We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Histone-modifying enzymes: regulators of developmental decisions and drivers of human disease

    Jill S Butler

    Department of Molecular Carcinogenesis at The Virginia Harris Cockrell Cancer Research Center, University of Texas MD Anderson Cancer Center Science Park, PO Box 389, Smithville, TX 78957, USA

    Center for Cancer Epigenetics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA

    Authors contributed equally

    Search for more papers by this author

    ,
    Evangelia Koutelou

    Department of Molecular Carcinogenesis at The Virginia Harris Cockrell Cancer Research Center, University of Texas MD Anderson Cancer Center Science Park, PO Box 389, Smithville, TX 78957, USA

    Center for Cancer Epigenetics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA

    Authors contributed equally

    Search for more papers by this author

    ,
    Andria C Schibler

    Department of Molecular Carcinogenesis at The Virginia Harris Cockrell Cancer Research Center, University of Texas MD Anderson Cancer Center Science Park, PO Box 389, Smithville, TX 78957, USA

    Center for Cancer Epigenetics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA

    The Genes & Development Program, Graduate School of Biomedical Sciences, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA

    &
    Sharon YR Dent

    * Author for correspondence

    Department of Molecular Carcinogenesis at The Virginia Harris Cockrell Cancer Research Center, University of Texas MD Anderson Cancer Center Science Park, PO Box 389, Smithville, TX 78957, USA.

    Center for Cancer Epigenetics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA

    The Genes & Development Program, Graduate School of Biomedical Sciences, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA

    Published Online:https://doi.org/10.2217/epi.12.3

    Precise transcriptional networks drive the orchestration and execution of complex developmental processes. Transcription factors possessing sequence-specific DNA binding properties activate or repress target genes in a step-wise manner to control most cell lineage decisions. This regulation often requires the interaction between transcription factors and subunits of massive protein complexes that bear enzymatic activities towards histones. The functional coupling of transcription proteins and histone modifiers underscores the importance of transcriptional regulation through chromatin modification in developmental cell fate decisions and in disease pathogenesis.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • Lessard JA, Crabtree GR. Chromatin regulatory mechanisms in pluripotency. Annu. Rev. Cell Dev. Biol.26,503–532 (2010).
    • Mills AA. Throwing the cancer switch. reciprocal roles of polycomb and trithorax proteins. Nat. Rev. Cancer10(10),669–682 (2010).
    • Ringrose L, Paro R. Epigenetic regulation of cellular memory by the polycomb and trithorax group proteins. Annu. Rev. Genet.38,413–443 (2004).
    • Soshnikova N, Duboule D. Epigenetic regulation of vertebrate Hox genes: a dynamic equilibrium. Epigenetics4(8),537–540 (2009).
    • Mallo M, Wellik DM, Deschamps J. Hox genes and regional patterning of the vertebrate body plan. Dev. Biol.344(1),7–15 (2010).
    • Shah N, Sukumar S. The Hox genes and their roles in oncogenesis. Nat. Rev. Cancer10(5),361–371 (2010).
    • Torres-Padilla ME, Parfitt DE, Kouzarides T, Zernicka-Goetz M. Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature445(7124),214–218 (2007).▪▪ Dissects the function of H3 arginine methyltransferase in cell fate determination of a four-cell stage mouse embryo.
    • Wu Q, Bruce AW, Jedrusik A et al. CARM1 is required in embryonic stem cells to maintain pluripotency and resist differentiation. Stem Cells27(11),2637–2645 (2009).
    • Parfitt DE, Zernicka-Goetz M. Epigenetic modification affecting expression of cell polarity and cell fate genes to regulate lineage specification in the early mouse embryo. Mol. Biol. Cell21(15),2649–2660 (2010).
    • 10  O’neill LP, Vermilyea MD, Turner BM. Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nat. Genet.38(7),835–841 (2006).
    • 11  Ang YS, Tsai SY, Lee DF et al. Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell145(2),183–197 (2011).
    • 12  Dou Y, Milne TA, Ruthenburg AJ et al. Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat. Struct. Mol. Biol.13(8),713–719 (2006).
    • 13  Boyer LA, Plath K, Zeitlinger J et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature441(7091),349–353 (2006).
    • 14  Conerly MI, Macquarrie KL, Fong AP, Yao Z, Tapscott SJ. Polycomb-mediated repression during terminal differentiation: what don’t you want to be when you grow up? Genes Dev.25(10),997–1003 (2011).
    • 15  Lee TI, Jenner RG, Boyer LA et al. Control of developmental regulators by polycomb in human embryonic stem cells. Cell125(2),301–313 (2006).
    • 16  Lee MG, Villa R, Trojer P et al. Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science318(5849),447–450 (2007).
    • 17  Agger K, Cloos PA, Christensen J et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature449(7163),731–734 (2007).
    • 18  Lan F, Bayliss PE, Rinn JL et al. A histone H3 lysine 27 demethylase regulates animal posterior development. Nature449(7163),689–694 (2007).
    • 19  Peng JC, Valouev A, Swigut T et al. Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell139(7),1290–1302 (2009).
    • 20  Pasini D, Cloos PA, Walfridsson J et al. JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature464(7286),306–310 (2010).
    • 21  Shen X, Kim W, Fujiwara Y et al. Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells. Cell139(7),1303–1314 (2009).
    • 22  Endoh M, Endo TA, Endoh T et al. Polycomb group proteins Ring1A/B are functionally linked to the core transcriptional regulatory circuitry to maintain ES cell identity. Development135(8),1513–1524 (2008).
    • 23  Stock JK, Giadrossi S, Casanova M et al. Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nat. Cell Biol.9(12),1428–1435 (2007).
    • 24  Alder O, Lavial F, Helness A et al. Ring1B and Suv39h1 delineate distinct chromatin states at bivalent genes during early mouse lineage commitment. Development137(15),2483–2492 (2010).
    • 25  Loh YH, Zhang W, Chen X, George J, Ng HH. Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes Dev.21(20),2545–2557 (2007).
    • 26  Feldman N, Gerson A, Fang J et al. G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat. Cell Biol.8(2),188–194 (2006).
    • 27  Epsztejn-Litman S, Feldman N, Abu-Remaileh M et al.De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nat. Struct. Mol. Biol.15(11),1176–1183 (2008).
    • 28  Szutorisz H, Canzonetta C, Georgiou A, Chow CM, Tora L, Dillon N. Formation of an active tissue-specific chromatin domain initiated by epigenetic marking at the embryonic stem cell stage. Mol. Cell Biol.25(5),1804–1820 (2005).
    • 29  Pasini D, Malatesta M, Jung HR et al. Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes. Nucleic Acids Res.38(15),4958–4969 (2010).
    • 30  Yao TP, Oh SP, Fuchs M et al. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell93(3),361–372 (1998).
    • 31  Xu CR, Cole PA, Meyers DJ, Kormish J, Dent S, Zaret KS. Chromatin ‘prepattern’ and histone modifiers in a fate choice for liver and pancreas. Science332(6032),963–966 (2011).▪▪ Highlights the importance of chromatin patterns in the fate decision between liver and pancreas by isolating ventral foregut endoderm cells from mouse embryos.
    • 32  Ma P, Schultz RM. Histone deacetylase 1 (HDAC1) regulates histone acetylation, development, and gene expression in preimplantation mouse embryos. Dev. Biol.319(1),110–120 (2008).
    • 33  Brunmeir R, Lagger S, Seiser C. Histone deacetylase HDAC1/HDAC2-controlled embryonic development and cell differentiation. Int. J. Dev. Biol.53(2–3),275–289 (2009).
    • 34  Kaji K, Nichols J, Hendrich B. Mbd3, a component of the NuRD co-repressor complex, is required for development of pluripotent cells. Development134(6),1123–1132 (2007).
    • 35  Marino S, Nusse R. Mutants in the mouse NuRD/Mi2 component P66α are embryonic lethal. PLoS ONE2(6),e519 (2007).
    • 36  Zhu D, Fang J, Li Y, Zhang J. Mbd3, a component of NuRD/Mi-2 complex, helps maintain pluripotency of mouse embryonic stem cells by repressing trophectoderm differentiation. PLoS ONE4(11),e7684 (2009).
    • 37  Liang J, Wan M, Zhang Y et al. Nanog and Oct4 associate with unique transcriptional repression complexes in embryonic stem cells. Nat. Cell Biol.10(6),731–739 (2008).
    • 38  Dovey OM, Foster CT, Cowley SM. Histone deacetylase 1 (HDAC1), but not HDAC2, controls embryonic stem cell differentiation. Proc. Natl Acad. Sci. USA107(18),8242–8247 (2010).
    • 39  Lyu J, Jho EH, Lu W. Smek promotes histone deacetylation to suppress transcription of Wnt target gene brachyury in pluripotent embryonic stem cells. Cell Res.21(6),911–921 (2011).
    • 40  Addis RC, Prasad MK, Yochem RL et al. OCT3/4 regulates transcription of histone deacetylase 4 (Hdac4) in mouse embryonic stem cells. J. Cell Biochem.111(2),391–401 (2010).
    • 41  Montgomery RL, Davis CA, Potthoff MJ et al. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev.21(14),1790–1802 (2007).
    • 42  Trivedi CM, Luo Y, Yin Z et al. Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3β activity. Nat. Med.13(3),324–331 (2007).
    • 43  Broide RS, Redwine JM, Aftahi N, Young W, Bloom FE, Winrow CJ. Distribution of histone deacetylases 1–11 in the rat brain. J. Mol. Neurosci.31(1),47–58 (2007).
    • 44  Akhtar MW, Raingo J, Nelson ED et al. Histone deacetylases 1 and 2 form a developmental switch that controls excitatory synapse maturation and function. J. Neurosci.29(25),8288–8297 (2009).
    • 45  Quinti L, Chopra V, Rotili D et al. Evaluation of histone deacetylases as drug targets in Huntington’s disease models. Study of HDACs in brain tissues from R6/2 and CAG140 knock-in HD mouse models and human patients and in a neuronal HD cell model. PLoS Curr.2,pii: RRN1172 (2010).
    • 46  Helmlinger D, Hardy S, Eberlin A, Devys D, Tora L. Both normal and polyglutamine-expanded ataxin-7 are components of TFTC-type GCN5 histone acetyltransferase – containing complexes. Biochem. Soc. Symp.73,155–163 (2006).
    • 47  Mcmahon SJ, Pray-Grant MG, Schieltz D, Yates JR 3rd, Grant PA. Polyglutamine-expanded spinocerebellar ataxia-7 protein disrupts normal SAGA and SLIK histone acetyltransferase activity. Proc. Natl Acad. Sci. USA102(24),8478–8482 (2005).
    • 48  Palhan VB, Chen S, Peng GH et al. Polyglutamine-expanded ataxin-7 inhibits STAGA histone acetyltransferase activity to produce retinal degeneration. Proc. Natl Acad. Sci. USA102(24),8472–8477 (2005).
    • 49  David G, Abbas N, Stevanin G et al. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat. Genet.17(1),65–70 (1997).
    • 50  David G, Durr A, Stevanin G et al. Molecular and clinical correlations in autosomal dominant cerebellar ataxia with progressive macular dystrophy (SCA7). Hum. Mol. Genet.7(2),165–170 (1998).
    • 51  Chen YC, Gatchel JR, Lewis RW et al. Gcn5 loss-of-function accelerates cerebellar and retinal degeneration in a SCA7 mouse model. Hum. Mol. Genet.21(2),394–405 (2012).
    • 52  Caretti G, Di Padova M, Micales B, Lyons Ge, Sartorelli V. The polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes Dev.18(21),2627–2638 (2004).
    • 53  Rampalli S, Li L, Mak E et al. p38 MAPK signaling regulates recruitment of Ash2L-containing methyltransferase complexes to specific genes during differentiation. Nat. Struct. Mol. Biol.14(12),1150–1156 (2007).
    • 54  Acharyya S, Sharma SM, Cheng AS et al. TNF inhibits Notch-1 in skeletal muscle cells by Ezh2 and DNA methylation mediated repression: implications in duchenne muscular dystrophy. PLoS ONE5(8),e12479 (2010).
    • 55  Chen H, Gu X, Su IH et al. Polycomb protein Ezh2 regulates pancreatic β-cell Ink4a/Arf expression and regeneration in diabetes mellitus. Genes Dev.23(8),975–985 (2009).
    • 56  Dhawan S, Tschen SI, Bhushan A. Bmi-1 regulates the Ink4a/Arf locus to control pancreatic β-cell proliferation. Genes Dev.23(8),906–911 (2009).
    • 57  Ezhkova E, Pasolli HA, Parker JS et al. Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell136(6),1122–1135 (2009).
    • 58  Leung C, Lingbeek M, Shakhova O et al. Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature428(6980),337–341 (2004).
    • 59  Roman-Trufero M, Mendez-Gomez HR, Perez C et al. Maintenance of undifferentiated state and self-renewal of embryonic neural stem cells by Polycomb protein Ring1B. Stem Cells27(7),1559–1570 (2009).
    • 60  Sher F, Rossler R, Brouwer N, Balasubramaniyan V, Boddeke E, Copray S. Differentiation of neural stem cells into oligodendrocytes: involvement of the polycomb group protein Ezh2. Stem Cells26(11),2875–2883 (2008).
    • 61  Pasini D, Bracken AP, Hansen JB, Capillo M, Helin K. The polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol. Cell Biol.27(10),3769–3779 (2007).
    • 62  Hirabayashi Y, Suzki N, Tsuboi M et al. Polycomb limits the neurogenic competence of neural precursor cells to promote astrogenic fate transition. Neuron63(5),600–613 (2009).
    • 63  Luna-Fineman S, Shannon KM, Lange BJ. Childhood monosomy 7: epidemiology, biology, and mechanistic implications. Blood85(8),1985–1999 (1995).
    • 64  Dohner K, Brown J, Hehmann U et al. Molecular cytogenetic characterization of a critical region in bands 7q35-q36 commonly deleted in malignant myeloid disorders. Blood92(11),4031–4035 (1998).
    • 65  Iwase S, Lan F, Bayliss P et al. The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell128(6),1077–1088 (2007).
    • 66  Kleine-Kohlbrecher D, Christensen J, Vandamme J et al. A functional link between the histone demethylase PHF8 and the transcription factor ZNF711 in X-linked mental retardation. Mol. Cell38(2),165–178 (2010).
    • 67  Van Bokhoven H, Kramer JM. Disruption of the epigenetic code. an emerging mechanism in mental retardation. Neurobiol. Dis.39(1),3–12 (2010).
    • 68  Shima Y, Kitabayashi I. Deregulated transcription factors in leukemia. Int. J. Hematol.94(2),134–141 (2011).
    • 69  Kobelka CE. Exome sequencing: expanding the genetic testing toolbox. Clin. Genet.78(2),132–134 (2010).
    • 70  Cooper GM, Shendure J. Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data. Nat. Rev. Genet.12(9),628–640 (2011).
    • 71  Bamshad MJ, Ng SB, Bigham AW et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat. Rev. Genet.12(11),745–755 (2011).▪ Discusses the advantages and limitations of using exome sequencing to define causative mutations underlying genetic diseases.
    • 72  Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat. Med.10(8),789–799 (2004).
    • 73  Liu H, Cheng EH, Hsieh JJ. MLL fusions: pathways to leukemia. Cancer Biol. Ther.8(13),1204–1211 (2009).
    • 74  Marschalek R. Mechanisms of leukemogenesis by MLL fusion proteins. Br. J. Haematol.152(2),141–154 (2010).
    • 75  Guenther MG, Lawton LN, Rozovskaia T et al. Aberrant chromatin at genes encoding stem cell regulators in human mixed-lineage leukemia. Genes Dev.22(24),3403–3408 (2008).
    • 76  Morin RD, Mendez-Lago M, Mungall AJ et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature476(7360),298–303 (2011).
    • 77  Pasqualucci L, Trifonov V, Fabbri G et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat. Genet.43(9),830–837 (2011).
    • 78  Hess JL, Yu BD, Li B, Hanson R, Korsmeyer SJ. Defects in yolk sac hematopoiesis in Mll-null embryos. Blood90(5),1799–1806 (1997).
    • 79  Heuser M, Yap DB, Leung M et al. Loss of MLL5 results in pleiotropic hematopoietic defects, reduced neutrophil immune function, and extreme sensitivity to DNA demethylation. Blood113(7),1432–1443 (2009).
    • 80  Velichutina I, Shaknovich R, Geng H et al. EZH2-mediated epigenetic silencing in germinal center B cells contributes to proliferation and lymphomagenesis. Blood116(24),5247–5255 (2010).
    • 81  Chase A, Cross NC. Aberrations of EZH2 in cancer. Clin. Cancer Res.17(9),2613–2618 (2011).
    • 82  Morin RD, Johnson NA, Severson TM et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat. Genet.42(2),181–185 (2010).
    • 83  Yap DD, Chu J, Berg T et al. Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood117(8),2451–2459 (2011).
    • 84  Makishima H, Jankowska AM, Tiu RV et al. Novel homo- and hemizygous mutations in EZH2 in myeloid malignancies. Leukemia24(10),1799–1804 (2010).
    • 85  Nikoloski G, Langemeijer SM, Kuiper RP et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat. Genet.42(8),665–667 (2010).
    • 86  Ernst T, Chase AJ, Score J et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat. Genet.42(8),722–726 (2010).
    • 87  Jankowska AM, Makishima H, Tiu RV et al. Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTX, EZH2 and DNMT3A. Blood118(14),3932–3941 (2011).
    • 88  Grossmann V, Kohlmann A, Eder C et al. Molecular profiling of chronic myelomonocytic leukemia reveals diverse mutations in >80% of patients with TET2 and EZH2 being of high prognostic relevance. Leukemia25(5),877–879 (2011).
    • 89  Van Haaften G, Dalgliesh GL, Davies H et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat. Genet.41(5),521–523 (2009).
    • 90  Chapman MA, Lawrence MS, Keats JJ et al. Initial genome sequencing and analysis of multiple myeloma. Nature471(7339),467–472 (2011).
    • 91  Stec I, Wright TJ, Van Ommen GJ et al. WHSC1, a 90 kb SET domain-containing gene, expressed in early development and homologous to a Drosophila dysmorphy gene maps in the Wolf–Hirschhorn syndrome critical region and is fused to IgH in t(4;14) multiple myeloma. Hum. Mol. Genet.7(7),1071–1082 (1998).
    • 92  Martinez-Garcia E, Popovic R, Min DJ et al. The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells. Blood117(1),211–220 (2011).
    • 93  Mullighan CG, Zhang J, Kasper LH et al.CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature471(7337),235–239 (2011).
    • 94  Pasqualucci L, Dominguez-Sola D, Chiarenza A et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature471(7337),189–195 (2011).▪ Reports inactivating mutations in the histone acetyltransferases CREBBP and EP300, and loss of CBP acetyltransferase function toward its nonhistone substrates, p53 and BCL6.
    • 95  Oike Y, Takakura N, Hata A et al. Mice homozygous for a truncated form of CREB-binding protein exhibit defects in hematopoiesis and vasculo-angiogenesis. Blood93(9),2771–2779 (1999).
    • 96  Parsons DW, Li M, Zhang X et al. The genetic landscape of the childhood cancer medulloblastoma. Science331(6016),435–439 (2011).▪▪ First report implicating MLL2 and MLL3 as tumor suppressors in pediatric medulloblastoma.
    • 97  Northcott PA, Nakahara Y, Wu X et al. Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nat. Genet.41(4),465–472 (2009).
    • 98  Gui Y, Guo G, Huang Y et al. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat. Genet.43(9),875–878 (2011).
    • 99  Dalgliesh GL, Furge K, Greenman C et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature463(7279),360–363 (2010).
    • 100  Varela I, Tarpey P, Raine K et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature469(7331),539–542 (2011).
    • 101  Petrij F, Giles RH, Dauwerse HG et al. Rubinstein–Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature376(6538),348–351 (1995).
    • 102  Roelfsema JH, Peters DJ. Rubinstein–Taybi syndrome: clinical and molecular overview. Expert Rev. Mol. Med.9(23),1–16 (2007).
    • 103  De Sario A. Clinical and molecular overview of inherited disorders resulting from epigenomic dysregulation. Eur. J. Med. Genet.52(6),363–372 (2009).
    • 104  Alarcon JM, Malleret G, Touzani K et al. Chromatin acetylation, memory, and LTP are impaired in CBP+/- mice: a model for the cognitive deficit in Rubinstein–Taybi syndrome and its amelioration. Neuron42(6),947–959 (2004).
    • 105  Bartholdi D, Roelfsema JH, Papadia F et al. Genetic heterogeneity in Rubinstein–Taybi syndrome: delineation of the phenotype of the first patients carrying mutations in EP300. J. Med. Genet.44(5),327–333 (2007).
    • 106  Miller RW, Rubinstein JH. Tumors in Rubinstein–Taybi syndrome. Am. J. Med. Genet.56(1),112–115 (1995).
    • 107  Kleefstra T, Smidt M, Banning MJ et al. Disruption of the gene Euchromatin histone methyl transferase1 (Eu-HMTase1) is associated with the 9q34 subtelomeric deletion syndrome. J. Med. Genet.42(4),299–306 (2005).
    • 108  Verhoeven WM, Egger JI, Vermeulen K, Van De Warrenburg BP, Kleefstra T. Kleefstra syndrome in three adult patients: further delineation of the behavioral and neurological phenotype shows aspects of a neurodegenerative course. Am. J. Med. Genet. A155(10),2409–2415 (2011).
    • 109  Cheung HC, Yatsenko SA, Kadapakkam M et al. Constitutional tandem duplication of 9q34 that truncates EHMT1 in a child with ganglioglioma. Pediatr. Blood Cancer58(5),801–805 (2012).
    • 110  Jensen LR, Amende M, Gurok U et al. Mutations in the JARID1C gene, which is involved in transcriptional regulation and chromatin remodeling, cause X-linked mental retardation. Am. J. Hum. Genet.76(2),227–236 (2005).
    • 111  Rujirabanjerd S, Nelson J, Tarpey PS et al. Identification and characterization of two novel JARID1C mutations: suggestion of an emerging genotype-phenotype correlation. Eur. J. Hum. Genet.18(3),330–335 (2010).
    • 112  Tahiliani M, Mei P, Fang R et al. The histone H3K4 demethylase SMCX links REST target genes to X-linked mental retardation. Nature447(7144),601–605 (2007).
    • 113  Ng SB, Bigham AW, Buckingham KJ et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat. Genet.42(9),790–793 (2010).▪▪ Reports that mutations in MLL2 cause Kabuki syndrome. This is the first example in which mutations within an MLL family member play a causal role in a multiple malformation disorder.
    • 114  Paulussen AD, Stegmann AP, Blok MJ et al.MLL2 mutation spectrum in 45 patients with Kabuki syndrome. Hum. Mutat.32(2),E2018–E2025 (2010).
    • 115  Hannibal MC, Buckingham KJ, Ng SB et al. Spectrum of MLL2 (ALR) mutations in 110 cases of Kabuki syndrome. Am. J. Med. Genet. A155A(7),1511–1516 (2011).
    • 116  Li Y, Bogershausen N, Alanay Y et al. A mutation screen in patients with Kabuki syndrome. Hum. Genet.130(6),715–724 (2011).
    • 117  Niikawa N, Matsuura N, Fukushima Y, Ohsawa T, Kajii T. Kabuki make-up syndrome: a syndrome of mental retardation, unusual facies, large and protruding ears, and postnatal growth deficiency. J. Pediatr.99(4),565–569 (1981).
    • 118  Kuroki Y, Suzuki Y, Chyo H, Hata A, Matsui I. A new malformation syndrome of long palpebral fissures, large ears, depressed nasal tip, and skeletal anomalies associated with postnatal dwarfism and mental retardation. J. Pediatr.99(4),570–573 (1981).
    • 119  Pless B, Oehm C, Knauer S, Stauber RH, Dingermann T, Marschalek R. The heterodimerization domains of MLL-FYRN and FYRC – are potential target structures in t(4;11) leukemia. Leukemia25(4),663–670 (2011).