    • 94  Clayton A, Turkes A, Navabi H, Mason MD, Tabi Z: Induction of heat shock proteins in B-cell exosomes. J. Cell Sci.118,3631–3638 (2005).
    • 95  Eustace BK, Sakurai T, Stewart JK et al.: Functional proteomic screens reveal an essential extracellular role for hsp90 α in cancer cell invasiveness. Nat. Cell Biol.6,507–514 (2004).▪ First report to show a role of extracellular Hsp90 in cancer cell invasion.
    • 96  Sidera K, Samiotaki M, Yfanti E, Panayotou G, Patsavoudi E: Involvement of cell surface HSP90 in cell migration reveals a novel role in the developing nervous system. J. Biol. Chem.279,45379–45388 (2004).
    • 97  Tsutsumi S, Scroggins B, Koga F et al.: A small molecule cell-impermeant Hsp90 antagonist inhibits tumor cell motility and invasion. Oncogene27,2478–2487 (2008).
    • 98  Stellas D, Karameris A, Patsavoudi E: Monoclonal antibody 4C5 immunostains human melanomas and inhibits melanoma cell invasion and metastasis. Clin. Cancer Res.13,1831–1838 (2007).
    • 99  Sidera K, Gaitanou M, Stellas D, Matsas R, Patsavoudi E: A critical role for HSP90 in cancer cell invasion involves interaction with the extracellular domain of HER-2. J. Biol. Chem.283,2031–2041 (2008).
    • 100  Chiosis G, Rodina A, Moulick K: Emerging Hsp90 inhibitors: from discovery to clinic. Anticancer Agents Med. Chem.6,1–8 (2006).
    • 101  Barluenga S, Wang C, Fontaine JG et al.: Divergent synthesis of a pochonin library targeting HSP90 and in vivo efficacy of an identified inhibitor. Angew. Chem. Int. Ed. Engl.47,4432–4435 (2008).
    • 102  Okawa Y, Hideshima T, Steed P et al.: SNX-2112, a selective Hsp90 inhibitor, potently inhibits tumor cell growth, angiogenesis, and osteoclastogenesis in multiple myeloma and other hematologic tumors by abrogating signaling via Akt and ERK. Blood113,846–855 (2009).
    • 103  Messaoudi S, Peyrat JF, Brion JD, Alami M: Recent advances in Hsp90 inhibitors as antitumor agents. Anticancer Agents Med. Chem.8,761–782 (2008).
    • 104  Gyurkocza B, Plescia J, Raskett CM et al.: Antileukemic activity of shepherdin and molecular diversity of hsp90 inhibitors. J. Natl Cancer Inst.98,1068–1077 (2006).
    • 105  Mitsiades CS, Mitsiades NS, McMullan CJ et al.: Antimyeloma activity of heat shock protein-90 inhibition. Blood107,1092–1100 (2006).
    • 106  Modi S, Stopeck AT, Gordon MS et al.: Combination of trastuzumab and tanespimycin (17-AAG, KOS-953) is safe and active in trastuzumab-refractory HER-2 overexpressing breast cancer: a Phase I dose-escalation study. J. Clin. Oncol.25,5410–5417 (2007).
    • 201  World Health Organization www.who.int/en