We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Biomarkers for invasive aspergillosis: the challenges continue

    Gemma Johnson

    Blizard Institute, Queen Mary University of London, London, UK

    ,
    Arianna Ferrini

    Clinical Pathology, Barts Health NHS Trust, London, UK

    ,
    Stephen K Dolan

    Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland

    ,
    Tania Nolan

    Sigma Custom Products, Haverhill, Suffolk, UK

    ,
    Samir Agrawal

    Blizard Institute, Queen Mary University of London, London, UK

    ,
    Sean Doyle

    Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland

    &
    Stephen A Bustin

    *Author for correspondence:

    E-mail Address: stephen.bustin@anglia.ac.uk

    Postgraduate Medical Institute, Faculty of Health, Social Care & Education, Anglia Ruskin University, Bishop Hall Lane, Chelmsford, Essex, CM1 1SQ, UK

    Published Online:https://doi.org/10.2217/bmm.13.129

    The incidence of invasive aspergillosis (IA), an opportunistic infection in immunocompromised individuals, is rising, but its early diagnosis remains challenging and treatment options are limited. Hence there is an urgent need to improve existing diagnostic procedures as well as develop novel approaches. The clinical usefulness of galactomannan and β-d-glucan, widely used assays detecting cell-wall antigens of Aspergillus, is unclear and depends on clinicians’ awareness of their practical limitations. This leaves room for new methods that utilise genomic, proteomic and metabolomics approaches as well as novel detection procedures, for example point-of-care lateral-flow devices. Each of these strategies has its own limitations and it is likely that a combination of methods will be required to achieve optimal performance for the diagnosis of IA and subsequent appropriate patient management.

    Papers of special note have been highlighted as:

    • of interest

    •• of considerable interest

    References

    • 1 Perfect JR. Fungal diagnosis: how do we do it and can we do better? Curr Med Res Opin. 29(Suppl. 4), 3–11 (2013)
    • 2 Barnes RA. Directed therapy for fungal infections: focus on aspergillosis. J. Antimicrob. Chemother. (2013) • Concise and up-to-date summary of therapeutic decision-making for invasive aspergillosis.
    • 3 Bruno C, Minniti S, Vassanelli A, Pozzi-Mucelli R. Comparison of CT features of Aspergillus and bacterial pneumonia in severely neutropenic patients. J. Thorac. Imaging 22, 160–165 (2007)
    • 4 Lass-Florl C, Follett SA, Moody A, Denning DW. Detection of Aspergillus in lung and other tissue samples using the MycAssay Aspergillus real-time PCR kit. Can. J. Microbiol. 57, 765–768 (2011)
    • 5 Ascioglu S, Rex JH, de Pauw B et al. Defining opportunistic invasive fungal infections in immunocompromised patients with cancer and hematopoietic stem cell transplants: an international consensus. Clin. Infect. Dis. 34, 7–14 (2002)
    • 6 De Pauw B, Walsh TJ, Donnelly JP et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin. Infect. Dis. 46, 1813–1821 (2008)
    • 7 von Eiff M, Roos N, Schulten R, Hesse M, Zuhlsdorf M, van de Loo J. Pulmonary aspergillosis: early diagnosis improves survival. Respiration. 62, 341–347 (1995)
    • 8 Grace CJ, Lieberman J, Pierce K, Littenberg B. Usefulness of blood culture for hospitalized patients who are receiving antibiotic therapy. Clin. Infect. Dis. 32, 1651–1655 (2001)
    • 9 White PL, Parr C, Thornton C, Barnes RA. Evaluation of real-time PCR, galactomannan enzyme-linked immunosorbent assay (ELISA), and a novel lateral-flow device for diagnosis of invasive aspergillosis. J. Clin. Microbiol. 51, 1510–1516 (2013)
    • 10 Petrik M, Franssen GM, Haas H et al. Preclinical evaluation of two 68Ga-siderophores as potential radiopharmaceuticals for Aspergillus fumigatus infection imaging. Eur. J. Nucl. Med. Mol. Imaging 39, 1175–1183 (2012)
    • 11 Johnson G, Nolan T, Bustin SA. Real-time quantitative PCR, pathogen detection and MIQE. Methods Mol. Biol. 943, 1–16 (2013)
    • 12 Marinach-Patrice C, Fekkar A, Atanasova R et al. Rapid species diagnosis for invasive candidiasis using mass spectrometry. PLoS ONE 5, e8862 (2010)
    • 13 Fredriksson S, Gullberg M, Jarvius J et al. Protein detection using proximity-dependent DNA ligation assays. Nat. Biotechnol. 20, 473–477 (2002)
    • 14 Thornton CR. Development of an immunochromatographic lateral-flow device for rapid serodiagnosis of invasive aspergillosis. Clin. Vaccine Immunol. 15, 1095–1105 (2008). •• Isolation of an antibody that is specific for actively growing Aspergillus and is used in a novel lateral flow device.
    • 15 Latge JP. Aspergillus fumigatus and aspergillosis. Clin. Microbiol. Rev. 12, 310–350 (1999)
    • 16 Perea S, Patterson TF. Invasive Aspergillus infections in hematologic malignancy patients. Semin. Respir. Infect. 17, 99–105 (2002)
    • 17 Balloy V, Chignard M. The innate immune response to Aspergillus fumigatus. Microbes Infect. 11, 919–927 (2009)
    • 18 Sheppard DC. Molecular mechanism of Aspergillus fumigatus adherence to host constituents. Curr. Opin. Microbiol. 14, 375–379 (2011)
    • 19 Slobbe L, Polinder S, Doorduijn JK et al. Outcome and medical costs of patients with invasive aspergillosis and acute myelogenous leukemia-myelodysplastic syndrome treated with intensive chemotherapy: an observational study. Clin. Infect. Dis. 47, 1507–1512 (2008)
    • 20 Ostrosky-Zeichner L. Invasive mycoses: diagnostic challenges. Am. J. Med. 125, S14-S24 (2012)
    • 21 Balajee SA, Houbraken J, Verweij PE et al. Aspergillus species identification in the clinical setting. Stud. Mycol. 59, 39–46 (2007)
    • 22 Torelli R, Sanguinetti M, Moody A et al. Diagnosis of invasive aspergillosis by a commercial real-time PCR assay for Aspergillus DNA in bronchoalveolar lavage fluid samples from high-risk patients compared to a galactomannan enzyme immunoassay. J. Clin. Microbiol. 49, 4273–4278 (2011)
    • 23 Walsh TJ, Wissel MC, Grantham KJ et al. Molecular detection and species-specific identification of medically important Aspergillus species by real-time PCR in experimental invasive pulmonary aspergillosis. J. Clin. Microbiol. 49, 4150–4157 (2011)
    • 24 Andreas S, Heindl S, Wattky C, Moller K, Ruchel R. Diagnosis of pulmonary aspergillosis using optical brighteners. Eur. Respir. J. 15, 407–411 (2000)
    • 25 Barton RTC. Laboratory diagnosis of invasive aspergillosis: from diagnosis to prediction of outcome. Scientifica 2013, Article ID 459405, 29 pages, 2013. doi:10.1155/2013/459405 (2013)
    • 26 Lass-Florl C, Speth C, Mayr A et al. Diagnosing and monitoring of invasive aspergillosis during antifungal therapy by polymerase chain reaction: an experimental study in mice. Diagn. Microbiol. Infect. Dis. 47, 569–572 (2003)
    • 27 Herbrecht R, Natarajan-Ame S, Letscher-Bru V, Canuet M. Invasive pulmonary aspergillosis. Semin. Respir. Crit. Care Med. 25, 191–202 (2004)
    • 28 Cuenca-Estrella M, Bassetti M, Lass-Florl C, Racil Z, Richardson M, Rogers TR. Detection and investigation of invasive mould disease. J. Antimicrob. Chemother. 66(Suppl. 1), i15–i24 (2011)
    • 29 Cendejas-Bueno E, Gomez-Lopez A, Mellado E, Rodriguez-Tudela JL, Cuenca-Estrella M. Identification of pathogenic rare yeast species in clinical samples: comparison between phenotypical and molecular methods. J. Clin. Microbiol. 48, 1895–1899 (2010)
    • 30 Wang H, Xu Z, Gao L, Hao B. A fungal phylogeny based on 82 complete genomes using the composition vector method. BMC Evol. Biol. 9, 195 (2009)
    • 31 James TY, Kauff F, Schoch CL et al. Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443, 818–822 (2006) •• Detailed description of the use of molecular technologies to improve the reliability of fungal classification.
    • 32 Yaguchi T, Horie Y, Tanaka R, Matsuzawa T, Ito J, Nishimura K. Molecular phylogenetics of multiple genes on Aspergillus section Fumigati isolated from clinical specimens in Japan. Nihon Ishinkin Gakkai Zasshi. 48, 37–46 (2007)
    • 33 Serrano R, Gusmao L, Amorim A, Araujo R. Rapid identification of Aspergillus fumigatus within the section Fumigati. BMC Microbiol. 11, 82 (2011)
    • 34 Alcazar-Fuoli L, Mellado E, Alastruey-Izquierdo A, Cuenca-Estrella M, Rodriguez-Tudela JL. Aspergillus section Fumigati: antifungal susceptibility patterns and sequence-based identification. Antimicrob. Agents Chemother. 52, 1244–1251 (2008)
    • 35 Mikulska M, Furfaro E, V Del Bono et al. Galactomannan testing might be useful for early diagnosis of fusariosis. Diagn. Microbiol. Infect. Dis. 72, 367–369 (2012)
    • 36 Engel J, Schmalhorst PS, Routier FH. Biosynthesis of the fungal cell wall polysaccharide galactomannan requires intraluminal GDP-mannose. J. Biol. Chem. 287, 44418–44424 (2012)
    • 37 Morelle W, Bernard M, Debeaupuis JP, Buitrago M, Tabouret M, Latge JP. Galactomannoproteins of Aspergillus fumigatus. Eukaryot Cell. 4, 1308–1316 (2005)
    • 38 Mennink-Kersten MA, Donnelly JP, Verweij PE. Detection of circulating galactomannan for the diagnosis and management of invasive aspergillosis. Lancet Infect. Dis. 4, 349–357 (2004)
    • 39 Morton CO, Loeffler J, De Luca A et al. Dynamics of extracellular release of Aspergillus fumigatus DNA and galactomannan during growth in blood and serum. J. Med. Microbiol. 59, 408–413 (2010)
    • 40 Hope WW, Kruhlak MJ, Lyman CA et al. Pathogenesis of Aspergillus fumigatus and the kinetics of galactomannan in an in vitro model of early invasive pulmonary aspergillosis: implications for antifungal therapy. J. Infect. Dis. 195, 455–466 (2007)
    • 41 Franquet T, Muller NL, Gimenez A, Guembe P, de La Torre J, Bague S. Spectrum of pulmonary aspergillosis: histologic, clinical, and radiologic findings. Radiographics 21, 825–837 (2001)
    • 42 Greene RE, Schlamm HT, Oestmann JW et al. Imaging findings in acute invasive pulmonary aspergillosis: clinical significance of the halo sign. Clin. Infect. Dis. 44, 373–379 (2007)
    • 43 Verweij PE, Weemaes CM, Curfs JH, Bretagne S, Meis JF. Failure to detect circulating Aspergillus markers in a patient with chronic granulomatous disease and invasive aspergillosis. J. Clin. Microbiol. 38, 3900–3901 (2000)
    • 44 Wheat LJ. Rapid diagnosis of invasive aspergillosis by antigen detection. Transpl. Infect. Dis. 5, 158–166 (2003)
    • 45 Verweij PE, Latge JP, Rijs AJ et al. Comparison of antigen detection and PCR assay using bronchoalveolar lavage fluid for diagnosing invasive pulmonary aspergillosis in patients receiving treatment for hematological malignancies. J. Clin. Microbiol. 33, 3150–3153 (1995)
    • 46 Patterson TF. Clinical utility and development of biomarkers in invasive aspergillosis. Trans. Am. Clin. Climatol. Assoc. 122, 174–183 (2011)
    • 47 Hachem RY, Kontoyiannis DP, Chemaly RF, Jiang Y, Reitzel R, Raad I. Utility of galactomannan enzyme immunoassay and (1,3) beta-D-glucan in diagnosis of invasive fungal infections: low sensitivity for Aspergillus fumigatus infection in hematologic malignancy patients. J. Clin. Microbiol. 47, 129–133 (2009)
    • 48 Giacchino M, Chiapello N, Bezzio S et al. Aspergillus galactomannan enzyme-linked immunosorbent assay cross-reactivity caused by invasive Geotrichum capitatum. J. Clin. Microbiol. 44, 3432–3434 (2006)
    • 49 Vergidis P, Walker RC, Kaul DR et al. False-positive Aspergillus galactomannan assay in solid organ transplant recipients with histoplasmosis. Transpl. Infect. Dis. 14, 213–217 (2012)
    • 50 Dalle F, Charles PE, Blanc K et al. Cryptococcus neoformans Galactoxylomannan contains an epitope(s) that is cross-reactive with Aspergillus Galactomannan. J. Clin. Microbiol. 43, 2929–2931 (2005)
    • 51 Boonsarngsuk V, Niyompattama A, Teosirimongkol C, Sriwanichrak K. False-positive serum and bronchoalveolar lavage Aspergillus galactomannan assays caused by different antibiotics. Scand. J. Infect. Dis. 42, 461–468 (2010)
    • 52 Gerlinger MP, Rousselot P, Rigaudeau S et al. False positive galactomannan Platelia due to piperacillin-tazobactam. Med. Mal. Infect. 42, 10–14 (2012)
    • 53 Mikulska M, Furfaro E, V Del Bono et al. Piperacillin/tazobactam (Tazocin) seems to be no longer responsible for false-positive results of the galactomannan assay. J. Antimicrob. Chemother. 67, 1746–1748 (2012)
    • 54 Orlopp K, von Lilienfeld-Toal M, Marklein G et al. False positivity of the Aspergillus galactomannan Platelia ELISA because of piperacillin/tazobactam treatment: does it represent a clinical problem? J. Antimicrob. Chemother. 62, 1109–1112 (2008)
    • 55 Pfeiffer CD, Fine JP, Safdar N. Diagnosis of invasive aspergillosis using a galactomannan assay: a meta-analysis. Clin. Infect. Dis. 42, 1417–1427 (2006)
    • 56 Leeflang MM, Debets-Ossenkopp YJ, Visser CE et al. Galactomannan detection for invasive aspergillosis in immunocompromized patients. Cochrane Database Syst. Rev. 4, CD007394 (2008)
    • 57 Sun WK, Zhang F, Xu XY, Shen YY, Shi Y. A systematic review of the accuracy of diagnostic test of serum galactomannan antigen detection for invasive aspergillosis. Zhonghua Jie He He Hu Xi Za Zhi. 33, 758–765 (2010)
    • 58 Marr KA, Laverdiere M, Gugel A, Leisenring W. Antifungal therapy decreases sensitivity of the Aspergillus galactomannan enzyme immunoassay. Clin. Infect. Dis. 40, 1762–1769 (2005)
    • 59 Cordonnier C, Botterel F, Ben Amor R et al. Correlation between galactomannan antigen levels in serum and neutrophil counts in haematological patients with invasive aspergillosis. Clin. Microbiol. Infect. 15, 81–86 (2009)
    • 60 Upton A, Gugel A, Leisenring W et al. Reproducibility of low galactomannan enzyme immunoassay index values tested in multiple laboratories. J. Clin. Microbiol. 43, 4796–4800 (2005)
    • 61 Pereira CN, Del Nero G, Lacaz CS, Machado CM. The contribution of galactomannan detection in the diagnosis of invasive aspergillosis in bone marrow transplant recipients. Mycopathologia 159, 487–493 (2005)
    • 62 Oren I, Avidor I, Sprecher H. Lack of intra-laboratory reproducibility in using Platelia Aspergillus enzyme immunoassay test for detection of Aspergillus galactomannan antigen.[letter]. Transpl. Infect. Dis. 2014(1), 107–109.
    • 63 Bizzini A, Marchetti O, Meylan P. Response to: lack of intra-laboratory reproducibility in using Platelia Aspergillus enzyme immunoassay test for detection of Aspergillus galactomannan antigen. Transpl. Infect. Dis. 14, 218–219 (2012)
    • 64 Johnson GL, Sarker SJ, Hill K et al. Significant decline in galactomannan signal during storage of clinical serum samples. Int. J. Mol Sci. 14, 12970–12977 (2013)
    • 65 Klont RR, Mennink-Kersten MA, Verweij PE. Utility of Aspergillus antigen detection in specimens other than serum specimens. Clin. Infect. Dis. 39, 1467–1474 (2004)
    • 66 Becker MJ, Lugtenburg EJ, Cornelissen JJ, Van Der Schee C, Hoogsteden HC, De Marie S. Galactomannan detection in computerized tomography-based broncho-alveolar lavage fluid and serum in haematological patients at risk for invasive pulmonary aspergillosis. Br. J. Haematol. 121, 448–457 (2003)
    • 67 Wheat LJ, Walsh TJ. Diagnosis of invasive aspergillosis by galactomannan antigenemia detection using an enzyme immunoassay. Eur. J. Clin. Microbiol. Infect. Dis. 27, 245–251 (2008)
    • 68 Vallor AC, Kirkpatrick WR, Najvar LK et al. Assessment of Aspergillus fumigatus burden in pulmonary tissue of guinea pigs by quantitative PCR, galactomannan enzyme immunoassay, and quantitative culture. Antimicrob. Agents Chemother. 52, 2593–2598 (2008)
    • 69 Musher B, Fredricks D, Leisenring W, Balajee SA, Smith C, Marr KA. Aspergillus galactomannan enzyme immunoassay and quantitative PCR for diagnosis of invasive aspergillosis with bronchoalveolar lavage fluid. J. Clin. Microbiol. 42, 5517–5522 (2004)
    • 70 Clancy CJ, Jaber RA, Leather HL et al. Bronchoalveolar lavage galactomannan in diagnosis of invasive pulmonary aspergillosis among solid-organ transplant recipients. J. Clin. Microbiol. 45, 1759–1765 (2007)
    • 71 Bergeron A, Belle A, Sulahian A et al. Contribution of galactomannan antigen detection in BAL to the diagnosis of invasive pulmonary aspergillosis in patients with hematologic malignancies. Chest 137, 410–415 (2010)
    • 72 He H, Ding L, Sun B, Li F, Zhan Q. Role of galactomannan determinations in bronchoalveolar lavage fluid samples from critically ill patients with chronic obstructive pulmonary disease for the diagnosis of invasive pulmonary aspergillosis: a prospective study. Crit. Care 16, R138 (2012)
    • 73 Izumikawa K, Yamamoto Y, Mihara T et al. Bronchoalveolar lavage galactomannan for the diagnosis of chronic pulmonary aspergillosis. Med. Mycol. 50, 811–817 (2012)
    • 74 Zhang XB, Chen GP, Lin QC, Lin X, Zhang HY, Wang JH. Bronchoalveolar lavage fluid galactomannan detection for diagnosis of invasive pulmonary aspergillosis in chronic obstructive pulmonary disease. Med. Mycol. (2013)
    • 75 Acosta J, Catalan M, del Palacio-Perez-Medel A et al. A prospective comparison of galactomannan in bronchoalveolar lavage fluid for the diagnosis of pulmonary invasive aspergillosis in medical patients under intensive care: comparison with the diagnostic performance of galactomannan and of (1–> 3)-beta-d-glucan chromogenic assay in serum samples. Clin. Microbiol. Infect. 17, 1053–1060 (2011)
    • 76 Nguyen MH, Jaber R, Leather HL et al. Use of bronchoalveolar lavage to detect galactomannan for diagnosis of pulmonary aspergillosis among nonimmunocompromised hosts. J. Clin. Microbiol. 45, 2787–2792 (2007)
    • 77 Park SY, Lee SO, Choi SH et al. Aspergillus galactomannan antigen assay in bronchoalveolar lavage fluid for diagnosis of invasive pulmonary aspergillosis. J. Infect. 61, 492–498 (2010)
    • 78 Tabarsi P, Soraghi A, Marjani M et al. Comparison of serum and bronchoalveolar lavage galactomannan in diagnosing invasive aspergillosis in solid-organ transplant recipients. Exp. Clin. Transplant. 10, 278–281 (2012)
    • 79 Reinwald M, Spiess B, Heinz WJ et al. Diagnosing pulmonary aspergillosis in patients with hematological malignancies: a multicenter prospective evaluation of an Aspergillus PCR assay and a galactomannan ELISA in bronchoalveolar lavage samples. Eur. J. Haematol. 89, 120–127 (2012)
    • 80 D’Haese J, Theunissen K, Vermeulen E et al. Detection of galactomannan in bronchoalveolar lavage fluid samples of patients at risk for invasive pulmonary aspergillosis: analytical and clinical validity. J. Clin. Microbiol. 50, 1258–1263 (2012)
    • 81 Desai R, Ross LA, Hoffman JA. The role of bronchoalveolar lavage galactomannan in the diagnosis of pediatric invasive aspergillosis. Pediatr. Infect. Dis. J. 28, 283–286 (2009)
    • 82 Maertens J, Maertens V, Theunissen K et al. Bronchoalveolar lavage fluid galactomannan for the diagnosis of invasive pulmonary aspergillosis in patients with hematologic diseases. Clin. Infect. Dis. 49, 1688–1693 (2009)
    • 83 Danpornprasert P, Foongladda S, Tscheikuna J. Impact of bronchoalveolar lavage galactomannan on the outcome of patients at risk for invasive pulmonary aspergillosis. J. Med Assoc. Thai. 93(Suppl. 1), S86-S93 (2010)
    • 84 Hsu LY, Ding Y, Phua J et al. Galactomannan testing of bronchoalveolar lavage fluid is useful for diagnosis of invasive pulmonary aspergillosis in hematology patients. BMC Infect. Dis. 10, 44 (2010)
    • 85 Pasqualotto AC, Xavier MO, Sanchez LB et al. Diagnosis of invasive aspergillosis in lung transplant recipients by detection of galactomannan in the bronchoalveolar lavage fluid. Transplantation 90, 306–311 (2010)
    • 86 Luong ML, Filion C, Labbe AC et al. Clinical utility and prognostic value of bronchoalveolar lavage galactomannan in patients with hematologic malignancies. Diagn. Microbiol. Infect. Dis. 68, 132–139 (2010)
    • 87 Zou M, Tang L, Zhao S et al. Systematic review and meta-analysis of detecting galactomannan in bronchoalveolar lavage fluid for diagnosing invasive aspergillosis. PLoS ONE 7, e43347 (2012)
    • 88 Racil Z, Kocmanova I, Toskova M et al. Galactomannan detection in bronchoalveolar lavage fluid for the diagnosis of invasive aspergillosis in patients with hematological diseases-the role of factors affecting assay performance. Int. J. Infect. Dis. 15, e874–e881 (2011)
    • 89 Husain S, Clancy CJ, Nguyen MH et al. Performance characteristics of the platelia Aspergillus enzyme immunoassay for detection of Aspergillus galactomannan antigen in bronchoalveolar lavage fluid. Clin. Vaccine Immunol. 15, 1760–1763 (2008)
    • 90 Brownback KR, Pitts LR, Simpson SQ. Utility of galactomannan antigen detection in bronchoalveolar lavage fluid in immunocompromised patients. Mycoses 56(5), 552–558 (2013)
    • 91 Garcia RS, Wheat LJ, Cook AK, Kirsch EJ, Sykes JE. Sensitivity and specificity of a blood and urine galactomannan antigen assay for diagnosis of systemic aspergillosis in dogs. J. Vet. Intern. Med. 26, 911–919 (2012)
    • 92 Dufresne SF, Datta K, Li X et al. Detection of urinary excreted fungal galactomannan-like antigens for diagnosis of invasive aspergillosis. PLoS ONE 7, e42736 (2012)
    • 93 Marty FM, Koo S. Role of (1–>3)-beta-D-glucan in the diagnosis of invasive aspergillosis. Med. Mycol. 47(Suppl. 1), S233–S240 (2009)
    • 94 Lehmann PF, Reiss E. Invasive aspergillosis: antiserum for circulating antigen produced after immunization with serum from infected rabbits. Infect. Immun. 20, 570–572 (1978)
    • 95 Odabasi Z, Mattiuzzi G, Estey E et al. Beta-D-glucan as a diagnostic adjunct for invasive fungal infections: validation, cutoff development, and performance in patients with acute myelogenous leukemia and myelodysplastic syndrome. Clin. Infect. Dis. 39, 199–205 (2004)
    • 96 Senn L, Robinson JO, Schmidt S et al. 1,3-Beta-D-glucan antigenemia for early diagnosis of invasive fungal infections in neutropenic patients with acute leukemia. Clin. Infect. Dis. 46, 878–885 (2008)
    • 97 Karageorgopoulos DE, Vouloumanou EK, Ntziora F, Michalopoulos A, Rafailidis PI, Falagas ME. beta-D-glucan assay for the diagnosis of invasive fungal infections: a meta-analysis. Clin. Infect. Dis. 52, 750–770 (2011)
    • 98 Onishi A, Sugiyama D, Kogata Y et al. Diagnostic accuracy of serum 1,3-beta-D-glucan for pneumocystis jiroveci pneumonia, invasive candidiasis, and invasive aspergillosis: systematic review and meta-analysis. J. Clin. Microbiol. 50, 7–15 (2012)
    • 99 Racil Z, Kocmanova I, Lengerova M et al. Difficulties in using 1,3-{beta}-D-glucan as the screening test for the early diagnosis of invasive fungal infections in patients with haematological malignancies–high frequency of false-positive results and their analysis. J. Med. Microbiol. 59, 1016–1022 (2010)
    • 100 Fisher BT. The role of biomarkers for diagnosis of and therapeutic decisions related to invasive aspergillosis in children. Curr. Fungal Infect. Rep. 7, 7–14 (2013)
    • 101 Schrettl M, Carberry S, Kavanagh K et al. Self-protection against gliotoxin–a component of the gliotoxin biosynthetic cluster, GliT, completely protects Aspergillus fumigatus against exogenous gliotoxin. PLoS Pathog. 6, e1000952 (2010)
    • 102 Shi LN, Li FQ, Lu JF et al. Antibody specific to thioredoxin reductase as a new biomarker for serodiagnosis of invasive aspergillosis in non-neutropenic patients. Clin. Chim Acta 413, 938–943 (2012)
    • 103 Hao W, Pan YX, Ding YQ et al. Well-characterized monoclonal antibodies against cell wall antigen of Aspergillus species improve immunoassay specificity and sensitivity. Clin. Vaccine Immunol. 15, 194–202 (2008)
    • 104 Wiederhold NP, Thornton CR, Najvar LK, Kirkpatrick WR, Bocanegra R, Patterson TF. Comparison of lateral flow technology and galactomannan and (1->3)-beta-D-glucan assays for detection of invasive pulmonary aspergillosis. Clin. Vaccine Immunol. 16, 1844–1846 (2009)
    • 105 Wiederhold NP, Najvar LK, Bocanegra R, Kirkpatrick WR, Patterson TF, Thornton CR. Interlaboratory and interstudy reproducibility of a novel lateral-flow device and influence of antifungal therapy on detection of invasive pulmonary aspergillosis. J. Clin. Microbiol. 51, 459–465 (2013)
    • 106 Thornton C, Johnson G, Agrawal S. Detection of invasive pulmonary aspergillosis in haematological malignancy patients by using lateral-flow technology. J. Vis. Exp. 61, pii: 3721 (2012)
    • 107 Schutte M, Thullier P, Pelat T et al. Identification of a putative Crf splice variant and generation of recombinant antibodies for the specific detection of Aspergillus fumigatus. PLoS ONE 4, e6625 (2009)
    • 108 Schwienbacher M, Israel L, Heesemann J, Ebel F. Asp f6, an Aspergillus allergen specifically recognized by IgE from patients with allergic bronchopulmonary aspergillosis, is differentially expressed during germination. Allergy 60, 1430–1435 (2005)
    • 109 Puri A, Ahmad A, Panda BP. Development of an HPTLC-based diagnostic method for invasive aspergillosis. Biomed. Chromatogr. 24, 887–892 (2010)
    • 110 Domingo MP, Colmenarejo C, Martinez-Lostao L et al. Bis(methyl)gliotoxin proves to be a more stable and reliable marker for invasive aspergillosis than gliotoxin and suitable for use in diagnosis. Diagn. Microbiol. Infect. Dis. 73, 57–64 (2012)
    • 111 Kumar A, Ahmed R, Singh PK, Shukla PK. Identification of virulence factors and diagnostic markers using immunosecretome of Aspergillus fumigatus. J. Proteomics 74, 1104–1112 (2011)
    • 112 Neustadt M, Costina V, Kupfahl C et al. Characterization and identification of proteases secreted by Aspergillus fumigatus using free flow electrophoresis and MS. Electrophoresis 30, 2142–2150 (2009)
    • 113 Haas H. Iron - a key nexus in the virulence of Aspergillus fumigatus. Front. Microbiol. 3, 28 (2012)
    • 114 Hider RC, Kong X. Chemistry and biology of siderophores. Nat. Prod. Rep. 27, 637–657 (2010)
    • 115 Hissen AH, Wan AN, Warwas ML, Pinto LJ, Moore MM. The Aspergillus fumigatus siderophore biosynthetic gene sidA, encoding L-ornithine N5-oxygenase, is required for virulence. Infect. Immun. 73, 5493–5503 (2005)
    • 116 Doyle JM, Walshe, K. Gordon N, Kavanagh K, Gallagher L. Method for detecting infections. EP-2012/059133 (2012). ========http://patentscope.wipo.int/search/en/detail.jsf?docId=WO2012156452&recNum=265&maxRec=98863&office=&prevFilter=&sortOption=&queryString=&tab=PCT+Biblio
    • 117 Horvath I, Hunt J, Barnes PJ et al. Exhaled breath condensate: methodological recommendations and unresolved questions. Eur. Respir. J. 26, 523–548 (2005)
    • 118 Liu J, Thomas PS. Exhaled breath condensate as a method of sampling airway nitric oxide and other markers of inflammation. Med. Sci. Monit. 11, MT53–MT62 (2005)
    • 119 Chambers ST, Bhandari S, Scott-Thomas A, Syhre M. Novel diagnostics: progress toward a breath test for invasive Aspergillus fumigatus. Med. Mycol. 49 Suppl. 1, S54–S61 (2011)
    • 120 Chambers ST, Syhre M, Murdoch DR, McCartin F, Epton MJ. Detection of 2-pentylfuran in the breath of patients with Aspergillus fumigatus. Med. Mycol. 47, 468–476 (2009)
    • 121 Chambers ST, Scott-Thomas A, Epton M. Developments in novel breath tests for bacterial and fungal pulmonary infection. Curr. Opin. Pulm. Med. 18, 228–232 (2012)
    • 122 Carpagnano GE, Foschino-Barbaro MP, Mule G et al. 3p microsatellite alterations in exhaled breath condensate from patients with non-small cell lung cancer. Am. J. Respir. Crit. Care Med. 172, 738–744 (2005)
    • 123 Yang Ai SS, Hsu K, Herbert C et al. Mitochondrial DNA mutations in exhaled breath condensate of patients with lung cancer. Respir. Med. (2013)
    • 124 Chikasue K, Kimura M, Ikeda K et al. Detection of Torque teno virus DNA in exhaled breath by polymerase chain reaction. Acta Med. Okayama 66, 387–397 (2012)
    • 125 Xu Z, Shen F, Li X et al. Molecular and microscopic analysis of bacteria and viruses in exhaled breath collected using a simple impaction and condensing method. PLoS ONE 7, e41137 (2012)
    • 126 Zakharkina T, Koczulla AR, Mardanova O, Hattesohl A, Bals R. Detection of microorganisms in exhaled breath condensate during acute exacerbations of COPD. Respirology 16, 932–938 (2011)
    • 127 Jain R, Schriever CA, Danziger LH, Cho SH, Rubinstein I. The IS6110 repetitive DNA element of Mycobacterium tuberculosis is not detected in exhaled breath condensate of patients with active pulmonary tuberculosis. Respiration 74, 329–333 (2007)
    • 128 St George K, Fuschino ME, Mokhiber K, Triner W, Spivack SD. Exhaled breath condensate appears to be an unsuitable specimen type for the detection of influenza viruses with nucleic acid-based methods. J. Virol. Methods 163, 144–146 (2010)
    • 129 Costa C, Bucca C, Bergallo M, Solidoro P, Rolla G, Cavallo R. Unsuitability of exhaled breath condensate for the detection of herpesviruses DNA in the respiratory tract. J. Virol. Methods. 173, 384–386 (2011)
    • 130 Houspie L, De Coster S, Keyaerts E et al. Exhaled breath condensate sampling is not a new method for detection of respiratory viruses. Virol. J. 8, 98 (2011)
    • 131 Goldoni M, Corradi M, Mozzoni P et al. Concentration of exhaled breath condensate biomarkers after fractionated collection based on exhaled CO2 signal. J. Breath. Res. 7, 017101 (2013)
    • 132 Doffman SR, Griffiths LJ, Athorn GR et al. Galactomannan detection in exhaled breath condensate of neutropenic patients with suspected invasive pulmonary aspergillosis. Thorax 62, S126 (2007)
    • 133 The role of galactomannan in exhaled breath condensate in detecting pulmonary aspergillosis in patients with exacerbated COPD. =www.ersnetsecure.org/public/prg_congres.abstract?ww_i_presentation=55648
    • 134 Bustin SA, Murphy J, Kessler HH. Amplification and detection methods. In: Molecular Diagnostics of Infectious Diseases. 2nd revised edition. Kessler HH (Ed.). De Gruyter, Berlin, Germany, 53–68 (2012).
    • 135 Loeffler J, Hebart H, Cox P, Flues N, Schumacher U, Einsele H. Nucleic acid sequence-based amplification of Aspergillus RNA in blood samples. J. Clin. Microbiol. 39, 1626–1629 (2001)
    • 136 Yoo JH, Choi SM, Lee DG et al. Comparison of the real-time nucleic acid sequence-based amplification (RTi-NASBA) with conventional NASBA, and galactomannan assay for the diagnosis of invasive aspergillosis. J. Korean Med. Sci. 22, 672–676 (2007)
    • 137 Zhao Y, Park S, Kreiswirth BN et al. Rapid real-time nucleic acid sequence-based amplification-molecular beacon platform to detect fungal and bacterial bloodstream infections. J. Clin. Microbiol. 47, 2067–2078 (2009)
    • 138 Zhao Y, Perlin DS. Quantitative detection of Aspergillus spp. by real-time nucleic acid sequence-based amplification. Methods Mol. Biol. 968, 83–92 (2013)
    • 139 Spiess B, Seifarth W, Hummel M et al. DNA microarray-based detection and identification of fungal pathogens in clinical samples from neutropenic patients. J. Clin. Microbiol. 45, 3743–3753 (2007)
    • 140 Simitsopoulou M, Roilides E, Georgiadou E, Paliogianni F, Walsh TJ. Differential transcriptional profiles induced by amphotericin B formulations on human monocytes during response to hyphae of Aspergillus fumigatus. Med. Mycol. 49, 176–185 (2011)
    • 141 Dhesi Z, Herbst S, Armstrong-James D. Transcript profiling of the murine immune response to invasive aspergillosis. Methods Mol. Biol. 845, 435–444 (2012)
    • 142 Bustin SA, Dorudi S. The value of microarray techniques for quantitative gene profiling in molecular diagnostics. Trends Mol. Med. 8, 269–272 (2002)
    • 143 Rosa C, Araujo R, Rodrigues AG, Pinto-de-Sousa MI, Pina-Vaz C. Detection of Aspergillus species in BACTEC blood cultures. J. Med. Microbiol. 60, 1467–1471 (2011)
    • 144 White PL, Mengoli C, Bretagne S et al. Evaluation of Aspergillus PCR protocols for testing serum specimens. J. Clin. Microbiol. 49, 3842–3848 (2011)
    • 145 White PL, Perry MD, Loeffler J et al. Critical stages of extracting DNA from Aspergillus fumigatus in whole-blood specimens. J. Clin. Microbiol. 48, 3753–3755 (2010)
    • 146 Lengerova M, Kocmanova I, Racil Z et al. Detection and measurement of fungal burden in a guinea pig model of invasive pulmonary aspergillosis by novel quantitative nested real-time PCR compared with galactomannan and (1,3)-beta-D-glucan detection. J. Clin. Microbiol. 50, 602–608 (2012)
    • 147 Hadrich I, Mary C, Makni F et al. Comparison of PCR-ELISA and Real-Time PCR for invasive aspergillosis diagnosis in patients with hematological malignancies. Med. Mycol. 49, 489–494 (2011)
    • 148 Bustin SA, Mueller R. Real-time reverse transcription PCR (qRT-PCR) and its potential use in clinical diagnosis. Clin. Sci (Lond.) 109, 365–379 (2005)
    • 149 Johnson GL, Bibby DF, Wong S, Agrawal SG, Bustin SA. A MIQE-compliant real-time PCR assay for Aspergillus detection. PLoS ONE 7, e40022 (2012)
    • 150 Morton CO, Clemons KV, Springer J et al. Real-time PCR and quantitative culture for monitoring of experimental Aspergillus fumigatus intracranial infection in neutropenic mice. J. Med. Microbiol. 60, 913–919 (2011)
    • 151 Bacich DJ, Sobek KM, Cummings JL, Atwood AA, O’Keefe DS. False negative results from using common PCR reagents. BMC Res. Notes 4, 457 (2011)
    • 152 Abad-Diaz-De-Cerio A, Fernandez-Molina JV, Ramirez-Garcia A et al. The aspHS gene as a new target for detecting Aspergillus fumigatus during infections by quantitative real-time PCR. Med. Mycol. (2013)
    • 153 Khot PD, Fredricks DN. PCR-based diagnosis of human fungal infections. Expert Rev. Anti Infect Ther. 7, 1201–1221 (2009) • Perceptive review of the role of PCR in clinical diagnostics.
    • 154 Donnelly JP. Polymerase chain reaction for diagnosing invasive aspergillosis: getting closer but still a ways to go. Clin. Infect. Dis. 42, 487–489 (2006)
    • 155 Mengoli C, Cruciani M, Barnes RA, Loeffler J, Donnelly JP. Use of PCR for diagnosis of invasive aspergillosis: systematic review and meta-analysis. Lancet Infect. Dis. 9, 89–96 (2009)
    • 156 Avni T, Levy I, Sprecher H, Yahav D, Leibovici L, Paul M. Diagnostic accuracy of PCR alone compared to galactomannan in bronchoalveolar lavage fluid for diagnosis of invasive pulmonary aspergillosis: a systematic review. J. Clin. Microbiol. 50, 3652–3658 (2012)
    • 157 Armenian SH, Nash KA, Kapoor N et al. Prospective monitoring for invasive aspergillosis using galactomannan and polymerase chain reaction in high risk pediatric patients. J. Pediatr. Hematol. Oncol. 31, 920–926 (2009)
    • 158 Springer J, Schlossnagel H, Heinz W et al. A novel extraction method combining plasma with a whole-blood fraction shows excellent sensitivity and reproducibility for patients at high risk for invasive aspergillosis. J. Clin. Microbiol. 50, 2585–2591 (2012)
    • 159 Millon L, Grenouillet F, Legrand F et al. Ribosomal and mitochondrial DNA target for real-time PCR diagnosis of invasive aspergillosis. J. Clin. Microbiol. 49, 1058–1063 (2011)
    • 160 Lopes da Silva R, Ribeiro P, Abreu N et al. Early diagnosis of invasive aspergillosis in neutropenic patients. comparison between serum galactomannan and polymerase chain reaction. Clin. Med. Insights Oncol. 4, 81–88 (2010)
    • 161 Hummel M, Spiess B, Roder J et al. Detection of Aspergillus DNA by a nested PCR assay is able to improve the diagnosis of invasive aspergillosis in paediatric patients. J. Med. Microbiol. 58, 1291–1297 (2009)
    • 162 Badiee P, Alborzi A, Karimi M et al. Diagnostic potential of nested PCR, galactomannan EIA, and beta-D-glucan for invasive aspergillosis in pediatric patients. J. Infect. Dev. Ctries 6, 352–357 (2012)
    • 163 Cuenca-Estrella M, Meije Y, Diaz-Pedroche C et al. Value of serial quantification of fungal DNA by a real-time PCR-based technique for early diagnosis of invasive aspergillosis in patients with febrile neutropenia. J. Clin. Microbiol. 47, 379–384 (2009)
    • 164 Huggett J, Bustin SA. Standardisation and reporting for nucleic acid quantification. Accredit. Qual. Assur. 16, 399–405 (2011)
    • 165 White PL, Bretagne S, Klingspor L et al. Aspergillus PCR: one step closer to standardization. J. Clin. Microbiol. 48, 1231–1240 (2010)
    • 166 Bustin SA, Benes V, Garson JA et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622 (2009) •• Describes and justifies guidelines for the proper design and reporting of quantitative PCR assays; cited nearly 2000 times.
    • 167 Bustin SA. Why the need for qPCR publication guidelines?–The case for MIQE. Methods 50, 217–226 (2010)
    • 168 Gao X, Tan BH, Sugrue RJ, Tang K. MALDI mass spectrometry for nucleic acid analysis. Top. Curr. Chem. 331, 55–77 (2013)
    • 169 Bader O. MALDI-TOF-MS-based species identification and typing approaches in medical mycology. Proteomics 13, 788–799 (2013)
    • 170 Intelicato-Young J, Fox A. Mass spectrometry and tandem mass spectrometry characterization of protein patterns, protein markers and whole proteomes for pathogenic bacteria. J. Microbiol. Methods. 92, 381–386 (2013)
    • 171 Croxatto A, Prod’hom G, Greub G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol. Rev. 36, 380–407 (2012)
    • 172 Li TY, Liu BH, Chen YC. Characterization of Aspergillus spores by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 14, 2393–2400 (2000)
    • 173 Hettick JM, Green BJ, Buskirk AD et al. Discrimination of Aspergillus isolates at the species and strain level by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry fingerprinting. Anal. Biochem. 380, 276–281 (2008)
    • 174 Alanio A, Beretti JL, Dauphin B et al. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for fast and accurate identification of clinically relevant Aspergillus species. Clin. Microbiol. Infect. 17, 750–755 (2011)
    • 175 De Carolis E, Posteraro B, Lass-Florl C et al. Species identification of Aspergillus, Fusarium and Mucorales with direct surface analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin. Microbiol. Infect. 18, 475–484 (2012)
    • 176 Bille E, Dauphin B, Leto J et al. MALDI-TOF MS Andromas strategy for the routine identification of bacteria, mycobacteria, yeasts, Aspergillus spp. and positive blood cultures. Clin. Microbiol. Infect. 18, 1117–1125 (2012)
    • 177 Del Chierico F, Masotti A, Onori M et al. MALDI-TOF MS proteomic phenotyping of filamentous and other fungi from clinical origin. J. Proteomics 75, 3314–3330 (2012)
    • 178 Marklein G, Josten M, Klanke U et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast and reliable identification of clinical yeast isolates. J. Clin. Microbiol. 47, 2912–2917 (2009)
    • 179 Ebersberger I, de Matos Simoes R, Kupczok A et al. A consistent phylogenetic backbone for the fungi. Mol. Biol. Evol. 29, 1319–1334 (2012)
    • 180 Santos C, Paterson RR, Venancio A, Lima N. Filamentous fungal characterizations by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Appl. Microbiol. 108, 375–385 (2010)
    • 181 Benagli C, Rossi V, Dolina M, Tonolla M, Petrini O. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for the identification of clinically relevant bacteria. PLoS ONE 6, e16424 (2011)
    • 182 Iriart X, Lavergne RA, Fillaux J et al. Routine identification of medical fungi by the new Vitek MS matrix-assisted laser desorption ionization-time of flight system with a new time-effective strategy. J. Clin. Microbiol. 50, 2107–2110 (2012)
    • 183 Giebel R, Worden C, Rust SM, Kleinheinz GT, Robbins M, Sandrin TR. Microbial fingerprinting using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) applications and challenges. Adv. Appl. Microbiol. 71, 149–184 (2010) • Well-written and informative review summarizing the background and challenges associated with detection of fungi.
    • 184 Ferreira L, Sanchez-Juanes F, Porras-Guerra I et al. Microorganisms direct identification from blood culture by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin. Microbiol. Infect. 17, 546–551 (2011)
    • 185 Limbach PA, Crain PF, McCloskey JA. Characterization of oligonucleotides and nucleic acids by mass spectrometry. Curr. Opin. Biotechnol. 6, 96–102 (1995)
    • 186 Jegorov A, Hajduch M, Sulc M, Havlicek V. Nonribosomal cyclic peptides: specific markers of fungal infections. J. Mass Spectrom. 41, 563–576 (2006)
    • 187 Davis C, Gordon N, Murphy S et al. Single-pot derivatisation strategy for enhanced gliotoxin detection by HPLC and MALDI-ToF mass spectrometry. Anal. Bioanal. Chem. 401, 2519–2529 (2011)
    • 188 Zehm S, Schweinitz S, Wurzner R, Colvin HP, Rieder J. Detection of Candida albicans by mass spectrometric fingerprinting. Curr. Microbiol. 64, 271–275 (2012)
    • 189 Gut IG. DNA analysis by MALDI-TOF mass spectrometry. Hum. Mutat. 23, 437–441 (2004)
    • 190 Ding C, Lo YM. MALDI-TOF mass spectrometry for quantitative, specific, and sensitive analysis of DNA and RNA. Ann. NY. Acad. Sci. 1075, 282–287 (2006)
    • 191 Farkas DH, Miltgen NE, Stoerker J et al. The suitability of matrix assisted laser desorption/ionization time of flight mass spectrometry in a laboratory developed test using cystic fibrosis carrier screening as a model. J. Mol. Diagn. 12, 611–619 (2010)
    • 192 Morrissey CO, Chen SC, Sorrell TC et al. Galactomannan and PCR versus culture and histology for directing use of antifungal treatment for invasive aspergillosis in high-risk haematology patients: a randomised controlled trial. Lancet Infect. Dis. (2013) • Demonstration of the usefulness of combining two detection technologies to reduced use of empirical antifungal treatment.
    • 193 Rogers TR, Morton CO, Springer J et al. Combined real-time PCR and galactomannan surveillance improves diagnosis of invasive aspergillosis in high risk patients with haematological malignancies. Br. J. Haematol. 161, 517–524 (2013)
    • 194 Bustin SA, Benes V, Garson J. The need for transparency and good practices in the qPCR literature. 10, 1063–1067 (2013).