We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Lipidomics applications for disease biomarker discovery in mammal models

    Ying-Yong Zhao

    *Author for correspondence:

    E-mail Address: zyy@nwu.edu.cn

    Key Laboratory of Resource Biology & Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an, Shaanxi, China

    Authors contributed equally and are co-first authors

    Search for more papers by this author

    ,
    Xian-Long Cheng

    National Institutes for Food & Drug Control, State Food & Drug Administration, Beijing, China

    Authors contributed equally and are co-first authors

    Search for more papers by this author

    ,
    Rui-Chao Lin

    School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China

    &
    Feng Wei

    **Author for correspondence:

    E-mail Address: weifengs@gmail.com

    National Institutes for Food & Drug Control, State Food & Drug Administration, Beijing, China

    Published Online:https://doi.org/10.2217/bmm.14.81

    Lipidomics is a lipid-targeted metabolomics approach focusing on comprehensive analysis of all lipids with which they interact in biology systems. Recent technological advances in MS and chromatography have greatly enhanced the developments and applications of metabolic profiling of diverse lipids in complex biological samples. Lipidomics will not only provide insights into the specific functions of lipid species in health and disease, but will also identify potential biomarkers for establishing preventive or therapeutic programs for human disease. In this review, recent applications of lipidomics to understand animal models of disease such as metabolic syndromes, neurodegenerative diseases, cancer and infectious diseases are considered. We also discuss the lipidomics for the future perspectives and their potential problems.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Han X, Gross RW. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J. Lipid Res. 44(6), 1071–1079 (2003).•• Lipidomics was first put forward by Han and Gross in 2003. Lipidomics opens the way for a more complete characterization of lipids metabolism in different biological samples.
    • 2 Spener F, Lagarde M, Geloen A, Record M. What is lipidomics? Eur. J. Lipid Sci. Technol. 105(9), 481–482 (2003).
    • 3 Hu C, van der Heijden R, Wang M, van der Greef J, Hankemeier T, Xu G. Analytical strategies in lipidomics and applications in disease biomarker discovery. J. Chromatogr. B 877(26), 2836–2846 (2009).
    • 4 Fahy E, Subramaniam S, Brown HA et al. A comprehensive classification system for lipids. J. Lipid Res. 46(5), 839–862 (2005).• Classification system for lipids has been reported for the first time.
    • 5 Fahy E, Subramaniam S, Murphy RC et al. Update of the LIPID MAPS comprehensive classification system for lipids. J. Lipid Res. 50(S), 9–14 (2009).
    • 6 Folch J, Lees M, Sloane-Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226(1), 497–509 (1957).
    • 7 Hermansson M, Käkelä R, Berghäll M, Lehesjoki AE, Somerharju P, Lahtinen U. Mass spectrometric analysis reveals changes in phospholipid, neutral sphingolipid and sulfatide molecular species in progressive epilepsy with mental retardation, EPMR, brain: a case study. J. NeuroChem. 95(3), 609–617 (2005).
    • 8 Löfgren L, Ståhlman M, Forsberg GB, Saarinen S, Nilsson R, Hansson GI. The BUME method: a novel automated chloroform-free 96-well total lipid extraction method for blood plasma. J. Lipid Res. 53(8), 1690–1700 (2012).
    • 9 Saunders RD, Horrocks LA. Simultaneous extraction and preparation for high-performance liquid chromatography of prostaglandins and phospholipids. Anal. BioChem. 143(1), 71–75 (1984).
    • 10 Chen S, Hoene M, Li J et al. Simultaneous extraction of metabolome and lipidome with methyl tert-butyl ether from a single small tissue sample for ultra-high performance liquid chromatography/mass spectrometry. J. Chromatogr. A 1298, 9–16 (2013).
    • 11 Kim HY, Salem N Jr. Separation of lipid classes by solid phase extraction. J. Lipid Res. 31(12), 2285–2289 (1990).
    • 12 Hauff S, Vetter W. Quantification of fatty acids as methyl esters and phospholipids in cheese samples after separation of triacylglycerides and phospholipids. Anal. Chim. Acta 636(2), 229–235 (2009).
    • 13 Sheng J, Vannela R, Rittmann BE. Evaluation of methods to extract and quantify lipids from Synechocystis PCC 6803. Bioresour. Technol. 102(2), 1697–1703 (2011).
    • 14 Luque-García JL, Luque de Castro MD. Focused microwave-assisted Soxhlet extraction: devices and applications. Talanta 64(3), 571–577 (2004).
    • 15 Luque-García JL, Luque de Castro MD. Ultrasound-assisted Soxhlet extraction: an expeditive approach for solid sample treatment. Application to the extraction of total fat from oleaginous seeds. J. Chromatogr. A 1034(1–2), 237–242 (2004).
    • 16 Pizarro C, Arenzana-Rámila I, Pérez-del-Notario N, Pérez-Matute P, González-Sáiz JM. Plasma lipidomic profiling method based on ultrasound extraction and liquid chromatography mass spectrometry. Anal. Chem. 85(24), 12085–12092 (2013).
    • 17 Isaac G. Development of enhanced analytical methodology for lipid analysis from sampling to detection. A Targeted Lipidomics Approach. Uppsala University, Sweden (2005). www.diva-portal.org/smash/get/diva2:166474/FULLTEXT01.pdf.
    • 18 Self R. Extraction of Organic Analytes from Foods, The Royal Society of Chemistry, Cambridge, UK (2005).
    • 19 Gross RW, Han X. Shotgun lipidomics of neutral lipids as an enabling technology for elucidation of lipid-related diseases. Am. J. Physiol. Endocrinol. Metab. 297(2), E297–E303 (2009).
    • 20 Han X, Gross RW. Shotgun lipidomics-multidimensional MS analysis of cellular lipidomes. Expert Rev. Proteomics 2(2), 253–264 (2005).
    • 21 Ståhlman M, Ejsing CS, Tarasov K, Perman J, Borén J, Ekroos K. High-throughput shotgun lipidomics by quadrupole time-of-flight mass spectrometry. J. Chromatogr. B 877(26), 2664–2672 (2009).
    • 22 Zehethofer N, Pinto DM. Recent developments in tandem mass spectrometry for lipidomic analysis. Anal. Chim. Acta 627(1), 62–70 (2008).
    • 23 Wenk MR. The emerging field of lipidomics. Nat. Rev. Drug Discov. 4(7), 594–610 (2005).
    • 24 Wenk MR, Lucast L, Di Paolo G et al. Phosphoinositide profiling in complex lipid mixtures using electrospray ionization mass spectrometry. Nat. BioTechnol. 21(7), 813–817 (2003).
    • 25 Koivusalo M, Haimi P, Heikinheimo L, Kostiainen R, Somerharju P. Quantitative determination of phospholipid compositions by ESI-MS: effects of acyl chain length, unsaturation, and lipid concentration on instrument response. J. Lipid Res. 42(4), 663–672 (2001).
    • 26 Brügger B, Erben G, Sandhoff R, Wieland FT, Lehmann WD. Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc. Natl Acad. Sci. USA 94(6), 2339–2344 (1997).
    • 27 Taguchi R, Hayakawa J, Takeuchi Y, Ishida M. Two-dimensional analysis of phospholipids by capillary liquid chromatography/electrospray ionization mass spectrometry. J. Mass Spectrom. 35(8), 953–966 (2000).
    • 28 Houjou T, Yamatani K, Imagawa M, Shimizu T, Taguchi R. A shotgun tandem mass spectrometric analysis of phospholipids with normal-phase and/or reverse-phase liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 19(5), 654–666 (2005).
    • 29 Avigan J, Goodman DS, Steinberg D. Thin-layer chromatography of sterols and steroids. J. Lipid Res. 4(1), 100–101 (1963).
    • 30 Sommerer D, Süss R, Hammerschmidt S, Wirtz H, Arnold K, Schiller J. Analysis of the phospholipid composition of bronchoalveolar lavage (BAL) fluid from man and minipig by MALDI-TOF mass spectrometry in combination with TLC. J. Pharm. BioMed. Anal. 35(1), 199–206 (2004).
    • 31 Fuchs B, Schiller J, Süss R et al. Analysis of stem cell lipids by offline HPTLC-MALDI-TOF MS. Anal. BioAnal. Chem. 392(5), 849–860 (2008).
    • 32 Gao F, Tian X, Wen D, Liao J, Wang T, Liu H. Analysis of phospholipid species in rat peritoneal surface layer by liquid chromatography/electrospray ionization ion-trap mass spectrometry. Biochim. Biophys. Acta 1761(7), 667–676 (2006).
    • 33 Olsson P, Holmbäck J, Nilsson U. Herslöf B. Separation and identification of lipid classes by normal phase LC-ESI/MS/MS on a cyanopropyl column. Eur. J. Lipid Sci. Technol. 116(5), 653–658 (2014).
    • 34 Leskinen H, Suomela JP, Pinta J, Kallio H. Regioisomeric structure determination of alpha- and gamma-linolenoyldilinoleoylglycerol in blackcurrant seed oil by silver ion high-performance liquid chromatography and mass spectrometry. Anal. Chem. 80(15), 5788–5793 (2008).
    • 35 Deng L, Nakano H, Iwasaki Y. Direct separation of monoacylglycerol isomers by enantioselective high-performance liquid chromatography. J. Chromatogr. A 1198–1199, 67–72 (2008).
    • 36 Rainville PD, Stumpf CL, Shockcor JP, Plumb RS, Nicholson JK. Novel application of reversed-phase UPLC-oaTOF-MS for lipid analysis in complex biological mixtures: a new tool for lipidomics. J. Proteome Res. 6(2), 552–558 (2007).
    • 37 Chen S, Wei C, Gao P et al. Effect of Allium macrostemon on a rat model of depression studied by using plasma lipid and acylcarnitine profiles from liquid chromatography/mass spectrometry. J. Pharm. BioMed. Anal. 89, 122–129 (2014).
    • 38 Zhao YY, Wu SP, Liu S, Zhang Y, Lin RC. Ultra-performance liquid chromatography-mass spectrometry as a sensitive and powerful technology in lipidomic applications. Chem. Biol. Interact. 220, 181–192 (2014).•• This review reported UPLC-MS as a sensitive and powerful technology in lipidomic applications.
    • 39 Wrona M, Mauriala T, Bateman KP, Mortishire-Smith RJ, O'Connor D. ‘All-in-One’ analysis for metabolite identification using liquid chromatography/hybrid quadrupole time-of-flight mass spectrometry with collision energy switching. Rapid Commun. Mass Spectrom. 19(18), 2597–2602 (2005).
    • 40 Zhao YY, Lin RC. UPLC–MSE application in disease biomarker discovery: the discoveries in proteomics to metabolomics. Chem. Biol. Interact. 215, 7–16 (2014).•• UPLC–MSE is regarded as one of the more suitable techniques in proteomics and metabolomics. This technique will widely apply to lipidomics in the future.
    • 41 Zhao YY. Metabolomics in chronic kidney disease. Clin. Chim. Acta 422, 59–69 (2013).
    • 42 Zhao YY, Lin RC. Metabolomics in nephrotoxicity. Adv. Clin. Chem. 65, 69–89 (2014).
    • 43 Zhao YY, Cheng XL, Wei F et al. Intrarenal metabolomic investigation of chronic kidney disease and its TGF-β1 mechanism in induced-adenine rats using UPLC Q-TOF/HSMS/MSE. J. Proteome Res. 12(2), 692–703 (2013).
    • 44 Zhao YY, Liu J, Cheng XL, Bai X, Lin RC. Urinary metabonomics study on biochemical changes in an experimental model of chronic renal failure by adenine based on UPLC Q-TOF/MS. Clin. Chim. Acta 413(5–6), 642–649 (2012).
    • 45 Zhao YY, Shen X, Cheng XL, Wei F, Bai X, Lin RC. Urinary metabonomics study on the protective effects of ergosta-4,6,8(14),22-tetraen-3-one on chronic renal failure in rats using UPLC Q-TOF/MS and a novel MSE data collection technique. Process BioChem. 47(12), 1980–1987 (2012).
    • 46 Zhao YY, Zhang L, Long FY et al. UPLC-Q-TOF/HSMS/MSE-based metabonomics for adenine-induced changes in metabolic profiles of rat faeces and intervention effects of ergosta-4,6,8(14),22-tetraen-3-one. Chem. Biol. Interact. 301(1–3), 31–38 (2013).
    • 47 Zhao YY, Lei P, Chen DQ, Feng YL, Bai X. Renal metabolic profiling of early renal injury and renoprotective effects of poria cocos epidermis using UPLC Q-TOF/HSMS/MSE. J. Pharm. BioMed. Anal. 81–82(1), 202–209 (2013).
    • 48 Guo X, Lankmayr E. Multidimensional approaches in LC and MS for phospholipid bioanalysis. Bioanalysis 2(6), 1109–1123 (2010).
    • 49 Kliman M, May JC, McLean JA. Lipid analysis and lipidomics by structurally selective ion mobility-mass spectrometry. Biochim. Biophys. Acta 1811(11), 935–945 (2011).
    • 50 Vilella F, Ramirez LB, Simón C. Lipidomics as an emerging tool to predict endometrial receptivity. Fertil. Steril. 99(4), 1100–1106 (2013).
    • 51 Zietkowski D, Payne GS, Nagy E, Mobberley MA, Ryder TA, deSouza NM. Comparison of NMR lipid profiles in mitotic arrest and apoptosis as indicators of paclitaxel resistance in cervical cell lines. Magn. Reson. Med. 68(2), 369–377 (2012).
    • 52 Gawrisch K, Eldho NV, Polozov IV. Novel NMR tools to study structure and dynamics of biomembranes. Chem. Phys. Lipids 116(1–2), 135–151 (2002).
    • 53 Sharman MJ, Shui G, Fernandis AZ et al. Profiling brain and plasma lipids in human APOE epsilon2, epsilon3, and epsilon4 knock-in mice using electrospray ionization mass spectrometry. J. Alzheimers Dis. 20(1), 105–111 (2010).
    • 54 Oliveira TG, Chan RB, Tian H et al. Phospholipase D2 ablation ameliorates Alzheimer's disease-linked synaptic dysfunction and cognitive deficits. J. Neurosci. 30(49), 16419–16428 (2010).
    • 55 Chan C, Qi X, Li MW, Wong FL, Lam HM. Recent developments of genomic research in soybean. J. Genet. Genomics 39(7), 317–324 (2012).
    • 56 Barceló-Coblijn G, Golovko MY, Weinhofer I, Berger J, Murphy EJ. Brain neutral lipids mass is increased in alpha-synuclein gene-ablated mice. J. NeuroChem. 101(1), 132–141 (2007).
    • 57 Rappley I, Myers DS, Milne SB et al. Lipidomic profiling in mouse brain reveals differences between ages and genders, with smaller changes associated with α-synuclein genotype. J. NeuroChem. 111(1), 15–25 (2009).
    • 58 Bijl N, Sokolović M, Vrins C et al. Modulation of glyco-sphingolipid metabolism significantly improves hepatic insulin sensitivity and reverses hepatic steatosis in mice. Hepatology 50(5), 1431–1441 (2009).
    • 59 van Eijk M, Aten J, Bijl N et al. Reducing glycosphingolipid content in adipose tissue of obese mice restores insulin sensitivity, adipogenesis and reduces inflammation. PLoS ONE 4(3), e4723 (2009).
    • 60 Shui G, Lam SM, Stebbins J et al. Polar lipid derangements in Type 2 diabetes mellitus: potential pathological relevance of fatty acyl heterogeneity in sphingolipids. Metabolomics 9(4), 786–799 (2013).• The study identifies metabolic alterations in sphingolipid pathways as early events in Type 2 diabetes mellitus pathogenesis, and provides new insights relevant for larger scale clinical studies aimed at identification of early molecular biomarkers of Type 2 diabetes mellitus.
    • 61 Puri P, Wiest MM, Cheung O et al. The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology 50(6), 1827–1838 (2009).
    • 62 González-Périz A, Horrillo R, Ferré N et al. Obesity-induced insulin resistance and hepatic steatosis are alleviated by omega-3 fatty acids: a role for resolvins and protectins. FASEB J. 23(6), 1946–1957 (2009).
    • 63 Hall D, Poussin C, Velagapudi VR et al. Peroxisomal and microsomal lipid pathways associated with resistance to hepatic steatosis and reduced pro-inflammatory state. J. Biol. Chem. 285(40), 31011–31023 (2010).
    • 64 Dória ML, Cotrim Z, Macedo B et al. Lipidomic approach to identify patterns in phospholipid profiles and define class differences in mammary epithelial and breast cancer cells. Breast Cancer Res. Treat. 133(2), 635–648 (2012).
    • 65 Dória ML, Cotrim CZ, Simões C et al. Lipidomic analysis of phospholipids from human mammary epithelial and breast cancer cell lines. J. Cell Physiol. 228(2), 457–468 (2013).
    • 66 Zhang L, Peterson BL, Cummings BS. The effect of inhibition of Ca2+-independent phospholipase A2 on chemotherapeutic-induced death and phospholipid profiles in renal cells. BioChem. Pharmacol. 70(11), 1697–1706 (2005).
    • 67 Mal M, Koh PK, Cheah PY, Chan EC. Ultra-pressure liquid chromatography/tandem mass spectrometry targeted profiling of arachidonic acid and eicosanoids in human colorectal cancer. Rapid Commun. Mass Spectrom. 25(6), 755–764 (2011).• This study demonstrated that eicosanoids play an important role in associating inflammation with human colorectal cancer.
    • 68 Muir K, Hazim A, He Y et al. Proteomic and lipidomic signatures of lipid metabolism in NASH-associated hepatocellular carcinoma. Cancer Res. 73(15), 4722–4731 (2013).
    • 69 Chan R, Uchil PD, Jin J et al. Retroviruses human immunodeficiency virus and murine leukemia virus are enriched in phosphoinositides. J. Virol. 82(22), 11228–11238 (2008).
    • 70 Low KL, Rao PS, Shui G et al. Triacylglycerol utilization is required for regrowth of in vitro hypoxic nonreplicating Mycobacterium bovis bacillus Calmette–Guérin. J. Bacteriol. 191(16), 5037–5043 (2008).
    • 71 Low KL, Shui G, Natter K et al. Lipid droplet-associated proteins are involved in the biosynthesis and hydrolysis of triacylglycerol in Mycobacterium bovis bacillus Calmette–Guérin. J. Biol. Chem. 285(28), 21662–21670 (2010).
    • 72 Hartmann T, Kuchenbecker J, Grimm MOW. Alzheimer's disease: the lipid connection. J. Neurochem. 103(S1), 159–170 (2007).
    • 73 Berman DE, Dall'Armi C, Voronov SV et al. Oligomeric amyloid-beta peptide disrupts phosphatidylinositol-4,5-bisphosphate metabolism. Nat. Neurosci. 11(5), 547–554 (2008).
    • 74 Davignon J, Gregg RE, Sing CF. Apolipoprotein E polymorphism and atherosclerosis. Arteriosclerosis 8(1), 1–21 (1988).
    • 75 Lim WL, Lam SM, Shui G et al. Effects of high-fat, high-cholesterol diet on brain lipid profiles in apolipoprotein E 33 and 34 knock-in mice. NeuroBiol. Aging 34(9), 221722–221724 (2013).
    • 76 Zeng Y, Cheng H, Jiang X, Han X. Endosomes and lysosomes play distinct roles in sulfatide-induced neuroblastoma apoptosis: potential mechanisms contributing to abnormal sulfatide metabolism in related neuronal diseases. BioChem. J. 410(1), 81–92 (2008).
    • 77 Sanchez-Mejia RO, Newman JW, Toh S et al. Phospholipase A2 reduction ameliorates cognitive deficits in a mouse model of Alzheimer's disease. Nat. Neurosci. 11(11), 1311–1318 (2008).
    • 78 Singh IN, McCartney DG, Kanfer JN. Amyloid-beta protein (25–35) stimulation of phospholipases A, C and D activities of La-N-2 cells. Febs Lett. 365(2–3), 125–128 (1995).
    • 79 Kim JH, Lee BD, Kim Y, Lee SD, Suh PG, Ryu SH. Cytosolic phospholipase A2-mediated regulation of phospholipase D2 in leukocyte cell lines. J. Immunol. 163(10), 5462–5470 (1999).
    • 80 Gai WP, Yuan HX, Li XQ, Power JT, Blumbergs PC, Jensen PH. In situ and in vitro study of colocalization and segregation of alpha-synuclein, ubiquitin, and lipids in Lewy bodies. Exp. Neurol. 166(2), 324–333 (2000).
    • 81 Ruipérez V, Darios F, Davletov B. Alpha-synuclein, lipids and Parkinson's disease. Prog. Lipid Res. 49(4), 420–428 (2009).
    • 82 Bosco DA, Fowler DM, Zhang Q et al. Elevated levels of oxidized cholesterol metabolites in Lewy body disease brains accelerate alpha-synuclein fibrilization. Nat. Chem. Biol. 2(5), 249–253 (2006).
    • 83 Bar-On P, Crews L, Koob AO et al. Statins reduce neuronal alpha-synuclein aggregation in in vitro models of Parkinson's disease. J. NeuroChem. 105(5), 1656–1667 (2008).
    • 84 Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature 388(6645), 839–840 (1997).
    • 85 Polymeropoulos MH, Lavedan C, Leroy E et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276(5321), 2045–2047 (1997).
    • 86 Kruger R, Kuhn W, Muller T et al. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nat. Genet. 18(2), 106–108 (1988).
    • 87 Zarranz JJ, Alegre J, Gomez-Esteban JC et al. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann. Neurol. 55(2), 164–173 (2004).
    • 88 Singleton AB, Farrer M, Johnson J et al. Alpha-synuclein locus triplication causes Parkinson's disease. Science 302(5646), 841 (2003).
    • 89 Ibanez P, Bonnet AM, Debarges B et al. Causal relation between alpha-synuclein gene duplication and familial Parkinson's disease. Lancet 364(9440), 1169–1171 (2004).
    • 90 Chen H, Miao H, Feng YL, Zhao YY, Lin RC. Metabolomics in dyslipidemia. Adv. Clin. Chem. 66, 101–119 (2014).
    • 91 Miao H, Chen H, Zhang X et al. Urinary metabolomics on the biochemical profiles in diet-induced hyperlipidemia rat using ultra-performance liquid chromatography coupled with quadrupole time-of-flight synapt high-definition mass spectrometry. J. Anal. Methods Chem. 184162 (2014) (2014).
    • 92 Fletcher MJ. A colorimetric method for estimating serum triglycerides. Clin. Chim. Acta 22(3), 393–397 (1968).
    • 93 Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27(10), 1047–1053 (2004).
    • 94 Li J, Romestaing C, Han X et al. Cardiolipin remodeling by ALCAT1 links oxidative stress and mitochondrial dysfunction to obesity. Cell Metab. 12(2), 154–165 (2010).
    • 95 Cinti S, Mitchell G, Barbatelli G et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 46(11), 2347–2355 (2005).
    • 96 Inokuchi JI. Membrane microdomains and insulin resistance. FEBS Lett. 584(9), 1864–1871 (2010).
    • 97 Haus JM, Kashyap, SR, Kasumov T et al. Plasma ceramides are elevated in obese subjects with Type 2 diabetes and correlate with the severity of insulin resistance. Diabetes 58(2), 337–343 (2009).
    • 98 de Mello VDF, Lankinen M, Schwab U et al. Link between plasma ceramides, inflammation and insulin resistance: association with serum IL-6 concentration in patients with coronary heart disease. Diabetologia 52(12), 2612–2615 (2009).
    • 99 Holland WL, Bikman BT, Wang LP et al. Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J. Clin. Invest. 121(5), 1858–1870 (2011).
    • 100 Tagami S, Inokuchi Ji JI, Kabayama K et al. Ganglioside GM3 participates in the pathological conditions of insulin resistance. J. Biol. Chem. 277(5), 3085–3092 (2002).
    • 101 Kabayama K, Sato T, Saito K et al. Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proc. Natl Acad. Sci. USA 104(34), 13678–13683 (2007).
    • 102 Watkins SM, Reifsnyder PR, Pan HJ, German JB, Leiter EH. Lipid metabolome-wide effects of the PPAR gamma agonist rosiglitazone. J. Lipid Res. 43(11), 1809–1817 (2002).
    • 103 Malhi H, Bronk SF, Werneburg NW, Gores GJ. Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J. Biol. Chem. 281(17), 12093–12101 (2006).
    • 104 Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 134(6), 933–944 (2008).
    • 105 Yki-Jarvinen H. Thiazolidinediones and the liver in humans. Curr. Opin. Lipidol. 20(6), 477–483 (2009).
    • 106 Culp BR, Titus BG, Lands WE. Inhibition of prostaglandin biosynthesis by eicosapentaenoic acid. Prostaglandins Med. 3(5), 269–278 (1979).
    • 107 López-Parra M, Titos E, Horrillo R et al. Regulatory effects of arachidonate 5-lipoxygenase on hepatic MTP activity and VLDL-TG and ApoB secretion in obese mice. J. Lipid Res. 49(12), 2513–2523 (2008).
    • 108 Merched AJ, Ko K, Gotlinger KH, Serhan CN, Chan L. Atherosclerosis: evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators. FASEB J. 22(10), 3595–3606 (2008).
    • 109 Fernandis AZ, Wenk MR. Lipid-based biomarkers for cancer. J. Chromatogr. B 877(26), 2830–2835 (2009).
    • 110 Patra SK. Dissecting lipid raft facilitated cell signaling pathways in cancer. Biochim. Biophys. Acta Rev. Cancer 1785(2), 182–206 (2008).
    • 111 Ackerstaff E, Glunde K, Bhujwalla ZM. Choline phospholipid metabolism: a target in cancer cells? J. Cell BioChem. 90(3), 525–533 (2003).
    • 112 Bian D, Su S, Mahanivong C et al. Lysophosphatidic acid stimulates ovarian cancer cell migration via a Ras-MEK kinase 1 pathway. Cancer Res. 64(12), 4209–4217 (2004).
    • 113 Cummings BS, Gelasco AK, Kinsey GR, McHowat J, Schnellmann RG. Inactivation of endoplasmic reticulum bound Ca2+-independent phospholipase A2 in renal cells during oxidative stress. J. Am. Soc. Nephrol. 15(6), 1441–1451 (2004).
    • 114 Llorente A, Skotland T, Sylvänne T et al. Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim. Biophys. Acta 1831(7), 1302–1309 (2013).
    • 115 Chan AT, Giovannucci EL, Meyerhardt JA, Schernhammer ES, Curhan GC, Fuchs CS. Long-term use of aspirin and nonsteroidal anti-inflammatory drugs and risk of colorectal cancer. J. Am. Med. Assn. 294(8), 914–923 (2005).
    • 116 Soslow RA, Dannenberg AJ, Rush D et al. COX-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer 89(12), 2637–2645 (2000).
    • 117 Melstrom LG1, Bentrem DJ, Salabat MR et al. Overexpression of 5-lipoxygenase in colon polyps and cancer and the effect of 5-LOX inhibitors in vitro and in a murine model. Clin. Cancer Res. 14(20), 6525–6530 (2008).
    • 118 Maskrey BH, Megson IL, Rossi AG, Whitfield PD. Emerging importance of omega-3 fatty acids in the innate immune response: Molecular mechanisms and lipidomic strategies for their analysis. Mol. Nutr. Food Res. 57(8), 1390–1400 (2013).
    • 119 Weylandt KH, Krause LF, Gomolka B et al. Suppressed liver tumorigenesis in fat-1 mice with elevated omega-3 fatty acids is associated with increased omega-3 derived lipid mediators and reduced TNF-α. Carcinogenesis 32(6), 897–903 (2011).
    • 120 Horie Y, Suzuki A, Kataoka E et al. Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J. Clin. Invest. 113(12), 1774–1783 (2014).
    • 121 Jelonek K, Ros M, Pietrowska1 M, Widlak P. Cancer biomarkers and mass spectrometry-based analyses of phospholipids in body fluids. Clin. Lipidol. 8(1), 137–150 (2013).
    • 122 van der Meer-Janssen YP, van Galen J, Batenburg JJ, Helms JB. Lipids in host–pathogen interactions: pathogens exploit the complexity of the host cell lipidome. Prog. Lipid Res. 49(1), 1–26 (2010).
    • 123 Aloia RC, Tian H, Jensen FC. Lipid composition and fluidity of the human immunodeficiency virus envelope and host cell plasma membranes. Proc. Natl Acad. Sci. USA 90(11), 5181–5185 (1993).
    • 124 Saad JS, Miller J, Tai J, Kim A, Ghanam RH, Summers MF. Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc. Natl Acad. Sci. USA 103(30), 11364–11369 (2006).
    • 125 Ehrt S, Schnappinger D. Mycobacterium tuberculosis virulence: lipids inside and out. Nat. Med. 13(3), 284–285 (2007).
    • 126 Zhao YY, Cheng XL, Vaziri ND, Liu S, Lin RC. UPLC-based metabonomics applications for discovering biomarkers of diseases in clinical chemistry. Clin. BioChem. 47(15), 16–26 (2014).
    • 127 Zhao YY, Cheng XL, Wei F et al. Serum metabonomics study of adenine-induced chronic renal failure rat by ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Biomarkers 17(1), 48–55 (2012).
    • 128 Zhao YY, Feng YL, Bai X, Tan XJ, Lin RC, Mei Q. Ultra performance liquid chromatography-based metabonomic study of therapeutic effect of the surface layer of Poria cocos on adenine-induced chronic kidney disease provides new insight into anti-fibrosis mechanism. PLoS ONE 8(3), e59617 (2013).
    • 129 Zhao YY, Li HT, Feng YL, Bai X, Lin RC. Urinary metabonomic study of the surface layer of poria cocos as an effective treatment for chronic renal injury in rats. J. Ethnopharmacol. 148(2), 403–410 (2013).
    • 130 Zhao YY, Cheng XL, Wei F, Bai X, Lin RC. Application of faecal metabonomics on an experimental model of tubulointerstitial fibrosis by ultra performance liquid chromatography/high-sensitivity mass spectrometry with MSE data collection technique. Biomarkers 17(8), 721–729 (2012).