We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/fmb.11.90

Studies on genetic diversity of rotaviruses have been primarily based on the genes encoding the antigenically significant VP7 and VP4 proteins. Since the rotavirus genome has 11 segments of RNA that are vulnerable to reassortment events, analyses of the VP7 and VP4 genes may not be sufficient to obtain conclusive data on the overall genetic diversity, or true origin of strains. In the last few years following the advent of the whole-genome-based genotype classification system, the whole genomes of at least 167 human group A rotavirus strains have been analyzed, providing a plethora of new and important information on the complex origin of strains, inter- and intra-genogroup reassortment events, animal–human reassortment events, zoonosis, and genetic linkages involving different group A rotavirus gene segments. In addition, the whole genomes of a limited number of human group B, C and novel group rotavirus strains have been analyzed. This article briefly reviews the available data on whole-genomic analysis of human rotavirus strains. The significance and future prospects of whole-genome-based studies are also discussed.

Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

Bibliography

  • Estes MK, Kapikian AZ. Rotaviruses and their replication. In: Fields Virology (5th Edition). Knipe DM, Howley PM, Griffin DE et al. (Eds). Lippincott, Williams & Wilkins, PA, USA, 1917–1974 (2007).
  • Parashar UD, Hummelman EG, Bresee JS, Miller MA, Glass RI. Global illness and deaths caused by rotavirus disease in children. Emerg. Infect. Dis.9,565–572 (2003).
  • Parashar UD, Burton A, Lanata C et al. Global mortality associated with rotavirus disease among children in 2004. J. Infect. Dis.200(Suppl. 1),S9–S15 (2009).
  • Parashar UD, Gibson CJ, Bresse JS, Glass RI. Rotavirus and severe childhood diarrhea. Emerg. Infect. Dis.12,304–306 (2006).
  • Jiang V, Jiang B, Tate J, Parashar UD, Patel MM. Performance of rotavirus vaccines in developed and developing countries. Hum. Vaccin.6,532–542 (2010).
  • Greenberg HB, Estes MK. Rotaviruses: from pathogenesis to vaccination. Gastroenterology.136,1939–1951 (2009).
  • Matthijnssens J, Bilcke J, Ciarlet M et al. Rotavirus disease and vaccination: impact on genotype diversity. Future Microbiol.4(10),1303–1316 (2009).▪ Recent review on the VP7 and VP4 genotype diversity of human group A rotavirus strains.
  • Santos N, Hoshino Y. Global distribution of rotavirus serotypes/genotypes and its implication for the development and implementation of an effective rotavirus vaccine. Rev. Med. Virol.15,29–56 (2005).▪ Exhaustive review on the diversity of the VP7 and VP4 genes of human group A rotavirus strains.
  • Kobayashi N, Naik TN, Ahmed MU. Genomic diversity and molecular evolution of group B human rotaviruses. In: Genomic Diversity and Molecular Epidemiology of Rotaviruses. Kobayashi N (Ed). Research Signpost, Trivandrum, India, 91–104 (2003).
  • 10  Fang ZY, Ye Q, Ho MS, Dong H et al. Investigation of an outbreak of adult diarrhea rotavirus in China. J. Infect. Dis.160,948–953 (1989).
  • 11  Barman P, Ghosh S, Samajdar S et al. RT-PCR based diagnosis revealed importance of human group B rotavirus infection in childhood diarrhoea. J. Clin. Virol.36,222–227 (2006).
  • 12  Kuzuya M, Fujii R, Hamano M et al. Survey of human group C rotaviruses in Japan during the winter of 1992 to 1993. J. Clin. Microbiol.36,6–10 (1998).
  • 13  Kuzuya M, Fujii R, Hamano M, Nishijima M, Ogura H. Detection and molecular characterization of human group C rotaviruses in Okayama Prefecture, Japan, between 1986 and 2005. J. Med. Virol.79,1219–1228 (2007).
  • 14  Matsumoto K, Hatano M, Kobayashi K et al. An outbreak of gastroenteritis associated with acute rotaviral infection in schoolchildren. J. Infect. Dis.160,611–615 (1989).
  • 15  Nilsson M, Svenungsson B, Hedlund KO et al. Incidence and genetic diversity of group C rotavirus among adults. J. Infect. Dis.182,678–684 (2000).
  • 16  Khamrin P, Peerakome S, Malasao R et al. Genetic characterization of group C rotavirus isolated from a child hospitalized with acute gastroenteritis in Chiang Mai, Thailand. Virus Genes.37,314–321 (2008).
  • 17  Schnagl RD, Boniface K, Cardwell P et al. Incidence of group C human rotavirus in central Australia and sequence variation of the VP7 and VP4 genes. J. Clin. Microbiol.42,2127–2133 (2004).
  • 18  Yamamoto D, Ghosh S, Kuzuya M et al. Whole-genome characterization of human group C rotaviruses: identification of two lineages in the VP3 gene. J. Gen. Virol.92,361–369 (2011).▪ Whole-genome-based study describing the evolution of human group C rotaviruses.
  • 19  Mackow ER. Group B and C rotaviruses. In: Infections of the Gastrointestinal Tract. Blaser MJ, Smith PD, Ravdin JI, Greenberg HB, Guerrant RL (Eds). Raven Press, NY, USA, 983–1008 (1995).
  • 20  Yang H, Makeyev EV, Kang Z, Ji S, Bamford DH, van Dijk AA. Cloning and sequence analysis of dsRNA segments 5, 6 and 7 of a novel non-group A, B, C adult rotavirus that caused an outbreak of gastroenteritis in China. Virus Res.106,15–26 (2004).
  • 21  Alam MM, Kobayashi N, Ishino M et al. Genetic analysis of an ADRV-N-like novel rotavirus strain B219 detected in a sporadic case of adult diarrhea in Bangladesh. Arch. Virol.152,199–208 (2007).
  • 22  Nagashima S, Kobayashi N, Ishino M et al. Whole genomic characterization of a human rotavirus strain B219 belonging to a novel group of the genus Rotavirus. J. Med. Virol.80,2023–2033 (2008).
  • 23  Jiang S, Ji S, Tang Q, Cui X et al. Molecular characterization of a novel adult diarrhoea rotavirus strain J19 isolated in China and its significance for the evolution and origin of group B rotaviruses. J. Gen. Virol.89,2622–2629 (2008).
  • 24  Matthijnssens J, Ciarlet M, Heiman E et al. Full genome-based classification of rotaviruses reveals a common origin between human Wa-like and porcine rotavirus strains and human DS-1-like and bovine rotavirus strains. J. Virol.82,3204–3219 (2008).▪▪ Paper describing the whole-genome-based classification scheme for group A rotaviruses.
  • 25  Dunn SJ, Cross TL, Greenberg HB. Comparison of the rotavirus nonstructural protein NSP1 (NS53) from different species by sequence analysis and northern blot hybridization. Virology203,178–183 (1994).
  • 26  Kapikian AZ, Hoshino Y, Chanock RM. Rotaviruses. In: Fields Virology (4th Edition). Knipe DM, Howley PM, Griffin DE et al. (Eds). Lippincott, Williams & Wilkins, PA, USA, 1787–1833 (2001)
  • 27  Blackhall J, Fuentes A, Magnusson G. Genetic stability of a porcine rotavirus RNA segment during repeated plaque isolation. Virology225,181–190 (1996).
  • 28  Matthijnssens J, Heylen E, Zeller M, Rahman M, Lemey P, Van Ranst M. Phylodynamic analyses of rotavirus genotypes G9 and G12 underscore their potential for swift global spread. Mol. Biol. Evol.27,2431–2436 (2010).
  • 29  Zlateva KT, Lemey P, Moës E, Vandamme AM, Van Ranst M. Genetic variability and molecular evolution of the human respiratory syncytial virus subgroup B attachment G protein. J. Virol.79,9157–9167 (2005).
  • 30  Rima BK, Earle JA, Baczko K et al. Sequence divergence of measles virus haemagglutinin during natural evolution and adaptation to cell culture. J. Gen. Virol.78,97–106 (1997).
  • 31  Yang JH, Kobayashi N, Wang YH et al. Phylogenetic analysis of a human group B rotavirus WH-1 detected in China in 2002. J. Med. Virol.74,662–667(2004).
  • 32  Rahman M, Hassan ZM, Zafrul H et al. Sequence analysis and evolution of group B rotaviruses. Virus. Res.125,219–225 (2007).
  • 33  Kobayashi N, Alam MM, Kojima K, Ishino M, Sumi A. Genomic diversity and evolution of rotaviruses : an overview. In: Genomic Diversity and Molecular Epidemiology of Rotaviruses. Kobayashi N (Ed). Research Signpost, Trivandrum, India, 75–89 (2003).
  • 34  Palombo EA. Genetic reassortment and interspecies transmission of rotaviruses. In: Genomic Diversity and Molecular Epidemiology of Rotaviruses. Kobayashi N (Ed). Research Signpost, Trivandrum, India, 1–16 (2003).
  • 35  Martella V, Banyai K, Matthijnssens J, Buonavoglia C, Ciarlet M. Zoonotic aspects of rotaviruses. Vet. Microbiol.140,246–255 (2010).▪ Excellent review on animal to human transmission of group A rotavirus strains.
  • 36  Ramachandran M, Kirkwood CD, Unicomb L et al. Molecular characterization of serotype G9 rotavirus strains from a global collection. Virology278,436–444 (2000).
  • 37  Laird AR, Gentsch JR, Nakagomi T, Nakagomi O, Glass RI. Characterization of serotype G9 rotavirus strains isolated in the United States and India from 1993 to 2001. J. Clin. Microbiol.41,3100–3111 (2003).
  • 38  Desselberger U. Genome rearrangements of rotaviruses. Arch. Virol. Suppl.12,37–51 (1996).
  • 39  Taniguchi K, Kojima K, Urasawa S. Nondefective rotavirus mutants with an NSP1 gene which has a deletion of 500 nucleotides, including a cysteine-rich zinc finger motif-encoding region (nucleotides 156 to 248), or which has a nonsense codon at nucleotides 153–155. J. Virol.70,4125–4130 (1996).
  • 40  González SA, Mattion NM, Bellinzoni R, Burrone OR. Structure of rearranged genome segment 11 in two different rotavirus strains generated by a similar mechanism. J. Gen. Virol.70,1329–1336 (1989).
  • 41  Gorziglia M, Nishikawa K, Fukuhara N. Evidence of duplication and deletion in super short segment 11 of rabbit rotavirus Alabama strain. Virology170,587–590 (1989).
  • 42  Giambiagi S, González Rodríguez I, Gómez J, Burrone O. A rearranged genomic segment 11 is common to different human rotaviruses. Arch. Virol.136(3–4),415–421 (1994).
  • 43  Kojima K, Taniguchi K, Urasawa T, Urasawa S. Sequence analysis of normal and rearranged NSP5 genes from human rotavirus strains isolated in nature: implications for the occurrence of the rearrangement at the step of plus strand synthesis. Virology224,446–452 (1996).
  • 44  Matthijnssens J, Rahman M, Martella V. Full genomic analysis of human rotavirus strain B4106 and lapine rotavirus strain 30/96 provides evidence for interspecies transmission. J. Virol.80,3801–3810 (2006).
  • 45  Matsui SM, Mackow ER, Matsuno S, Paul PS, Greenberg HB. Sequence analysis of gene 11 equivalents from “short” and “super short” strains of rotavirus. J. Virol.64,120–124 (1990).
  • 46  Gault E, Schnepf N, Poncet D, Servant A, Teran S, Garbarg-Chenon A. A human rotavirus with rearranged genes 7 and 11 encodes a modified NSP3 protein and suggests an additional mechanism for gene rearrangement. J. Virol.75,7305–7314 (2001).
  • 47  Alam MM, Kobayashi N, Ishino M et al. Identical rearrangement of NSP3 genes found in three independently isolated virus clones derived from mixed infection and multiple passages of rotaviruses. Arch. Virol.153,555–559 (2008).
  • 48  Matthijnssens J, Rahman M, Van Ranst M. Loop model: mechanism to explain partial gene duplications in segmented dsRNA viruses. Biochem. Biophys. Res. Commun.340,140–144 (2006).
  • 49  Cao D, Barro M, Hoshino Y. Porcine rotavirus bearing an aberrant gene stemming from an intergenic recombination of the NSP2 and NSP5 genes is defective and interfering. J. Virol.82,6073–6077 (2008).
  • 50  Martínez-Laso J, Román A, Rodriguez M et al. Diversity of the G3 genes of human rotaviruses in isolates from Spain from 2004 to 2006: cross-species transmission and inter-genotype recombination generates alleles. J. Gen. Virol.90,935–943 (2009).
  • 51  Phan TG, Okitsu S, Maneekarn N, Ushijima H. Evidence of intragenic recombination in G1 rotavirus VP7 genes. J. Virol.81,10188–10194 (2007).
  • 52  Parra GI, Bok K, Martínez M, Gomez JA. Evidence of rotavirus intragenic recombination between two sublineages of the same genotype. J. Gen. Virol.85,1713–1716 (2004).
  • 53  Martella V, Bányai K, Lorusso E et al. Genetic heterogeneity in the VP7 of group C rotaviruses. Virology367,358–366 (2007).
  • 54  Matthijnssens J, Ciarlet M, McDonald SM et al. Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG). Arch. Virol.156(8),1397–1413 (2011).▪▪ RCWG report on the adoption of an uniform nomenclature for naming individual rotavirus strains. Updated information on rotavirus genotypes.
  • 55  Nakagomi O, Nakagomi T, Akatani K, Ikegami N. Identification of rotavirus genogroups by RNA–RNA hybridization. Mol. Cell. Probes3,251–261 (1989).
  • 56  Nakagomi O, Nakagomi T. Genetic diversity and similarity among mammalian rotaviruses in relation to interspecies transmission of rotavirus. Arch. Virol.120,43–55 (1991).
  • 57  Nakagomi O, Nakagomi T. Molecular evidence for naturally occurring single VP7 gene substitution reassortant between human rotaviruses belonging to two different genogroups. Arch. Virol.119,67–81 (1991).
  • 58  Nakagomi O, Ohshima A, Aboudy Y et al. Molecular identification by RNA–RNA hybridization of a human rotavirus that is closely related to rotaviruses of feline and canine origin. J. Clin. Microbiol.28,1198–1203 (1990).
  • 59  Nakagomi T, Nakagomi O. RNA–RNA hybridization identifies a human rotavirus that is genetically related to feline rotavirus. J. Virol.63,1431–1434 (1989).
  • 60  Ward RL, Nakagomi O, Knowlton DR et al. Evidence for natural reassortants of human rotaviruses belonging to different genogroups. J. Virol.64,3219–3225 (1990).
  • 61  Adah MI, Nagashima S, Wakuda M, Taniguchi K. Close relationship between G8-serotype bovine and human rotaviruses isolated in Nigeria. J. Clin. Microbiol.41,3945–3950 (2003).
  • 62  Palombo EA, Bugg HC, Masendycz PJ, Coulson BS, Barnes GL, Bishop RF. Multiple-gene rotavirus reassortants responsible for an outbreak of gastroenteritis in central and northern Australia. J. Gen. Virol.77,1223–1227 (1996).
  • 63  Gerna G, Sarasini A, Parea M. Isolation and characterization of two distinct human rotavirus strains with G6 specificity. J. Clin. Microbiol.30,9–16 (1992).
  • 64  Matthijnssens J, Ciarlet M, Rahman M et al. Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments. Arch. Virol.153,1621–1629 (2008).▪▪ Recommendations for using the whole-genome-based classification scheme proposed by the Rotavirus Classification Working Group.
  • 65  Heiman EM, McDonald SM, Barro M, Taraporewala ZF, Bar-Magen T, Patton JT. Group A human rotavirus genomics: evidence that gene constellations are influenced by viral protein interactions. J. Virol.82,11106–11116 (2008).▪▪ Paper comparing the results of whole genome sequence analyses of group A rotavirus strains with the structural and functional data.
  • 66  Chen Y, Wen Y, Liu X et al. Full genomic analysis of human rotavirus strain TB-Chen isolated in China. Virology375,361–373 (2008).
  • 67  Khamrin P, Maneekarn N, Peerakome S et al. Molecular characterization of VP4, VP6, VP7, NSP4, and NSP5/6 genes identifies an unusual G3P[10] human rotavirus strain. J. Med. Virol.81,176–182 (2009).
  • 68  Khamrin P, Maneekarn N, Peerakome S et al. Molecular characterization of rare G3P[9] rotavirus strains isolated from children hospitalized with acute gastroenteritis. J. Med. Virol.79,843–851 (2007).
  • 69  Khamrin P, Maneekarn N, Peerakome S, Yagyu F, Okitsu S, Ushijima H. Molecular characterization of a rare G3P[3] human rotavirus reassortant strain reveals evidence for multiple human–animal interspecies transmissions. J. Med. Virol.78,986–994 (2006).
  • 70  De Grazia S, Martella V, Giammanco GM et al. Canine-origin G3P[3] rotavirus strain in child with acute gastroenteritis. Emerg. Infect. Dis.13,1091–1103 (2007).
  • 71  De Grazia S, Giammanco GM, Martella V et al. Rare AU-1-like G3P[9] human rotaviruses with a Kun-like NSP4 gene detected in children with diarrhea in Italy. J. Clin. Microbiol.46,357–360 (2008).
  • 72  Medici MC, Abelli LA, Martella V et al. Characterization of inter-genogroup reassortant rotavirus strains detected in hospitalized children in Italy. J. Med. Virol.79,1406–1412 (2007).
  • 73  Iturriza-Gomara M, Anderton E, Kang G et al. Evidence for genetic linkage between the gene segments encoding NSP4 and VP6 proteins in common and reassortant human rotavirus strains. J. Clin. Microbiol.41,3566–3573 (2003).
  • 74  Tatte VS, Rawal KN, Chitambar SD. Sequence and phylogenetic analysis of the VP6 and NSP4 genes of human rotavirus strains: evidence of discordance in their genetic linkage. Infect. Genet. Evol.10,940–949 (2010).
  • 75  Ciarlet M, Liprandi F, Conner ME, Estes MK. Species specificity and interspecies relatedness of NSP4 genetic groups by comparative NSP4 sequence analyses of animal rotaviruses. Arch. Virol.145,371–383 (2000).
  • 76  Iturriza Gomara M, Wong C, Blome S, Desselberger U, Gray J. Molecular characterization of VP6 genes of human rotavirus isolates: correlation of genogroups with subgroups and evidence of independent segregation. J. Virol.76,6596–6601 (2002).
  • 77  Tang B, Gilbert JM, Matsui SM, Greenberg HB. Comparison of the rotavirus gene 6 from different species by sequence analysis and localization of subgroup-specific epitopes using site-directed mutagenesis. Virology237,89–96 (1997).
  • 78  Thongprachum A, Khamrin P, Saekhow P et al. Analysis of the VP6 gene of human and porcine group A rotavirus strains with unusual subgroup specificities. J. Med. Virol.81,183–191 (2009).
  • 79  Horie Y, Masamune O, Nakagomi O. Three major alleles of rotavirus NSP4 proteins identified by sequence analysis. J. Gen. Virol.78,2341–2346 (1997).
  • 80  Mori Y, Borgan MA, Ito N, Sugiyama M, Minamoto N. Sequential analysis of nonstructural protein NSP4s derived from Group A avian rotaviruses. Virus Res.89,145–151 (2002).
  • 81  Kojima K, Taniguchi K, Kobayashi N. Species-specific and interspecies relatedness of NSP1 sequences in human, porcine, bovine, feline, and equine rotavirus strains. Arch. Virol.141,1–12 (1996).
  • 82  Xu L, Tian Y, Tarlow O, Harbour D, McCrae MA. Molecular biology of rotaviruses. IX. Conservation and divergence in genome segment 5. J. Gen. Virol.75,3413–3421 (1994).
  • 83  Rao CD, Das M, Ilango P, Lalwani R, Rao BS, Gowda K. Comparative nucleotide and amino acid sequence analysis of the sequence-specific RNA-binding rotavirus nonstructural protein NSP3. Virology207,327–333 (1995).
  • 84  Mohan KV, Atreya CD. Nucleotide sequence analysis of rotavirus gene 11 from two tissue culture-adapted ATCC strains, RRV and Wa. Virus Genes23,321–329 (2001).
  • 85  Martella V, Banyai K, Ciarlet M et al. Relationships among porcine and human P[6] rotaviruses: evidence that the different human P[6] lineages have originated from multiple interspecies transmission events. Virology344,509–519 (2006).
  • 86  Rao CD, Jagannath MR, Varshney BC, Das M, Reddy BSY. Genomic diversity through gene reassortment and antigenic drift and molecular epidemiology of rotaviruses in India. In: Genomic Diversity and Molecular Epidemiology of Rotaviruses. Kobayashi N (Ed). Research Signpost, Trivandrum, India, 55–74 (2003).
  • 87  Ghosh S, Paul SK, Hossain MA, Alam MM, Ahmed MU, Kobayashi N. Full genomic analyses of two human G2P[4] rotavirus strains detected in 2005: identification of a caprine-like VP3 gene. J. Gen. Virol.92,1222–1227 (2011).▪ Study describing the importance of whole-genomic analysis of common human group A rotavirus strains and co-circulating animal strains.
  • 88  Matthijnssens J, Rahman M, Van Ranst M. Two out of the 11 genes of an unusual human G6P[6] rotavirus isolate are of bovine origin. J. Gen. Virol.89,2630–2635 (2008).
  • 89  Ghosh S, Adachi N, Gatheru Z et al. Whole-genome analysis reveals the complex evolutionary dynamics of Kenyan G2P[4] human rotavirus strains. J. Gen. Virol.92,2201–2208 (2011)
  • 90  Maunula L, Von Bonsdorff CH. Frequent reassortments may explain the genetic heterogeneity of rotaviruses: analysis of Finnish rotavirus strains. J. Virol.76,11793–11800 (2002).
  • 91  Maes P, Matthijnssens J, Rahman M, Van Ranst M. RotaC: a web-based tool for the complete genome classification of group A rotaviruses. BMC Microbiol.9,238 (2009).
  • 92  Arora R, Chitambar SD. Full genomic analysis of Indian G1P[8] rotavirus strains. Infect. Genet. Evol.11,504–511 (2011).
  • 93  Banyai K, Mijatovic-Rustempasic S, Hull JJ et al. Sequencing and phylogenetic analysis of the coding region of six common rotavirus strains: evidence for intragenogroup reassortment among co-circulating G1P[8] and G2P[4] strains from the United States. J. Med. Virol.83,532–539 (2011).
  • 94  Rahman M, Matthijnssens J, Saiada F et al. Complete genomic analysis of a Bangladeshi G1P[8] rotavirus strain detected in 2003 reveals a close evolutionary relationship with contemporary human Wa-like strains. Infect. Genet. Evol.10,746–754 (2010).
  • 95  Ghosh S, Paul SK, Yamamoto D, Nagashima S, Kobayashi N. Full genomic analyses of human rotavirus strains possessing the rare P[8]b VP4 subtype. Infect. Genet. Evol.11(6),1481–1486 (2011),
  • 96  Freeman MM, Kerin T, Hull J et al. Phylogenetic analysis of novel G12 rotaviruses in the United States: a molecular search for the origin of a new strain. J. Med. Virol.81,736–746 (2009).
  • 97  Zeller M, Rahman M, Heylen E et al. Rotavirus incidence and genotype distribution before and after national rotavirus vaccine introduction in Belgium. Vaccine28,7507–7513 (2010).
  • 98  Carvalho-Costa FA, Volotao Ede M, de Assis RM et al. Laboratory-based rotavirus surveillance during the introduction of a vaccination program, Brazil, 2005–2009. Pediatr. Infect. Dis. J.30,S35–41 (2011).
  • 99  McDonald SM, Matthijnssens J, McAllen JK et al. Evolutionary dynamics of human rotaviruses: balancing reassortment with preferred genome constellations. PLoS. Pathog.5,E1000634 (2009).▪▪ The only large-scale study to date probing the evolutionary dynamics of human group A rotavirus strains over time.
  • 100  McDonald SM, Davis K, McAllen JK, Spiro DJ, Patton JT. Intra-genotypic diversity of archival G4P[8] human rotaviruses from Washington, DC. Infect. Genet. Evol. doi: 0.1016/j.meegid.2011.05.023 (2011) (Epub ahead of print).
  • 101  Mijatovic-Rustempasic S, Bányai K, Esona MD, Foytich K, Bowen MD, Gentsch JR. Genome sequence based molecular epidemiology of unusual US rotavirus A G9 strains isolated from Omaha, USA between 1997 and 2000. Infect. Genet. Evol.11,522–527 (2011).
  • 102  Potgieter AC, Page NA, Liebenberg J, Wright IM, Landt O, van Dijk AA. Improved strategies for sequence-independent amplification and sequencing of viral double-stranded RNA genomes. J. Gen. Virol.90,1423–1432 (2009).
  • 103  Mukherjee A, Ghosh S, Bagchi P et al. Full genomic analyses of human G4P[4], G4P[6], G9P[19] and G10P[6] strains from north-eastern India: evidence for interspecies transmission and complex reassortment events. Clin. Microbiol. Infect. doi: 10.1111/j.1469–0691.2010.03383.x (2010) (Epub ahead of print).
  • 104  Mukherjee A, Dutta D, Ghosh S et al. Full genomic analysis of a human group A rotavirus G9P[6] strain from Eastern India provides evidence for porcine-to-human interspecies transmission. Arch. Virol.154,733–746 (2009).
  • 105  Mukherjee A, Chattopadhyay S, Bagchi P et al. Surveillance and molecular characterization of rotavirus strains circulating in Manipur, north-eastern India: increasing prevalence of emerging G12 strains. Infect. Genet. Evol.10,311–320 (2010).
  • 106  Varghese V, Ghosh S, Das S et al. Characterization of VP1, VP2 and VP3 gene segments of a human rotavirus closely related to porcine strains. Virus Genes32,241–247 (2006).
  • 107  Varghese V, Das S, Singh NB et al. Molecular characterization of a human rotavirus reveals porcine characteristics in most of the genes including VP6 and NSP4. Arch. Virol.149,155–172 (2004).
  • 108  Than VT, Le VP, Lim I, Kim W. Complete genomic characterization of cell culture adapted human G12P[6] rotaviruses isolated from South Korea. Virus Genes42(3),317–322 (2011).
  • 109  Rahman M, Matthijnssens J, Yang X et al. Evolutionary history and global spread of the emerging g12 human rotaviruses. J. Virol.81,2382–2390 (2007).
  • 110  Pietsch C, Liebert UG. Human infection with G12 rotaviruses, Germany. Emerg. Infect. Dis.15,1512–1515 (2009).
  • 111  Ghosh S, Alam MM, Ahmed MU Talukdar RI, Paul SK, Kobayashi N. Complete genome constellation of a caprine group A rotavirus strain reveals common evolution with ruminant and human rotavirus strains. J. Gen. Virol.91,2367–2373 (2010).
  • 112  Ghosh S, Gatheru Z, Nyangao J, Adachi N, Urushibara N, Kobayashi N. Full genomic analysis of a simian SA11-like G3P[2] rotavirus strain isolated from an asymptomatic infant: identification of novel VP1, VP6 and NSP4 genotypes. Infect. Genet. Evol.11,57–63 (2011).▪ The first evidence for transmission of group A rotavirus strains from wildlife to humans.
  • 113  Tsugawa T, Hoshino Y. Whole genome sequence and phylogenetic analyses reveal human rotavirus G3P[3] strains Ro1845 and HCR3A are examples of direct virion transmission of canine/feline rotaviruses to humans. Virology380,344–353 (2008).
  • 114  Matthijnssens J, De Grazia S, Piessens J et al. Multiple reassortment and interspecies transmission events contribute to the diversity of feline, canine and feline/canine-like human group A rotavirus strains. Infect. Genet. Evol.11(6),1396–1406 (2011).
  • 115  Grant L, Esona M, Gentsch J et al. Detection of G3P[3] and G3P[9] rotavirus strains in American Indian children with evidence of gene reassortment between human and animal rotaviruses. J. Med.Virol.83,1288–1299 (2011).
  • 116  De Grazia S, Giammanco GM, Potgieter CA et al. Unusual assortment of segments in 2 rare human rotavirus genomes. Emerg. Infect. Dis.16,859–862 (2010).
  • 117  Wang YH, Kobayashi N, Nagashima S et al. Full genomic analysis of a porcine-bovine reassortant G4P[6] rotavirus strain R479 isolated from an infant in China. J. Med. Virol.82,1094–1102 (2010).
  • 118  Esona MD, Geyer A, Banyai K et al. Novel human rotavirus genotype G5P[7] from child with diarrhea, Cameroon. Emerg. Infect. Dis.15,83–86 (2009).
  • 119  Matthijnssens J, Potgieter CA, Ciarlet M et al. Are human P[14] rotavirus strains the result of interspecies transmissions from sheep or other ungulates that belong to the mammalian order Artiodactyla? J. Virol.83,2917–2929 (2009).
  • 120  Banyai K, Martella V, Molnar P, Mihaly I, Van Ranst M, Matthijnssens J. Genetic heterogeneity in human G6P[14] rotavirus strains detected in Hungary suggests independent zoonotic origin. J. Infect.59,213–215 (2009).
  • 121  El Sherif M, Esona MD, Wang Y et al. Detection of the first G6P[14] human rotavirus strain from a child with diarrhea in Egypt. Infect. Genet. Evol.11(6),1436–1442 (2011).
  • 122  Banyai K, Papp H, Dandar E et al. Whole genome sequencing and phylogenetic analysis of a zoonotic human G8P[14] rotavirus strain. Infect. Genet. Evol.10,1140–1144 (2010).
  • 123  Yamamoto D, Kawaguchiya M, Ghosh S, Ichikawa M, Numazaki K, Kobayashi N. Detection and full genomic analysis of G6P[9] human rotavirus in Japan. Virus Genes43(2),215–223 (2011).
  • 124  Ghosh S, Gatheru Z, Nyangao J, Adachi N, Urushibara N, Kobayashi N. Full genomic analysis of a G8P[1] rotavirus strain isolated from an asymptomatic infant in Kenya provides evidence for an artiodactyl-to-human interspecies transmission event. J. Med. Virol.83,367–376 (2011).
  • 125  Banyai K, Esona MD, Mijatovic S et al. Zoonotic bovine rotavirus strain in a diarrheic child, Nicaragua. J. Clin. Virol.46,391–393 (2009).
  • 126  Pietsch C, Petersen L, Patzer L, Liebert UG. Molecular characteristics of German G8P[4] rotavirus strain GER1H-09 suggest that a genotyping and subclassification update is required for G8. J. Clin. Microbiol.47,3569–3576 (2009).
  • 127  Matthijnssens J, Rahman M, Yang X et al. G8 rotavirus strains isolated in the Democratic Republic of Congo belong to the DS-1-like genogroup. J. Clin. Microbiol.44,1801–1809 (2006).
  • 128  Esona MD, Geyer A, Page N et al. Genomic characterization of human rotavirus G8 strains from the African Rotavirus Network: relationship to animal rotaviruses. J. Med. Virol.81,937–951 (2009).
  • 129  Esona MD, Banyai K, Foytich K et al. Genomic characterization of human rotavirus G10 strains from the African Rotavirus Network: relationship to animal rotaviruses. Infect. Genet. Evol.11,237–241 (2011).
  • 130  Ramani S, Iturriza-Gomara M, Jana AK et al. Whole genome characterization of reassortant G10P[11] strain (N155) from a neonate with symptomatic rotavirus infection: identification of genes of human and animal rotavirus origin. J. Clin. Virol.45,237–244 (2009).
  • 131  Banyai K, Esona MD, Kerin TK et al. Molecular characterization of a rare, human-porcine reassortant rotavirus strain, G11P[6], from Ecuador. Arch. Virol.154,1823–1829 (2009).
  • 132  Matthijnssens J, Rahman M, Ciarlet M et al. Reassortment of human rotavirus gene segments into G11 rotavirus strains. Emerg. Infect. Dis.16,625–630 (2010).
  • 133  Matthijnssens J, Joelsson DB, Warakomski DJ et al. Molecular and biological characterization of the 5 human-bovine rotavirus (WC3)-based reassortant strains of the pentavalent rotavirus vaccine, RotaTeq. Virology403,111–127 (2010).▪ Paper describing the genetic makeup of strains constituting the currently licensed human rotavirus pentavalent vaccine RotaTeq™.
  • 134  Rippinger CM, Patton JT, McDonald SM. Complete genome sequence analysis of candidate human rotavirus vaccine strains RV3 and 116E. Virology405,201–213 (2010).
  • 135  Victoria JG, Wang C, Jones MS et al. Viral nucleic acids in live-attenuated vaccines: detection of minority variants and an adventitious virus. J. Virol.84,6033–6040 (2010).
  • 136  Baylis SA, Finsterbusch T, Bannert N, Blumel J, Mankertz A. Analysis of porcine circovirus type 1 detected in Rotarix vaccine. Vaccine29,690–697 (2011).
  • 137  McClenahan SD, Krause PR, Uhlenhaut C. Molecular and infectivity studies of porcine circovirus in vaccines. Vaccine29,4745–4753 (2011).
  • 138  Ahmed MU, Kobayashi N, Wakuda M et al. Genetic analysis of group B human rotaviruses detected in Bangladesh in 2000 and 2001. J. Med. Virol.72,149–155 (2004).
  • 139  Aung TS, Kobayashi N, Nagashima S et al. Detecton of group B rotavirus in an adult with acute gastroenteritis in Yangon, Myanmar. J. Med. Virol.81,1968–1974 (2009).
  • 140  Yamamoto D, Ghosh S, Ganesh B et al. Analysis of genetic diversity and molecular evolution of human group B rotaviruses based on whole genome segments. J. Gen. Virol.91,1772–1781 (2010).▪ Whole-genome-based study describing the evolution of human group B rotaviruses.
  • 141  Ghosh S, Varghese V, Sinha M, Kobayashi N, Naik TN. Evidence for interstate transmission and increase in prevalence of bovine group B rotavirus strains with a novel VP7 genotype among diarrhoeic calves in Eastern and Northern states of India. Epidemiol. Infect.135,1324–1330 (2007).
  • 142  Kuga K, Miyazaki A, Suzuki T et al. Genetic diversity and classification of the outer capsid glycoprotein VP7 of porcine group B rotaviruses. Arch. Virol.154,1785–1795 (2009).
  • 143  Rahman M, Banik S, Faruque AS et al. Detection and characterization of human group C rotaviruses in Bangladesh. J. Clin. Microbiol.43,4460–4465 (2005)
  • 144  Chen Z, Lambden PR, Lau J, Caul EO, Clarke IN. Human group C rotavirus: completion of the genome sequence and gene coding assignments of a non-cultivatable rotavirus. Virus. Res.83,179–187 (2002).
  • 145  Matthijnssens J, Martella V, Van Ranst M. Genomic evolution, host-species barrier, reassortment and classification of rotaviruses. Future Virol.5,385–390 (2010).
  • 201  RotaC automated genotyping tool for group A rotaviruses http://rotac.regatools.be