We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/fmb.09.87

Vitamin D deficiency has been correlated with increased rates of infection. Since the early 19th century, both environmental (i.e., sunlight) and dietary sources (cod liver) of vitamin D have been identified as treatments for TB. The recent discovery that vitamin D induces antimicrobial peptide gene expression explains, in part, the ‘antibiotic’ effect of vitamin D and has greatly renewed interest in the ability of vitamin D to improve immune function. Subsequent work indicates that this regulation is biologically important for the response of the innate immune system to wounds and infection and that deficiency may lead to suboptimal responses toward bacterial and viral infections. The regulation of the cathelicidin antimicrobial peptide gene is a human/primate-specific adaptation and is not conserved in other mammals. The capacity of the vitamin D receptor to act as a high-affinity receptor for vitamin D and a low-affinity receptor for secondary bile acids and potentially other novel nutritional compounds suggests that the evolutionary selection to place the cathelicidin gene under control of the vitamin D receptor allows for its regulation under both endocrine and xenobiotic response systems. Future studies in both humans and humanized mouse models will elucidate the importance of this regulation and lead to the development of potential therapeutic applications.

Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

Bibliography

  • Bikle D: Nonclassic actions of vitamin D.J. Clin. Endocrinol. Metab.94(1),26–34 (2009).
  • Holick MF, Chen TC: Vitamin D deficiency: a worldwide problem with health consequences. Am. J. Clin. Nutr.87(4),1080S–1086S (2008).
  • Mangelsdorf DJ, Thummel C, Beato M et al.: The nuclear receptor superfamily: the second decade. Cell83(6),835–839 (1995).▪ Excellent review on nuclear receptors.
  • Christakos S, Raval-Pandya M, Wernyj RP, Yang W: Genomic mechanisms involved in the pleiotropic actions of 1,25-dihydroxyvitamin D3. Biochem. J.316(Pt 2),361–371 (1996).
  • Bouillon R, Garmyn M, Verstuyf A, Segaert S, Casteels K, Mathieu C: Paracrine role for calcitriol in the immune system and skin creates new therapeutic possibilities for vitamin D analogs. Eur. J. Endocrinol.133(1),7–16 (1995).
  • James SY, Williams MA, Newland AC, Colston KW: Leukemia cell differentiation: cellular and molecular interactions of retinoids and vitamin D. Gen. Pharmacol.32(1),143–154 (1999).
  • Zierold C, Darwish HM, Deluca HF: Two vitamin D response elements function in the rat 1,25-dihydroxyvitamin D 24-hydroxylase promoter. J. Biol. Chem.270(4),1675–1678 (1995).
  • Ren S, Nguyen L, Wu S, Encinas C, Adams JS, Hewison M: Alternative splicing of vitamin D-24-hydroxylase: a novel mechanism for the regulation of extrarenal 1,25-dihydroxyvitamin D synthesis. J. Biol. Chem.280(21),20604–20611 (2005).
  • Provvedini D, Tsoukas C, Deftos L, Manolagas S: 1,25-dihydroxyvitamin D3 receptors in human leukocytes. Science221(4616),1181–1183 (1983).
  • 10  Bhalla AK, Amento EP, Clemens TL, Holick MF, Krane SM: Specific high-affinity receptors for 1,25-dihydroxyvitamin D3 in human peripheral blood mononuclear cells: presence in monocytes and induction in T lymphocytes following activation. J. Clin. Endocrinol. Metab.57(6),1308–1310 (1983).
  • 11  Deluca HF, Cantorna MT: Vitamin D: its role and uses in immunology. FASEB J.15(14),2579–2585 (2001).
  • 12  Adorini L, Giarratana N, Penna G: Pharmacological induction of tolerogenic dendritic cells and regulatory T cells. Semin. Immunol.16(2),127–134 (2004).
  • 13  Lemire JM, Archer DC, Beck L, Spiegelberg HL: Immunosuppressive actions of 1,25-dihydroxyvitamin D3: preferential inhibition of Th1 functions. J. Nutr.125(Suppl. 6),1704S–1708S (1995).
  • 14  Boonstra A, Barrat FJ, Crain C, Heath VL, Savelkoul HF, O’Garra A: 1α,25-dihydroxyvitamin D3 has a direct effect on naive CD4+ T cells to enhance the development of Th2 cells. J. Immunol.167(9),4974–4980 (2001).
  • 15  Penna G, Adorini L: 1α,25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J. Immunol.164(5),2405–2411 (2000).
  • 16  Staeva-Vieira TP, Freedman LP: 1,25-dihydroxyvitamin D3 inhibits IFN-γ and IL-4 levels during in vitro polarization of primary murine CD4+ T cells. J. Immunol.168(3),1181–1189 (2002).
  • 17  Daniel C, Sartory NA, Zahn N, Radeke HH, Stein JM: Immune modulatory treatment of trinitrobenzene sulfonic acid colitis with calcitriol is associated with a change of a T helper (Th) 1/Th17 to a Th2 and regulatory T cell profile. J. Pharmacol. Exp. Ther.324(1),23–33 (2008).
  • 18  Adorini L, Penna G: Dendritic cell tolerogenicity in immunomodulation by vitamin D receptor agonists. Hum. Immunol. (2009) (Epub ahead of print).
  • 19  Adorini L, Penna G: Dendritic cell tolerogenicity: a key mechanism in immunomodulation by vitamin D receptor agonists. Hum. Immunol.70(5),345–352 (2009).
  • 20  Adorini L, Penna G, Giarratana N et al.: Dendritic cells as key targets for immunomodulation by vitamin D receptor ligands. J. Steroid Biochem. Mol. Biol.89–90(1–5),437–441 (2004).
  • 21  Adorini L: Intervention in autoimmunity: the potential of vitamin D receptor agonists. Cell Immunol.233(2),115–124 (2005).
  • 22  Mathieu C, Adorini L: The coming of age of 1,25-dihydroxyvitamin D(3) analogs as immunomodulatory agents. Trends Mol. Med.8(4),174–179 (2002).
  • 23  Adorini L, Penna G: Control of autoimmune diseases by the vitamin D endocrine system. Nat. Clin. Pract. Rheumatol.4(8),404–412 (2008).
  • 24  Chen S, Sims GP, Chen XX, Gu YY, Lipsky PE: Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J. Immunol.179(3),1634–1647 (2007).
  • 25  Liu PT, Stenger S, Li H et al.: Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science311(5768),1770–1773 (2006).▪▪ Demonstrated vitamin D-dependent activation of cathelicidin by Toll-like receptor signaling and established importance of vitamin D induction of cathelicidin in response to Mycobacterium tuberculosis.
  • 26  Overbergh L, Decallonne B, Waer M et al.: 1α,25-dihydroxyvitamin D3 induces an autoantigen-specific T-helper 1/T-helper 2 immune shift in NOD mice immunized with GAD65 (p524–543). Diabetes49(8),1301–1307 (2000).
  • 27  Koeffler HP, Reichel H, Bishop JE, Norman AW: γ-interferon stimulates production of 1,25-dihydroxyvitamin D3 by normal human macrophages. Biochem. Biophys. Res. Commun.127(2),596–603 (1985).
  • 28  Hewison M, Kantorovich V, Liker HR et al.: Vitamin D-mediated hypercalcemia in lymphoma: evidence for hormone production by tumor-adjacent macrophages. J. Bone Miner. Res.18(3),579–582 (2003).
  • 29  Cadranel J, Hance AJ, Milleron B, Paillard F, Akoun GM, Garabedian M: Vitamin D metabolism in tuberculosis. Production of 1,25(OH)2D3 by cells recovered by bronchoalveolar lavage and the role of this metabolite in calcium homeostasis. Am. Rev. Respir. Dis.138(4),984–989 (1988).
  • 30  Reichel H, Koeffler HP, Norman AW: Synthesis in vitro of 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 by interferon-γ-stimulated normal human bone marrow and alveolar macrophages. J. Biol. Chem.262(23),10931–10937 (1987).
  • 31  Yu XP, Bellido T, Manolagas SC: Down-regulation of NF-κb protein levels in activated human lymphocytes by 1,25-dihydroxyvitamin D3. Proc. Natl Acad. Sci. USA92(24),10990–10994 (1995).
  • 32  Harant H, Andrew PJ, Reddy GS, Foglar E, Lindley IJ: 1α,25-dihydroxyvitamin D3 and a variety of its natural metabolites transcriptionally repress nuclear-factor-κb-mediated interleukin-8 gene expression. Eur. J. Biochem.250(1),63–71 (1997).
  • 33  Sun J, Kong J, Duan Y et al.: Increased NF-κb activity in fibroblasts lacking the vitamin D receptor. Am. J. Physiol. Endocrinol. Metab.291(2),E315–E322 (2006).
  • 34  Van Etten E, Mathieu C: Immunoregulation by 1,25-dihydroxyvitamin D3: basic concepts. J. Steroid Biochem. Mol. Biol.97(1–2),93–101 (2005).
  • 35  Rajapakse R, Mousli M, Pfaff AW et al.: 1,25-dihydroxyvitamin D3 induces splenocyte apoptosis and enhances BALB/C mice sensitivity to toxoplasmosis. J. Steroid Biochem. Mol. Biol.96(2),179–185 (2005).
  • 36  Ehrchen J, Helming L, Varga G et al.: Vitamin D receptor signaling contributes to susceptibility to infection with Leishmania major. FASEB J.21(12),3208–3218 (2007).
  • 37  Martineau AR, Wilkinson KA, Newton SM et al.: IFN-γ- and TNF-independent vitamin D-inducible human suppression of mycobacteria: the role of cathelicidin LL-37. J. Immunol.178(11),7190–7198 (2007).▪ Provided further evidence that induction of cathelicidin is important for suppression of M. tuberculosis growth.
  • 38  Gombart AF, Borregaard N, Koeffler HP: Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J.19(9),1067–1077 (2005).▪▪ One of the first papers to demonstrate induction of cathelicidin by vitamin D particularly in macrophages.
  • 39  Wang TT, Nestel FP, Bourdeau V et al.: Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J. Immunol.173(5),2909–2912 (2004).▪ First report of vitamin D inducing cathelicidin and defensin β2/DEFB4.
  • 40  Weber G, Heilborn JD, Chamorro Jimenez CI, Hammarsjo A, Torma H, Stahle M: Vitamin D induces the antimicrobial protein hCAP18 in human skin. J. Invest. Dermatol.124(5),1080–1082 (2005).▪▪ First report showing that topical application of vitamin D induces cathelicidin in human skin.
  • 41  Zasloff M: Fighting infections with vitamin D. Nat. Med.12(4),388–390 (2006).
  • 42  Gombart AF, O’Kelly J, Saito T, Koeffler HP: Regulation of the CAMP gene by 1,25(OH)2D3 in various tissues. J. Steroid Biochem. Mol. Biol.103(3–5),552–557 (2007).
  • 43  Schauber J, Dorschner RA, Coda AB et al.: Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D-dependent mechanism. J. Clin. Invest.117(3),803–811 (2007).▪▪ Demonstrates that Toll-like receptor induction of cathelicidin in wounded skin requires a vitamin D pathway.
  • 44  Liu PT, Schenk M, Walker VP et al.: Convergence of IL-1β and VDR activation pathways in human TLR2/1-induced antimicrobial responses. PLoS One4(6),e5810 (2009).▪▪ Demonstrates the importance of convergent signaling pathways to induce defensin β2/DEFB4 by the vitamin D pathway.
  • 45  Zanetti M, Gennaro R, Romeo D: Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett.374(1),1–5 (1995).
  • 46  Sorensen OE, Follin P, Johnsen AH et al.: Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood97(12),3951–3959 (2001).
  • 47  Lehrer RI, Ganz T: Cathelicidins: a family of endogenous antimicrobial peptides. Curr. Opin. Hematol.9(1),18–22 (2002).
  • 48  Zanetti M, Gennaro R, Scocchi M, Skerlavaj B: Structure and biology of cathelicidins. Adv. Exp. Med. Biol.479,203–218 (2000).
  • 49  Frohm Nilsson M, Sandstedt B, Sorensen O, Weber G, Borregaard N, Stahle-Backdahl M: The human cationic antimicrobial protein (hCAP18), a peptide antibiotic, is widely expressed in human squamous epithelia and colocalizes with interleukin-6. Infect. Immun.67(5),2561–2566 (1999).
  • 50  Bals R, Wang X, Zasloff M, Wilson JM: The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc. Natl Acad. Sci. USA95(16),9541–9546 (1998).
  • 51  Murakami M, Ohtake T, Dorschner RA, Gallo RL: Cathelicidin antimicrobial peptides are expressed in salivary glands and saliva. J. Dent. Res.81(12),845–850 (2002).
  • 52  Murakami M, Ohtake T, Dorschner RA, Schittek B, Garbe C, Gallo RL: Cathelicidin anti-microbial peptide expression in sweat, an innate defense system for the skin. J. Invest. Dermatol.119(5),1090–1095 (2002).
  • 53  Agerberth B, Gunne H, Odeberg J, Kogner P, Boman HG, Gudmundsson GH: Fall-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proc. Natl Acad. Sci. USA92(1),195–199 (1995).
  • 54  Malm J, Sorensen O, Persson T et al.: The human cationic antimicrobial protein (hCAP-18) is expressed in the epithelium of human epididymis, is present in seminal plasma at high concentrations, and is attached to spermatozoa. Infect. Immun.68(7),4297–4302 (2000).
  • 55  Hammami-Hamza S, Doussau M, Bernard J et al.: Cloning and sequencing of SOB3, a human gene coding for a sperm protein homologous to an antimicrobial protein and potentially involved in zona pellucida binding. Mol. Hum. Reprod.7(7),625–632 (2001).
  • 56  Andersson E, Sorensen OE, Frohm B, Borregaard N, Egesten A, Malm J: Isolation of human cationic antimicrobial protein-18 from seminal plasma and its association with prostasomes. Hum. Reprod.17(10),2529–2534 (2002).
  • 57  Agerberth B, Charo J, Werr J et al.: The human antimicrobial and chemotactic peptides LL-37 and α-defensins are expressed by specific lymphocyte and monocyte populations. Blood96(9),3086–3093 (2000).
  • 58  Di Nardo A, Vitiello A, Gallo RL: Cutting edge: mast cell antimicrobial activity is mediated by expression of cathelicidin antimicrobial peptide. J. Immunol.170(5),2274–2278 (2003).
  • 59  Sorensen O, Arnljots K, Cowland JB, Bainton DF, Borregaard N: The human antibacterial cathelicidin, hCAP-18, is synthesized in myelocytes and metamyelocytes and localized to specific granules in neutrophils. Blood90(7),2796–2803 (1997).
  • 60  Dorschner RA, Pestonjamasp VK, Tamakuwala S et al.: Cutaneous injury induces the release of cathelicidin anti-microbial peptides active against group A Streptococcus. J. Invest. Dermatol.117(1),91–97 (2001).
  • 61  Ong PY, Ohtake T, Brandt C et al.: Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N. Engl. J. Med.347(15),1151–1160 (2002).
  • 62  Frohm M, Agerberth B, Ahangari G et al.: The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J. Biol. Chem.272(24),15258–15263 (1997).
  • 63  Nizet V, Ohtake T, Lauth X et al.: Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature414(6862),454–457 (2001).▪▪ Development of cathelicidin knockout mouse and demonstration of its susceptibility to skin infection.
  • 64  Chromek M, Slamova Z, Bergman P et al.: The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat. Med.12(6),636–641 (2006).
  • 65  Putsep K, Carlsson G, Boman HG, Andersson M: Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study. Lancet360(9340),1144–1149 (2002).
  • 66  Gombart AF, Koeffler HP: Neutrophil specific granule deficiency and mutations in the gene encoding transcription factor c/ebp(e). Curr. Opin. Hematol.9(1),36–42 (2002).
  • 67  Yang YH, Zheng GG, Li G, Zhang B, Song YH, Wu KF: Expression of LL-37/hCAP-18 gene in human leukemia cells. Leuk. Res.27(10),947–950 (2003).
  • 68  Ganz T: Defensins: antimicrobial peptides of vertebrates. C. R. Biol.327(6),539–549 (2004).
  • 69  Davies PD: A possible link between vitamin D deficiency and impaired host defence to Mycobacterium tuberculosis. Tubercle66(4),301–306 (1985).
  • 70  Wilkinson RJ, Llewelyn M, Toossi Z et al.: Influence of vitamin D deficiency and vitamin D receptor polymorphisms on tuberculosis among Gujarati Asians in West London: a case–control study. Lancet355(9204),618–621 (2000).
  • 71  Nnoaham KE, Clarke A: Low serum vitamin D levels and tuberculosis: a systematic review and meta-analysis. Int. J. Epidemiol.37(1),113–119 (2008).
  • 72  Rook GA, Steele J, Fraher L et al.: Vitamin D3, γ-interferon, and control of proliferation of Mycobacterium tuberculosis by human monocytes. Immunology57(1),159–163 (1986).
  • 73  Liu PT, Stenger S, Tang DH, Modlin RL: Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J. Immunol.179(4),2060–2063 (2007).▪ Uses siRNA approaches to demonstrate that antimycobacterial activity induced by vitamin D is due, in part, to cathelicidin expression.
  • 74  Martineau AR, Honecker FU, Wilkinson RJ, Griffiths CJ: Vitamin D in the treatment of pulmonary tuberculosis. J. Steroid Biochem. Mol. Biol.103(3–5),793–798 (2007).
  • 75  Nursyam EW, Amin Z, Rumende CM: The effect of vitamin D as supplementary treatment in patients with moderately advanced pulmonary tuberculous lesion. Acta Med. Indones.38(1),3–5 (2006).
  • 76  Morcos MM, Gabr AA, Samuel S et al.: Vitamin D administration to tuberculous children and its value. Boll. Chim. Farm.137(5),157–164 (1998).
  • 77  Martineau AR, Wilkinson RJ, Wilkinson KA et al.: A single dose of vitamin D enhances immunity to mycobacteria. Am. J. Respir. Crit. Care Med.176(2),208–213 (2007).
  • 78  Wejse C, Gomes VF, Rabna P et al.: Vitamin D as supplementary treatment for tuberculosis: a double-blind, randomized, placebo-controlled trial. Am. J. Respir. Crit. Care Med.179(9),843–850 (2009).
  • 79  Martineau AR, Nanzer AM, Satkunam KR et al.: Influence of a single oral dose of vitamin D(2) on serum 25-hydroxyvitamin D concentrations in tuberculosis patients. Int. J. Tuberc. Lung Dis.13(1),119–125 (2009).
  • 80  Laaksi I, Ruohola JP, Tuohimaa P et al.: An association of serum vitamin D concentrations < 40 nmol/l with acute respiratory tract infection in young Finnish men. Am. J. Clin. Nutr.86(3),714–717 (2007).
  • 81  Karatekin G, Kaya A, Salihoglu O, Balci H, Nuhoglu A: Association of subclinical vitamin D deficiency in newborns with acute lower respiratory infection and their mothers. Eur. J. Clin. Nutr.63(4),473–477 (2009).
  • 82  Walker VP, Modlin RL: The vitamin D connection to pediatric infections and immune function. Pediatr. Res. (2009) (Epub ahead of print).
  • 83  Ginde AA, Mansbach JM, Camargo CA Jr: Vitamin D, respiratory infections, and asthma. Curr. Allergy Asthma Rep.9(1),81–87 (2009).
  • 84  Cannell JJ, Vieth R, Umhau JC et al.: Epidemic influenza and vitamin D. Epidemiol. Infect.134(6),1129–1140 (2006).
  • 85  Bodnar LM, Krohn MA, Simhan HN: Maternal vitamin D deficiency is associated with bacterial vaginosis in the first trimester of pregnancy. J. Nutr.139(6),1157–1161 (2009).
  • 86  Villamor E: A potential role for vitamin D on HIV infection? Nutr. Rev.64(5 Pt 1),226–233 (2006).
  • 87  Hansdottir S, Monick MM, Hinde SL, Lovan N, Look DC, Hunninghake GW: Respiratory epithelial cells convert inactive vitamin D to its active form: potential effects on host defense. J. Immunol.181(10),7090–7099 (2008).
  • 88  Gombart AF, Saito T, Koeffler HP: Exapation of an ancient ALU short interspersed element provides a highly conserved vitamin D-mediated innate immune response in humans and primates. BMC Genomics10(1),321 (2009).▪▪ Demonstrated that vitamin D regulation of cathelicidin is human/primate specific and conserved during for 50–60 million years of primate evolution.
  • 89  Hase K, Eckmann L, Leopard JD, Varki N, Kagnoff MF: Cell differentiation is a key determinant of cathelicidin LL-37/human cationic antimicrobial protein 18 expression by human colon epithelium. Infect. Immun.70(2),953–963 (2002).
  • 90  Erdag G, Morgan JR: Interleukin-1α and interleukin-6 enhance the antibacterial properties of cultured composite keratinocyte grafts. Ann. Surg.235(1),113–124 (2002).
  • 91  Sorensen OE, Cowland JB, Theilgaard-Monch K, Liu L, Ganz T, Borregaard N: Wound healing and expression of antimicrobial peptides/polypeptides in human keratinocytes, a consequence of common growth factors. J. Immunol.170(11),5583–5589 (2003).
  • 92  Schauber J, Svanholm C, Termen S et al.: Expression of the cathelicidin LL-37 is modulated by short chain fatty acids in colonocytes: relevance of signalling pathways. Gut52(5),735–741 (2003).
  • 93  Schauber J, Dorschner RA, Yamasaki K, Brouha B, Gallo RL: Control of the innate epithelial antimicrobial response is cell-type specific and dependent on relevant microenvironmental stimuli. Immunology118(4),509–519 (2006).
  • 94  Islam D, Bandholtz L, Nilsson J et al.: Downregulation of bactericidal peptides in enteric infections: a novel immune escape mechanism with bacterial DNA as a potential regulator. Nat. Med.7(2),180–185 (2001).
  • 95  Chakraborty K, Ghosh S, Koley H et al.: Bacterial exotoxins downregulate cathelicidin (hCAP-18/LL-37) and human β-defensin 1 (HBD-1) expression in the intestinal epithelial cells. Cell Microbiol.10(12),2520–2537 (2008).
  • 96  Vieth R: What is the optimal vitamin D status for health? Prog. Biophys. Mol. Biol.92(1),26–32 (2006).
  • 97  Adams JS, Ren S, Liu PT et al.: Vitamin D-directed rheostatic regulation of monocyte antibacterial responses. J. Immunol.182(7),4289–4295 (2009).▪ Proposes that vitamin D regulation may prevent pathogen-mediated repression of cathelicidin gene expression.
  • 98  Krutzik SR, Hewison M, Liu PT et al.: IL-15 links TLR2/1-induced macrophage differentiation to the vitamin D-dependent antimicrobial pathway. J. Immunol.181(10),7115–7120 (2008).▪ Provides evidence that implicates cytokine expression important in vitamin D-mediated induction of cathelicidin.
  • 99  Lande R, Gregorio J, Facchinetti V et al.: Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature449(7162),564–569 (2007).
  • 100  Ganguly D, Chamilos G, Lande R et al.: Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J. Exp. Med.206(9),1983–1994 (2009).
  • 101  Peric M, Koglin S, Kim SM et al.: IL-17α enhances vitamin D3-induced expression of cathelicidin antimicrobial peptide in human keratinocytes. J. Immunol.181(12),8504–8512 (2008).
  • 102  Wolk K, Kunz S, Witte E, Friedrich M, Asadullah K, Sabat R: IL-22 increases the innate immunity of tissues. Immunity21(2),241–254 (2004).
  • 103  Kao CY, Chen Y, Thai P et al.: IL-17 markedly up-regulates β-defensin-2 expression in human airway epithelium via JAK and NF-κb signaling pathways. J. Immunol.173(5),3482–3491 (2004).
  • 104  Peric M, Koglin S, Dombrowski Y et al.: Vitamin D analogs differentially control antimicrobial peptide/“Alarmin” expression in psoriasis. PLoS One4(7),e6340 (2009).
  • 105  Buchau AS, Macleod DT, Morizane S, Kotol PF, Hata T, Gallo RL: Bcl-3 acts as an innate immune modulator by controlling antimicrobial responses in keratinocytes. J. Invest. Dermatol.129(9),2148–2155 (2009).
  • 106  Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ: Nuclear receptors and lipid physiology: opening the X-files. Science294(5548),1866–1870 (2001).
  • 107  Schmidt DR, Mangelsdorf DJ: Nuclear receptors of the enteric tract: guarding the frontier. Nutr. Rev.66(10 Suppl. 2),S88–S97 (2008).▪ Excellent review of nuclear receptors and protection of the digestive system.
  • 108  Makishima M, Okamoto AY, Repa JJ et al.: Identification of a nuclear receptor for bile acids. Science284(5418),1362–1365 (1999).▪▪ First evidence that lithocholic acid is a ligand for the vitamin D receptor.
  • 109  Adachi R, Honma Y, Masuno H et al.: Selective activation of vitamin D receptor by lithocholic acid acetate, a bile acid derivative. J. Lipid Res.46(1),46–57 (2005).
  • 110  Staudinger JL, Goodwin B, Jones SA et al.: The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc. Natl Acad. Sci. USA98(6),3369–3374 (2001).
  • 111  Xie W, Radominska-Pandya A, Shi Y et al.: An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids. Proc. Natl Acad. Sci. USA98(6),3375–3380 (2001).
  • 112  Matsubara T, Yoshinari K, Aoyama K et al.: Role of vitamin D receptor in the lithocholic acid-mediated CYP3a induction in vitro and in vivo. Drug Metab. Dispos.36(10),2058–2063 (2008).
  • 113  Ogura M, Nishida S, Ishizawa M et al.: Vitamin D3 modulates the expression of bile acid regulatory genes and represses inflammation in bile duct-ligated mice. J. Pharmacol. Exp. Ther.328(2),564–570 (2009).
  • 114  Lorenzo-Zuniga V, Bartoli R, Planas R et al.: Oral bile acids reduce bacterial overgrowth, bacterial translocation, and endotoxemia in cirrhotic rats. Hepatology37(3),551–557 (2003).
  • 115  Inagaki T, Moschetta A, Lee YK et al.: Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc. Natl Acad. Sci. USA103(10),3920–3925 (2006).
  • 116  D’aldebert E, Biyeyeme Bi Mve MJ, Mergey M et al.: Bile salts control the antimicrobial peptide cathelicidin through nuclear receptors in the human biliary epithelium. Gastroenterology136(4),1435–1443 (2009).
  • 117  Schwab M, Reynders V, Shastri Y, Loitsch S, Stein J, Schroder O: Role of nuclear hormone receptors in butyrate-mediated up-regulation of the antimicrobial peptide cathelicidin in epithelial colorectal cells. Mol. Immunol.44(8),2107–2114 (2007).
  • 118  Jurutka PW, Bartik L, Whitfield GK et al.: Vitamin D receptor: key roles in bone mineral pathophysiology, molecular mechanism of action, and novel nutritional ligands. J. Bone Miner. Res.22(Suppl. 2),V2–V10 (2007).
  • 119  Jacobsen F, Mittler D, Hirsch T et al.: Transient cutaneous adenoviral gene therapy with human host defense peptide hCAP-18/LL-37 is effective for the treatment of burn wound infections. Gene Ther.12(20),1494–1502 (2005).
  • 120  Raqib R, Sarker P, Bergman P et al.: Improved outcome in shigellosis associated with butyrate induction of an endogenous peptide antibiotic. Proc. Natl Acad. Sci. USA103(24),9178–9183 (2006).
  • 121  Zasloff M: Inducing endogenous antimicrobial peptides to battle infections. Proc. Natl Acad. Sci. USA103(24),8913–8914 (2006).
  • 122  Gombart AF, Bhan I, Borregaard N et al.: Low plasma level of cathelicidin antimicrobial peptide (hCAP18) predicts increased infectious disease mortality in patients undergoing hemodialysis. Clin. Infect. Dis.48(4),418–424 (2009).▪▪ First paper to demonstrate that circulating cathelicidin may provide protection from infection and/or sepsis.
  • 123  Jeng L, Yamshchikov AV, Judd SE et al.: Alterations in vitamin D status and anti-microbial peptide levels in patients in the intensive care unit with sepsis. J. Transl. Med.7,28 (2009).
  • 124  Hata TR, Kotol P, Jackson M et al.: Administration of oral vitamin D induces cathelicidin production in atopic individuals. J. Allergy Clin. Immunol.122(4),829–831 (2008).
  • 125  Oppenheim JJ, Tewary P, De La Rosa G, Yang D: Alarmins initiate host defense. Adv. Exp. Med. Biol.601,185–194 (2007).
  • 126  Yang D, De La Rosa G, Tewary P, Oppenheim JJ: Alarmins link neutrophils and dendritic cells. Trends Immunol. (2009) (Epub ahead of print).
  • 127  Nehring JA, Zierold C, Deluca HF: Lithocholic acid can carry out in vivo functions of vitamin D. Proc. Natl Acad. Sci. USA104(24),10006–10009 (2007).
  • 128  Ishizawa M, Matsunawa M, Adachi R et al.: Lithocholic acid derivatives act as selective vitamin D receptor modulators without inducing hypercalcemia. J. Lipid Res.49(4),763–772 (2008).
  • 129  Holick MF: The vitamin D deficiency pandemic and consequences for nonskeletal health: mechanisms of action. Mol. Aspects Med.29(6),361–368 (2008).