We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

The RTX pore-forming toxin α-hemolysin of uropathogenic Escherichia coli: progress and perspectives

    Travis J Wiles

    Division of Microbiology & Immunology, Pathology Department, University of Utah, 15 North Medical Drive East #2100, Salt Lake City, UT 84112-0565, USA

    &
    Matthew A Mulvey

    * Author for correspondence

    Division of Microbiology & Immunology, Pathology Department, University of Utah, 15 North Medical Drive East #2100, Salt Lake City, UT 84112-0565, USA.

    Published Online:https://doi.org/10.2217/fmb.12.131

    Members of the RTX family of protein toxins are functionally conserved among an assortment of bacterial pathogens. By disrupting host cell integrity through their pore-forming and cytolytic activities, this class of toxins allows pathogens to effectively tamper with normal host cell processes, promoting pathogenesis. Here, we focus on the biology of RTX toxins by describing salient properties of a prototype member, α-hemolysin, which is often encoded by strains of uropathogenic Escherichia coli. It has long been appreciated that RTX toxins can have distinct effects on host cells aside from outright lysis. Recently, advances in modeling and analysis of host–pathogen interactions have led to novel findings concerning the consequences of pore formation during host–pathogen interactions. We discuss current progress on longstanding questions concerning cell specificity and pore formation, new areas of investigation that involve toxin-mediated perturbations of host cell signaling cascades and perspectives on the future of RTX toxin investigation.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • Iacovache I, van der Goot FG, Pernot L. Pore formation: an ancient yet complex form of attack. Biochim. Biophys. Acta1778,1611–1623 (2008).
    • Linhartová I, Bumba L, Mašín J et al. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol. Rev.34,1076–1112 (2010).
    • Vigil PD, Wiles TJ, Engstrom MD, Prasov L, Mulvey MA, Mobley HLT. The repeat-in-toxin family member TosA mediates adherence of uropathogenic Escherichia coli and survival during bacteremia. Infect. Immun.80,493–505 (2012).
    • Welch RA. Pore-forming cytolysins of Gram-negative bacteria. Mol. Microbiol.5,521–528 (1991).
    • Welch RA. RTX toxin structure and function: a story of numerous anomalies and few analogies in toxin biology. Curr. Top. Microbiol. Immunol.257,85–111 (2001).
    • Cavalieri SJ, Bohach GA, Snyder IS. Escherichia coli alpha-hemolysin: characteristics and probable role in pathogenicity. Microbiol. Rev.48,326–343 (1984).
    • Haddon J. IV. A case of catheter fever. Ann. Surg.2,239–245 (1885).
    • Park R. III. The importance to the surgeon of familiarity with the Bacillus coli communis. Ann. Surg.18,293–312 (1893).
    • Maxwell JL. The relation of Bacillus coli communis to other organisms in the urine. BMJ2,1472–1473 (1899).
    • 10  Moore VA. Bacillus coli communis. Public Health Pap. Rep.28,397–401 (1902).
    • 11  Eastes GL. Certain infections of the urinary tract, with special reference to tubercle, gonococcus, and Bacillus coli communis. BMJ1,980–982 (1908).
    • 12  Dudgeon LS, Ross AV. Infections of the urinary tract due to Bacillus coli and allied organisms: further observations on the treatment of acute and chronic conditions. Ann. Surg.51,355–361 (1910).
    • 13  Russo TA, Johnson JR. Proposal for a new inclusive designation for extraintestinal pathogenic isolates of Escherichia coli: ExPEC. J. Infect. Dis.181,1753–1754 (2000).
    • 14  Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat. Rev. Microbiol.2,123–140 (2004).
    • 15  Wiles TJ, Kulesus RR, Mulvey MA. Origins and virulence mechanisms of uropathogenic Escherichia coli. Exp. Mol. Pathol.85,11–19 (2008).
    • 16  Foxman B. The epidemiology of urinary tract infection. Nat. Rev. Urol.7(12),653–660 (2010).
    • 17  Lyon MW. A case of cystitis caused by Bacillus coli-hemolyticus. JAMALXIX(16),1342–1343 (1917).
    • 18  Dudgeon LS, Wordley E, Bawtree F. On Bacillus coli infections of the urinary tract, especially in relation to haemolytic organisms. J. Hyg.20,137–164 (1921).
    • 19  Dudgeon LS. Acute infection of the urinary tract due to a special group of haemolytic bacilli. J. Hyg.22,348–354 (1924).
    • 20  Dudgeon LS, Pulvertaft RJ. On slow lactose fermenting B. coli in urinary and intestinal infections. J. Hyg.26,285–304 (1927).
    • 21  Cooke EM, Ewins SP. Properties of strains of Escherichia coli isolated from a variety of sources. J. Med. Microbiol.8,107–111 (1975).
    • 22  Lovell R, Rees TA. A filterable haemolysin from Escherichia coli. Nature188,755–756 (1960).
    • 23  Smith HW. The haemolysins of Escherichia coli. J. Pathol. Bacteriol.85,197–211 (1963).
    • 24  Chaturvedi UC, Mathur A, Khan AM, Mehrotra RM. Cytotoxicity of filtrates of haemolytic Escherichia coli. J. Med. Microbiol.2,211–218 (1969).
    • 25  Van Den Bosch JF, Postma P, De Graaff J, Maclaren DM. Haemolysis by urinary Escherichia coli and virulence in mice. J. Med. Microbiol.14,321–331 (1981).
    • 26  Welch RA, Dellinger EP, Minshew B, Falkow S. Haemolysin contributes to virulence of extra-intestinal E. coli infections. Nature294,665–667 (1981).
    • 27  Frey J. Genetics and phylogeny of RTX cytolysins. In: The Comprehensive Sourcebook of Bacterial Protein Toxins. Popoff MR, Alouf JE (Eds). Elsevier Academic Press, UK, 570–577 (2006).
    • 28  Ludwig A, Goebel W. Structure and mode of action of RTX toxins. In: The Comprehensive Sourcebook of Bacterial Protein Toxins. Popoff MR, Alouf JE (Eds). Elsevier Academic Press, UK, 547–569 (2006).
    • 29  Sánchez-Magraner L, Viguera AR, García-Pacios M et al. The calcium-binding C-terminal domain of Escherichia coli alpha-hemolysin is a major determinant in the surface-active properties of the protein. J. Biol. Chem.282,11827–11835 (2007).
    • 30  Sánchez-Magraner L, Cortajarena AL, García-Pacios M et al. Interdomain Ca2+ effects in Escherichia coli alpha-haemolysin: Ca2+ binding to the C-terminal domain stabilizes both C- and N-terminal domains. Biochim. Biophys. Acta1798,1225–1233 (2010).
    • 31  Schindel C, Zitzer A, Schulte B et al. Interaction of Escherichia coli hemolysin with biological membranes. A study using cysteine scanning mutagenesis. Eur. J. Biochem.268,800–808 (2001).
    • 32  Soloaga A, Veiga MP, García-Segura LM, Ostolaza H, Brasseur R, Goñi FM. Insertion of Escherichia coli alpha-haemolysin in lipid bilayers as a non-transmembrane integral protein: prediction and experiment. Mol. Microbiol.31,1013–1024 (1999).
    • 33  Valeva A, Siegel I, Wylenzek M et al. Putative identification of an amphipathic alpha-helical sequence in hemolysin of Escherichia coli (HlyA) involved in transmembrane pore formation. Biol. Chem.389,1201–1207 (2008).
    • 34  Hyland C, Vuillard L, Hughes C, Koronakis V. Membrane interaction of Escherichia coli hemolysin: flotation and insertion-dependent labeling by phospholipid vesicles. J. Bacteriol.183,5364–5370 (2001).
    • 35  Forestier C, Welch RA. Identification of RTX toxin target cell specificity domains by use of hybrid genes. Infect. Immun.59,4212–4220 (1991).
    • 36  Stanley P, Packman LC, Koronakis V, Hughes C. Fatty acylation of two internal lysine residues required for the toxic activity of Escherichia coli hemolysin. Science266,1992–1996 (1994).
    • 37  Stanley P, Koronakis V, Hughes C. Acylation of Escherichia coli hemolysin: a unique protein lipidation mechanism underlying toxin function. Microbiol. Mol. Biol. Rev.62,309–333 (1998).
    • 38  Herlax V, Maté S, Rimoldi O, Bakás L. Relevance of fatty acid covalently bound to Escherichia coli alpha-hemolysin and membrane microdomains in the oligomerization process. J. Biol. Chem.284,25199–25210 (2009).▪▪ Demonstrates through the use of fluorescence resonance energy transfer that α-hemolysin (HlyA) oligomerizes within host cell membranes.
    • 39  Herlax V, Bakas L. Fatty acids covalently bound to alpha-hemolysin of Escherichia coli are involved in the molten globule conformation: implication of disordered regions in binding promiscuity. Biochemistry46,5177–5184 (2007).
    • 40  Goebel W, Schrempf H. Isolation and characterization of supercoiled circular deoxyribonucleic acid from beta-hemolytic strains of Escherichia coli. J. Bacteriol.106,311–317 (1971).
    • 41  Rennie RP, Arbuthnott JP. Partial characterisation of Escherichia coli haemolysin. J. Med. Microbiol.7,179–188 (1974).
    • 42  Muller D, Hughes C, Goebel W. Relationship between plasmid and chromosomal hemolysin determinants of Escherichia coli. J. Bacteriol.153,846–851 (1983).
    • 43  Gal-Mor O, Finlay BB. Pathogenicity islands: a molecular toolbox for bacterial virulence. Cell Microbiol.8,1707–1719 (2006).
    • 44  Juhas M, van der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW. Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol. Rev.33,376–393 (2009).
    • 45  Frey J, Kuhnert P. RTX toxins in Pasteurellaceae. Int. J. Med. Microbiol.292,149–158 (2002).
    • 46  Burgos Y, Beutin L. Common origin of plasmid encoded alpha-hemolysin genes in Escherichia coli. BMC Microbiol.10,193 (2010).
    • 47  Strathdee CA, Lo RY. Extensive homology between the leukotoxin of Pasteurella haemolytica A1 and the alpha-hemolysin of Escherichia coli. Infect. Immun.55,3233–3236 (1987).
    • 48  Koronakis V, Cross M, Senior B, Koronakis E, Hughes C. The secreted hemolysins of Proteus mirabilis, Proteus vulgaris, and Morganella morganii are genetically related to each other and to the alpha-hemolysin of Escherichia coli. J. Bacteriol.169,1509–1515 (1987).
    • 49  Eberspächer B, Hugo F, Pohl M, Bhakdi S. Functional similarity between the haemolysins of Escherichia coli and Morganella morganii. J. Med. Microbiol.33,165–170 (1990).▪▪ Provides an incredibly thorough and thoughtful discussion on the function and specificity of RTX toxins of pathogenic Pasteurellaceae.
    • 50  Frey J. The role of RTX toxins in host specificity of animal pathogenic Pasteurellaceae. Vet. Microbiol.153,51–58 (2011).
    • 51  Gadeberg OV, Orskov I, Rhodes JM. Cytotoxic effect of an alpha-hemolytic Escherichia coli strain on human blood monocytes and granulocytes in vitro. Infect. Immun.41,358–364 (1983).
    • 52  Keane WF, Welch R, Gekker G, Peterson PK. Mechanism of Escherichia coli alpha-hemolysin-induced injury to isolated renal tubular cells. Am. J. Pathol.126,350–357 (1987).
    • 53  Wiles TJ, Dhakal BK, Eto DS, Mulvey MA. Inactivation of host Akt/protein kinase B signaling by bacterial pore-forming toxins. Mol. Biol. Cell19,1427–1438 (2008).
    • 54  Lally ET, Hill RB, Kieba IR, Korostoff J. The interaction between RTX toxins and target cells. Trends Microbiol.7,356–361 (1999).
    • 55  Lally ET, Kieba IR, Sato A et al. RTX toxins recognize a beta2 integrin on the surface of human target cells. J. Biol. Chem.272,30463–30469 (1997).
    • 56  Dileepan T, Kachlany SC, Balashova NV, Patel J, Maheswaran SK. Human CD18 is the functional receptor for Aggregatibacter actinomycetemcomitans leukotoxin. Infect. Immun.75,4851–4856 (2007).
    • 57  Dileepan T, Kannan MS, Walcheck B, Thumbikat P, Maheswaran SK. Mapping of the binding site for Mannheimia haemolytica leukotoxin within bovine CD18. Infect. Immun.73,5233–5237 (2005).
    • 58  Cortajarena AL, Goni FM, Ostolaza H. A receptor-binding region in Escherichia coli alpha-haemolysin. J. Biol. Chem.278,19159–19163 (2003).
    • 59  Cortajarena AL, Goñi FM, Ostolaza H. Glycophorin as a receptor for Escherichia coli alpha-hemolysin in erythrocytes. J. Biol. Chem.276,12513–12519 (2001).
    • 60  Martin C, Requero MA, Masin J et al. Membrane restructuring by Bordetella pertussis adenylate cyclase toxin, a member of the RTX toxin family. J. Bacteriol.186(12),3760–3765 (2004).
    • 61  Benz R, Schmid A, Wagner W, Goebel W. Pore formation by the Escherichia coli hemolysin: evidence for an association-dissociation equilibrium of the pore-forming aggregates. Infect. Immun.57,887–895 (1989).
    • 62  Ostolaza H, Bartolomé B, Ortiz De Zárate I, De La Cruz F, Goñi FM. Release of lipid vesicle contents by the bacterial protein toxin alpha-haemolysin. Biochim. Biophys. Acta1147,81–88 (1993).
    • 63  Bhakdi S, Greulich S, Muhly M et al. Potent leukocidal action of Escherichia coli hemolysin mediated by permeabilization of target cell membranes. J. Exp. Med.169,737–754 (1989).
    • 64  Wiles TJ, Bower JM, Redd MJ, Mulvey MA. Use of zebrafish to probe the divergent virulence potentials and toxin requirements of extraintestinal pathogenic Escherichia coli. PLoS Pathog.5,e1000697 (2009).▪▪ One of only a few studies showing that HlyA impacts the fitness and virulence of uropathogenic Escherichia coli within host environments, highlighting phagocytes as primary targets for HlyA.
    • 65  Bhakdi S, Mackman N, Nicaud JM, Holland IB. Escherichia coli hemolysin may damage target cell membranes by generating transmembrane pores. Infect. Immun.52,63–69 (1986).
    • 66  Moayeri M, Welch RA. Effects of temperature, time, and toxin concentration on lesion formation by the Escherichia coli hemolysin. Infect. Immun.62,4124–4134 (1994).
    • 67  Ostolaza H, Bakás L, Goñi FM. Balance of electrostatic and hydrophobic interactions in the lysis of model membranes by E. coli alpha-haemolysin. J. Membr. Biol.158,137–145 (1997).
    • 68  Bakás L, Ostolaza H, Vaz WL, Goñi FM. Reversible adsorption and nonreversible insertion of Escherichia coli alpha-hemolysin into lipid bilayers. Biophys. J.71,1869–1876 (1996).
    • 69  Bakás L, Chanturiya A, Herlax V, Zimmerberg J. Paradoxical lipid dependence of pores formed by the Escherichia coli alpha-hemolysin in planar phospholipid bilayer membranes. Biophys. J.91,3748–3755 (2006).
    • 70  Russo TA, Davidson BA, Genagon SA et al.E. coli virulence factor hemolysin induces neutrophil apoptosis and necrosis/lysis in vitro and necrosis/lysis and lung injury in a rat pneumonia model. Am. J. Physiol. Lung Cell. Mol. Physiol.289,L207–L216 (2005).
    • 71  Korostoff J, Wang JF, Kieba I, Miller M, Shenker BJ, Lally ET. Actinobacillus actinomycetemcomitans leukotoxin induces apoptosis in HL-60 cells. Infect. Immun.66,4474–4483 (1998).
    • 72  Ohguchi M, Ishisaki A, Okahashi N et al.Actinobacillus actinomycetemcomitans toxin induces both cell cycle arrest in the G2/M phase and apoptosis. Infect. Immun.66,5980–5987 (1998).
    • 73  Stevens PK, Czuprynski CJ. Pasteurella haemolytica leukotoxin induces bovine leukocytes to undergo morphologic changes consistent with apoptosis in vitro. Infect. Immun.64,2687–2694 (1996).
    • 74  Khelef N, Guiso N. Induction of macrophage apoptosis by Bordetella pertussis adenylate cyclase-hemolysin. FEMS Microbiol. Lett.134,27–32 (1995).
    • 75  Skals M, Leipziger J, Praetorius HA. Haemolysis induced by alpha-toxin from Staphylococcus aureus requires P2X receptor activation. Pflugers Arch.462(5),669–679 (2011).
    • 76  Munksgaard PS, Vorup-Jensen T, Reinholdt J et al. Leukotoxin from Aggregatibacter actinomycetemcomitans causes shrinkage and P2X receptor-dependent lysis of human erythrocytes. Cell Microbiol.14(12),1904–1920 (2012).
    • 77  Larsen CK, Skals M, Wang T, Cheema MU, Leipziger J, Praetorius HA. Python erythrocytes are resistant to alpha-hemolysin from Escherichia coli. J. Membr. Biol.244(3),131–140 (2011).
    • 78  Dhakal BK, Mulvey MA. The UPEC pore-forming toxin α-hemolysin triggers proteolysis of host proteins to disrupt cell adhesion, inflammatory, and survival pathways. Cell Host Microbe11,58–69 (2012).▪▪ Highlights a novel mechanism by which HlyA, but not other pore-forming toxins, can attenuate key host functions by activating host serine proteases.
    • 79  Seeger W, Walter H, Suttorp N, Muhly M, Bhakdi S. Thromboxane-mediated hypertension and vascular leakage evoked by low doses of Escherichia coli hemolysin in rabbit lungs. J. Clin. Invest.84,220–227 (1989).
    • 80  Bhakdi S, Muhly M, Korom S, Schmidt G. Effects of Escherichia coli hemolysin on human monocytes. Cytocidal action and stimulation of interleukin 1 release. J. Clin. Invest.85,1746–1753 (1990).
    • 81  Grimminger F, Walmrath D, Birkemeyer RG, Bhakdi S, Seeger W. Leukotriene and hydroxyeicosatetraenoic acid generation elicited by low doses of Escherichia coli hemolysin in rabbit lungs. Infect. Immun.58,2659–2663 (1990).
    • 82  Bhakdi S, Martin E. Superoxide generation by human neutrophils induced by low doses of Escherichia coli hemolysin. Infect. Immun.59,2955–2962 (1991).
    • 83  König B, Ludwig A, Goebel W, König W. Pore formation by the Escherichia coli alpha-hemolysin: role for mediator release from human inflammatory cells. Infect. Immun.62,4611–4617 (1994).
    • 84  Bischofberger M, Gonzalez MR, van der Goot FG. Membrane injury by pore-forming proteins. Curr. Opin. Cell Biol.21,589–595 (2009).▪ Effectively discusses and highlights the capacity for host cells to react to membrane-damaging pore-forming toxins.
    • 85  Sanchez S, Bakás L, Gratton E, Herlax V. Alpha hemolysin induces an increase of erythrocytes calcium: a FLIM 2-photon phasor analysis approach. PLoS One6,e21127 (2011).
    • 86  Koschinski A, Repp H, Unver B et al. Why Escherichia coli alpha-hemolysin induces calcium oscillations in mammalian cells – the pore is on its own. FASEB J.20,973–975 (2006).
    • 87  Tam C, Idone V, Devlin C et al. Exocytosis of acid sphingomyelinase by wounded cells promotes endocytosis and plasma membrane repair. J. Cell Biol.189,1027–1038 (2010).
    • 88  Idone V, Tam C, Goss JW, Toomre D, Pypaert M, Andrews NW. Repair of injured plasma membrane by rapid Ca2+-dependent endocytosis. J. Cell Biol.180,905–914 (2008).
    • 89  Valeva A, Walev I, Gerber A, Klein J, Palmer M, Bhakdi S. Staphylococcal alpha-toxin: repair of a calcium-impermeable pore in the target cell membrane. Mol. Microbiol.36(2),467–476 (2000).
    • 90  Husmann M, Beckmann E, Boller K et al. Elimination of a bacterial pore-forming toxin by sequential endocytosis and exocytosis. FEBS Lett.583,337–344 (2009).
    • 91  Kloft N, Busch T, Neukirch C et al. Pore-forming toxins activate MAPK p38 by causing loss of cellular potassium. Biochem. Biophys. Res. Commun.385,503–506 (2009).
    • 92  Gonzalez MR, Bischofberger M, Frêche B, Ho S, Parton RG, van der Goot FG. Pore-forming toxins induce multiple cellular responses promoting survival. Cell Microbiol.13,1026–1043 (2011).▪ Provides broad experimental evidence for the coordinated response made by host cells to pore-forming toxins.
    • 93  Gurcel L, Abrami L, Girardin S, Tschopp J, van der Goot FG. Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell126,1135–1145 (2006).▪▪ Demonstrates that host cells can sense and respond to membrane damage and subsequent changes in intracellular ion levels caused by pore-forming toxins by upregulating lipid metabolic pathways downstream of caspase-1 activation.
    • 94  Sibelius U, Grandel U, Buerke M et al. Leukotriene-mediated coronary vasoconstriction and loss of myocardial contractility evoked by low doses of Escherichia coli hemolysin in perfused rat hearts. Crit. Care Med.31(3),683–688 (2003).
    • 95  Grimminger F, Sibelius U, Bhakdi S, Suttorp N, Seeger W. Escherichia coli hemolysin is a potent inductor of phosphoinositide hydrolysis and related metabolic responses in human neutrophils. J. Clin. Invest.88,1531–1539 (1991).
    • 96  Kao C-Y, Los FCO, Huffman DL et al. Global functional analyses of cellular responses to pore-forming toxins. PLoS Pathog.7,e1001314 (2011).▪ Describes results from an in vivo screen implicating the JNK–MAPK pathway as a major regulator of host responses to pore-forming toxins.
    • 97  Bhushan S, Hossain H, Lu Y et al. Uropathogenic E. coli induce different immune response in testicular and peritoneal macrophages: implications for testicular immune privilege. PLoS One6,e28452 (2011).
    • 98  Hilbert DW, Paulish-Miller TE, Tan CK et al. Clinical Escherichia coli isolates utilize alpha-hemolysin to inhibit in vitro epithelial cytokine production. Microbes Infect.14(7–8),628–638 (2012).
    • 99  König B, König W. Induction and suppression of cytokine release (tumour necrosis factor-alpha; interleukin-6, interleukin-1 beta) by Escherichia coli pathogenicity factors (adhesions, alpha-haemolysin). Immunology78,526–533 (1993).
    • 100  Smith YC, Rasmussen SB, Grande KK, Conran RM, O’Brien AD. Hemolysin of uropathogenic Escherichia coli evokes extensive shedding of the uroepithelium and hemorrhage in bladder tissue within the first 24 hours after intraurethral inoculation of mice. Infect. Immun.76,2978–2990 (2008).
    • 101  Sheshko V, Hejnova J, Rehakova Z et al. HlyA knock out yields a safer Escherichia coli A0 34/86 variant with unaffected colonization capacity in piglets. FEMS Immunol. Med. Microbiol.48,257–266 (2006).
    • 102  Haugen BJ, Pellett S, Redford P, Hamilton HL, Roesch PL, Welch RA. In vivo gene expression analysis identifies genes required for enhanced colonization of the mouse urinary tract by uropathogenic Escherichia coli strain CFT073 dsdA. Infect. Immun.75,278–289 (2007).