We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Enhancing molecular approaches for diagnosis of fungal infections

    Sean X Zhang

    Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, 600 Wolfe Street, Meyer B1-193, Baltimore 21287, MD, USA.

    Published Online:https://doi.org/10.2217/fmb.13.120

    Molecular tests can improve the diagnosis of fungal infections. Despite the increasing application for fungal detection, molecular tests are still not accepted as a diagnostic criterion to define invasive fungal diseases. This limitation is largely due to a lack of a standardized method. Method standardization can be achieved by following a consensus protocol developed by a working group, by performing a molecular test in a centralized laboratory or by using a commercial assay that provides a standardized method and quality-controlled reagents. Forming a consortium or a working group consisting of large-scale diagnostic mycology laboratories can accelerate the process of validating and implementing a commercial molecular assay for clinical use through a joint effort between industry partners and clinicians. Development of molecular tests not only for the detection of fungi but also for the identification of antifungal drug resistance directly in blood, bronchoalveolar lavage fluid, cerebrospinal fluid, and formalin-fixed and paraffin-embedded tissues greatly enhances fungal diagnostic capacities. Advances of developing quantitative assays and RNA detection platforms may provide another avenue to further improve fungal diagnostics.

    Papers of special note have been highlighted as: ▪ of interest

    References

    • Kontoyiannis DP, Marr KA, Park BJ et al. Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001–2006: overview of the Transplant-Associated Infection Surveillance Network (TRANSNET) Database. Clin. Infect. Dis.50(8),1091–1100 (2010).
    • Pappas PG, Alexander BD, Andes DR et al. Invasive fungal infections among organ transplant recipients: results of the Transplant-Associated Infection Surveillance Network (TRANSNET). Clin. Infect. Dis.50(8),1101–1111 (2010).
    • Shoham S, Marr KA. Invasive fungal infections in solid organ transplant recipients. Future Microbiol.7(5),639–655 (2012).
    • Park BJ, Pappas PG, Wannemuehler KA et al. Invasive non-Aspergillus mold infections in transplant recipients, United States, 2001–2006. Emerg. Infect. Dis.17(10),1855–1864 (2011).
    • Petrikkos G, Skiada A, Lortholary O, Roilides E, Walsh TJ, Kontoyiannis DP. Epidemiology and clinical manifestations of mucormycosis. Clin. Infect. Dis.54(Suppl. 1),S23–S34 (2012).
    • McNeil MM, Nash SL, Hajjeh RA et al. Trends in mortality due to invasive mycotic diseases in the United States, 1980–1997. Clin. Infect. Dis.33(5),641–647 (2001).
    • Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin. Microbiol. Rev.20(1),133–163 (2007).
    • Zhang SX. Non-culture-based methods in diagnostic mycology. Microbiol. Newsletter34,101–105 (2012).
    • De Pauw B, Walsh TJ, Donnelly JP et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin. Infect. Dis.46(12),1813–1821 (2008).
    • 10  Khot PD, Fredricks DN. PCR-based diagnosis of human fungal infections. Expert Rev. Anti Infect. Ther.7(10),1201–1221 (2009).▪ Examines the quality of PCR-based studies over a 10-year period and highlights the high methodology variables in these reported molecular assays.
    • 11  Bustin SA, Benes V, Garson JA et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem.55(4),611–622 (2009).
    • 12  Mengoli C, Cruciani M, Barnes RA, Loeffler J, Donnelly JP. Use of PCR for diagnosis of invasive aspergillosis: systematic review and meta-analysis. Lancet Infect. Dis.9(2),89–96 (2009).
    • 13  Avni T, Levy I, Sprecher H, Yahav D, Leibovici L, Paul M. Diagnostic accuracy of PCR alone compared with galactomannan in bronchoalveolar lavage fluid for diagnosis of invasive pulmonary aspergillosis: a systematic review. J. Clin. Microbiol.50(11),3652–3658 (2012).
    • 14  Avni T, Leibovici L, Paul M. PCR diagnosis of invasive candidiasis: systematic review and meta-analysis. J. Clin. Microbiol.49(2),665–670 (2011).
    • 15  Nguyen MH, Wissel MC, Shields RK et al. Performance of Candida real-time polymerase chain reaction, beta-d-glucan assay, and blood cultures in the diagnosis of invasive candidiasis. Clin. Infect. Dis.54(9),1240–1248 (2012).
    • 16  Barnes RA, White PL, Bygrave C, Evans N, Healy B, Kell J. Clinical impact of enhanced diagnosis of invasive fungal disease in high-risk haematology and stem cell transplant patients. J. Clin. Pathol.62(1),64–69 (2009).
    • 17  Hardak E, Yigla M, Avivi I, Fruchter O, Sprecher H, Oren I. Impact of PCR-based diagnosis of invasive pulmonary aspergillosis on clinical outcome. Bone Marrow Transplant.44(9),595–599 (2009).
    • 18  Hebart H, Klingspor L, Klingebiel T et al. A prospective randomized controlled trial comparing PCR-based and empirical treatment with liposomal amphotericin B in patients after allo-SCT. Bone Marrow Transplant.43(7),553–561 (2009).
    • 19  Bergeron A, Porcher R, Menotti J et al. Prospective evaluation of clinical and biological markers to predict the outcome of invasive pulmonary aspergillosis in hematological patients. J. Clin. Microbiol.50(3),823–830 (2012).
    • 20  Blennow O, Remberger M, Klingspor L et al. Randomized PCR-based therapy and risk factors for invasive fungal infection following reduced-intensity conditioning and hematopoietic SCT. Bone Marrow Transplant.45(12),1710–1718 (2010).
    • 21  Alexander BD, Ashley ED, Reller LB, Reed SD. Cost savings with implementation of PNA FISH testing for identification of Candida albicans in blood cultures. Diagn. Microbiol. Infect. Dis.54(4),277–282 (2006).
    • 22  Forrest GN, Mankes K, Jabra-Rizk MA et al. Peptide nucleic acid fluorescence in situ hybridization-based identification of Candida albicans and its impact on mortality and antifungal therapy costs. J. Clin. Microbiol.44(9),3381–3383 (2006).
    • 23  Harris JR, Marston BJ, Sangrujee N, Duplessis D, Park B. Cost–effectiveness analysis of diagnostic options for pneumocystis pneumonia (PCP). PLoS ONE6(8),e23158 (2011).▪ Provides a cost-analysis model incorporating a variety of diagnostic procedures, specimen types and test performances for determining a more cost-effective approach to diagnosing a disease.
    • 24  Loeffler J, Barnes R, Donnelly JP. Standardization of Aspergillus PCR diagnosis. Bone Marrow Transplant.47(2),299–300 (2012).
    • 25  White PL, Bretagne S, Klingspor L et al.Aspergillus PCR: one step closer to standardization. J. Clin. Microbiol.48(4),1231–1240 (2010).
    • 26  White PL, Mengoli C, Bretagne S et al. Evaluation of Aspergillus PCR protocols for testing serum specimens. J. Clin. Microbiol.49(11),3842–3848 (2011).
    • 27  White PL, Perry MD, Loeffler J et al. Critical stages of extracting DNA from Aspergillus fumigatus in whole-blood specimens. J. Clin. Microbiol.48(10),3753–3755 (2010).
    • 28  Lyon GM, Abdul-Ali D, Loeffler J et al. Development and evaluation of a calibrator material for nucleic acid-based assays for diagnosing Aspergillosis.J. Clin. Microbiol.51(7),2403–2405 (2013).
    • 29  Luong ML, Clancy CJ, Vadnerkar A et al. Comparison of an Aspergillus real-time polymerase chain reaction assay with galactomannan testing of bronchoalvelolar lavage fluid for the diagnosis of invasive pulmonary aspergillosis in lung transplant recipients. Clin. Infect. Dis.52(10),1218–1226 (2011).
    • 30  Farina C, Perin S, Andreoni S et al. Evaluation of the peptide nucleic acid fluorescence in situ hybridisation technology for yeast identification directly from positive blood cultures: an Italian experience. Mycoses55(5),388–392 (2012).
    • 31  Hall L, Le Febre KM, Deml SM, Wohlfiel SL, Wengenack NL. Evaluation of the Yeast Traffic Light PNA FISH; probes for identification of Candida species from positive blood cultures. J. Clin. Microbiol.50(4),1446–1448 (2012).
    • 32  Torelli R, Sanguinetti M, Moody A et al. Diagnosis of invasive aspergillosis by a commercial real-time PCR assay for Aspergillus DNA in bronchoalveolar lavage fluid samples from high-risk patients compared with a galactomannan enzyme immunoassay. J. Clin. Microbiol.49(12),4273–4278 (2011).
    • 33  White PL, Perry MD, Moody A, Follett SA, Morgan G, Barnes RA. Evaluation of analytical and preliminary clinical performance of Myconostica MycAssay Aspergillus when testing serum specimens for diagnosis of invasive aspergillosis. J. Clin. Microbiol.49(6),2169–2174 (2011).
    • 34  Babady NE, Miranda E, Gilhuley KA. Evaluation of Luminex xTAG fungal analyte-specific reagents for rapid identification of clinically relevant fungi. J. Clin. Microbiol.49(11),3777–3782 (2011).
    • 35  Balada-Llasat JM, Larue H, Kamboj K et al. Detection of yeasts in blood cultures by the Luminex xTAG fungal assay. J. Clin. Microbiol.50(2),492–494 (2012).
    • 36  Massire C, Buelow DR, Zhang SX et al. PCR followed by electrospray ionization mass spectrometry for broad-range identification of fungal pathogens. J. Clin. Microbiol.51(3),959–966 (2013).
    • 37  Gu Z, Hall TA, Frinder M, Walsh TJ, Hayden RT. Evaluation of repetitive sequence PCR and PCR-mass spectrometry for the identification of clinically relevant Candida species. Med. Mycol.50(3),259–265 (2012).
    • 38  Shin JH, Ranken R, Sefers SE et al. Detection, identification, and distribution of fungi in bronchoalveolar lavage specimens by use of multilocus PCR coupled with electrospray ionization/mass spectrometry. J. Clin. Microbiol.51(1),136–141 (2013).
    • 39  Simner PJ, Uhl JR, Hall L et al. Broad-range direct detection and identification of fungi using the PLEX-ID PCR-electrospray ionization mass spectrometry (ESI-MS) system. J. Clin. Microbiol.51(6),1699–1706 (2013).
    • 40  Campa D, Tavanti A, Gemignani F et al. DNA microarray based on arrayed-primer extension technique for identification of pathogenic fungi responsible for invasive and superficial mycoses. J. Clin. Microbiol.46(3),909–915 (2008).
    • 41  Leinberger DM, Schumacher U, Autenrieth IB, Bachmann TT. Development of a DNA microarray for detection and identification of fungal pathogens involved in invasive mycoses. J. Clin. Microbiol.43(10),4943–4953 (2005).
    • 42  Lu W, Gu D, Chen X et al. Application of an oligonucleotide microarray-based nano-amplification technique for the detection of fungal pathogens. Clin. Chem. Lab. Med.48(10),1507–1514 (2010).
    • 43  Spiess B, Seifarth W, Hummel M et al. DNA microarray-based detection and identification of fungal pathogens in clinical samples from neutropenic patients. J. Clin. Microbiol.45(11),3743–3753 (2007).
    • 44  Yoo SM, Choi JY, Yun JK et al. DNA microarray-based identification of bacterial and fungal pathogens in bloodstream infections. Mol. Cell. Probes24(1),44–52 (2010).
    • 45  Mallus F, Martis S, Serra C, Loi G, Camboni T, Manzin A. Usefulness of capillary electrophoresis-based multiplex PCR assay for species-specific identification of Candida spp. J. Microbiol. Methods92(2),150–152 (2013).
    • 46  Aittakorpi A, Kuusela P, Koukila-Kahkola P et al. Accurate and rapid identification of Candida spp. frequently associated with fungemia by using PCR and the microarray-based Prove-it Sepsis assay. J. Clin. Microbiol.50(11),3635–3640 (2012).
    • 47  Madanahally Divakar K, Lei J, Lee M-C, Kong L. High multiplex qPCR platform for rapid detection of fungal pathogens. Presented at: 112nd American Society of Microbiology Annual Meeting. San Francisco, CA, USA, 16–19 June 2012.
    • 48  Hauser PM, Bille J, Lass-Florl C et al. Multicenter, prospective clinical evaluation of respiratory samples from subjects at risk for Pneumocystis jirovecii infection by use of a commercial real-time PCR assay. J. Clin. Microbiol.49(5),1872–1878 (2011).
    • 49  Mctaggart LR, Wengenack NL, Richardson SE. Validation of the MycAssay Pneumocystis kit for detection of Pneumocystis jirovecii in bronchoalveolar lavage specimens by comparison to a laboratory standard of direct immunofluorescence microscopy, real-time PCR, or conventional PCR. J. Clin. Microbiol.50(6),1856–1859 (2012).
    • 50  Seah C, Richardson SE, Tsui G et al. Comparison of the FXG: RESP (Asp+) real-time PCR assay with direct immunofluorescence and calcofluor white staining for the detection of Pneumocystis jirovecii in respiratory specimens. Med. Mycol.50(3),324–327 (2012).
    • 51  Neely LA, Audeh M, Phung NA et al. T2 magnetic resonance enables nanoparticle-mediated rapid detection of candidemia in whole blood. Sci. Transl. Med.5(182),182ra154 (2013).
    • 52  Jennings L, Van Deerlin VM, Gulley ML. Recommended principles and practices for validating clinical molecular pathology tests. Arch. Pathol. Lab. Med.133(5),743–755 (2009).
    • 53  Clancy CJ, Nguyen MH. Finding the “missing 50%” of invasive candidiasis: how nonculture diagnostics will improve understanding of disease spectrum and transform patient care. Clin. Infect. Dis.56(9),1284–1292 (2013).
    • 54  Lau A, Halliday C, Chen SC, Playford EG, Stanley K, Sorrell TC. Comparison of whole blood, serum, and plasma for early detection of candidemia by multiplex-tandem PCR. J. Clin. Microbiol.48(3),811–816 (2010)
    • 55  Lowery T. Rapid detection of Candida directly in whole blood. Presented at: 111th American Society of Microbiology Annual Meeting. New Orleans, LA, USA, 21–24 May 2011.
    • 56  Procop GW, Cockerill FR 3rd, Vetter EA, Harmsen WS, Hughes JG, Roberts GD. Performance of five agar media for recovery of fungi from isolator blood cultures. J. Clin. Microbiol.38(10),3827–3829 (2000).
    • 57  Vetter E, Torgerson C, Feuker A et al. Comparison of the BACTEC MYCO/F lytic bottle to the isolator tube, BACTEC Plus Aerobic F/bottle, and BACTEC Anaerobic Lytic/10 bottle and comparison of the BACTEC Plus Aerobic F/bottle to the isolator tube for recovery of bacteria, mycobacteria, and fungi from blood. J. Clin. Microbiol.39(12),4380–4386 (2001).
    • 58  Lewis RE, Lortholary O, Spellberg B, Roilides E, Kontoyiannis DP, Walsh TJ. How does antifungal pharmacology differ for mucormycosis versus aspergillosis? Clin. Infect. Dis.54(Suppl. 1),S67–S72 (2012).
    • 59  Spellberg B, Ibrahim A, Roilides E et al. Combination therapy for mucormycosis: why, what, and how? Clin. Infect. Dis.54(Suppl. 1),S73–S78 (2012).
    • 60  Walsh TJ, Anaissie EJ, Denning DW et al. Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. Clin. Infect. Dis.46(3),327–360 (2008).
    • 61  Sangoi AR, Rogers WM, Longacre TA, Montoya JG, Baron EJ, Banaei N. Challenges and pitfalls of morphologic identification of fungal infections in histologic and cytologic specimens: a ten-year retrospective review at a single institution. Am. J. Clin. Pathol.131(3),364–375 (2009).
    • 62  Bialek R, Konrad F, Kern J et al. PCR based identification and discrimination of agents of mucormycosis and aspergillosis in paraffin wax embedded tissue. J. Clin. Pathol.58(11),1180–1184 (2005).
    • 63  Hammond SP, Bialek R, Milner DA, Petschnigg EM, Baden LR, Marty FM. Molecular methods to improve diagnosis and identification of mucormycosis. J. Clin. Microbiol.49(6),2151–2153 (2011).
    • 64  Lau A, Chen S, Sorrell T et al. Development and clinical application of a panfungal PCR assay to detect and identify fungal DNA in tissue specimens. J. Clin. Microbiol.45(2),380–385 (2007).
    • 65  Munoz-Cadavid C, Rudd S, Zaki SR et al. Improving molecular detection of fungal DNA in formalin-fixed paraffin-embedded tissues: comparison of five tissue DNA extraction methods using panfungal PCR. J. Clin. Microbiol.48(6),2147–2153 (2010).
    • 66  Rickerts V, Just-Nübling G, Konrad F et al. Diagnosis of invasive aspergillosis and mucormycosis in immunocompromised patients by seminested PCR assay of tissue samples. Eur. J. Clin. Microbiol. Infect. Dis.25(1),8–13 (2006).
    • 67  Rickerts V, Khot PD, Myerson D, Ko DL, Lambrecht E, Fredricks DN. Comparison of quantitative real time PCR with sequencing and ribosomal RNA–FISH for the identification of fungi in formalin fixed, paraffin-embedded tissue specimens. BMC Infect. Dis.11,202 (2011).
    • 68  Hofman V, Dhouibi A, Butori C et al. Usefulness of molecular biology performed with formaldehyde-fixed paraffin embedded tissue for the diagnosis of combined pulmonary invasive mucormycosis and aspergillosis in an immunocompromised patient. Diagn. Pathol.5,1 (2010).
    • 69  Dannaoui E, Schwarz P, Slany M et al. Molecular detection and identification of zygomycetes species from paraffin-embedded tissues in a murine model of disseminated zygomycosis: a collaborative European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Fungal Infection Study Group (EFISG) evaluation. J. Clin. Microbiol.48(6),2043–2046 (2010).
    • 70  Shinozaki M, Okubo Y, Sasai D et al. Identification of Fusarium species in formalin-fixed and paraffin-embedded sections by in situ hybridization using peptide nucleic acid probes. J. Clin. Microbiol.49(3),808–813 (2011).
    • 71  Shinozaki M, Okubo Y, Sasai D et al. Development of a peptide nucleic acid probe to Trichosporon species and identification of trichosporonosis by use of in situ hybridization in formalin-fixed and paraffin-embedded (FFPE) sections. J. Clin. Microbiol.51(1),295–298 (2013).
    • 72  Cabaret O, Toussain G, Abermil N et al. Degradation of fungal DNA in formalin-fixed paraffin-embedded sinus fungal balls hampers reliable sequence-based identification of fungi. Med. Mycol.49(3),329–332 (2011).
    • 73  Gilbert MT, Haselkorn T, Bunce M et al. The isolation of nucleic acids from fixed, paraffin-embedded tissues – which methods are useful when? PLoS ONE2(6),e537 (2007).
    • 74  Khokhar SK, Mitui M, Leos NK, Rogers BB, Park JY. Evaluation of Maxwell® 16 for automated DNA extraction from whole blood and formalin-fixed paraffin embedded (FFPE) tissue. Clin. Chem. Lab. Med.50(2),267–272 (2012).
    • 75  Rickerts V, Khot PD, Ko DL, Fredricks DN. Enhanced fungal DNA-extraction from formalin-fixed, paraffin-embedded tissue specimens by application of thermal energy. Med. Mycol.50(6),667–672 (2012).
    • 76  Alexander BD, Johnson MD, Pfeiffer CD et al. Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin. Infect. Dis.56(12),1724–1732 (2013).
    • 77  Denning DW, Perlin DS. Azole resistance in Aspergillus: a growing public health menace. Future Microbiol.6(11),1229–1232 (2011).
    • 78  Perlin DS. Current perspectives on echinocandin class drugs. Future Microbiol.6(4),441–457 (2011).
    • 79  Denning DW, Park S, Lass-Florl C et al. High-frequency triazole resistance found in nonculturable Aspergillus fumigatus from lungs of patients with chronic fungal disease. Clin. Infect. Dis.52(9),1123–1129 (2011).
    • 80  Zhao Y, Stensvold CR, Perlin DS, Arendrup MC. Azole resistance in Aspergillus fumigatus from bronchoalveolar lavage fluid samples of patients with chronic diseases. J. Antimicrob. Chemother.68(7),1497–1504 (2013).
    • 81  van der Linden JW, Snelders E, Arends JP, Daenen SM, Melchers WJ, Verweij PE. Rapid diagnosis of azole-resistant aspergillosis by direct PCR using tissue specimens. J. Clin. Microbiol.48(4),1478–1480 (2010).
    • 82  Alanio A, Desoubeaux G, Sarfati C et al. Real-time PCR assay-based strategy for differentiation between active Pneumocystis jirovecii pneumonia and colonization in immunocompromised patients. Clin. Microbiol. Infect.17(10),1531–1537 (2011).
    • 83  Botterel F, Cabaret O, Foulet F, Cordonnier C, Costa JM, Bretagne S. Clinical significance of quantifying Pneumocystis jirovecii DNA by using real-time PCR in bronchoalveolar lavage fluid from immunocompromised patients. J. Clin. Microbiol.50(2),227–231 (2012).
    • 84  Loeffler J, Hebart H, Cox P, Flues N, Schumacher U, Einsele H. Nucleic acid sequence-based amplification of Aspergillus RNA in blood samples. J. Clin. Microbiol.39(4),1626–1629 (2001).
    • 85  Zhao Y, Park S, Kreiswirth BN et al. Rapid real-time nucleic acid sequence-based amplification-molecular beacon platform to detect fungal and bacterial bloodstream infections. J. Clin. Microbiol.47(7),2067–2078 (2009).
    • 86  Zhao Y, Park S, Warn P, Shrief R, Harrison E, Perlin DS. Detection of Aspergillus fumigatus in a rat model of invasive pulmonary aspergillosis by real-time nucleic acid sequence-based amplification. J. Clin. Microbiol.48(4),1378–1383 (2010).
    • 87  Zhao Y, Perlin DS. Quantitative detection of Aspergillus spp. by real-time nucleic acid sequence-based amplification. Methods Mol. Biol.968,83–92 (2013).
    • 88  Compton J. Nucleic acid sequence-based amplification. Nature350(6313),91–92 (1991).
    • 89  Zhao Y, Paderu P, Fox R et al.Aspergillus RNA in the blood of patients is promising alternative biomarker for invasive aspergillosis. Presented at: 52nd Interscience Conference on Antimicrobial Agents and Chemotherapy. San Francisco, CA, USA, 9–12 September 2012.
    • 90  Harrison E, Stalhberger T, Whelan R et al.Aspergillus DNA contamination in blood collection tubes. Diagn. Microbiol. Infect. Dis.67(4),392–394 (2010).