We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Recommendations to standardize preanalytical confounding factors in Alzheimer’s and Parkinson’s disease cerebrospinal fluid biomarkers: an update

    Marta del Campo

    * Author for correspondence

    Department of Clinical Chemistry, Neurology Laboratory, VU University medical center (VUmc), Room PK1 Br016, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.

    ,
    Brit Mollenhauer

    Paracelsus-Elena-Klinik, Kassel, Germany and Department of Neuropathology, University Medical Center, Goettingen, Germany

    ,
    Antonio Bertolotto

    Neurologia 2 – CRESM (Centro Riferimento Regionale Sclerosi Multipla) Azienda ospedaliera – universitaria San Luigi, Orbassano, Italy

    ,
    Sebastiaan Engelborghs

    Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium and Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA), Middelheim and Hoge Beuken, Antwerp, Belgium

    ,
    Harald Hampel

    Department of Psychiatry, University of Frankfurt, Germany

    ,
    Anja Hviid Simonsen

    Memory Disorders Research Group, Department of Neurology, Copenhagen University Hospital Rigshospitalet, 2100-Copenhagen, Denmark

    ,
    Elisabeth Kapaki

    Department of Neurology, National and Kapodistrain Univeristy of Athens, Eginition Hospital, Athens, Greece

    ,
    Niels Kruse

    Department of Neuropathology, University Medical Center, Goettingen, Germany

    ,
    Nathalie Le Bastard

    Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium

    ,
    Sylvain Lehmann

    Biochimie-Protéomique Clinique – IRB – CCBHM – INSERM U1040, University of Montpellier, Montpellier, France.

    ,
    Jose L Molinuevo

    Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, Barcelona, Spain

    ,
    Lucilla Parnetti

    Section of Neurology, Centre for Memory Disturbances, University of Perugia, Perugia, Italy

    ,
    Armand Perret-Liaudet

    Neurobiologie, CMRR, Gériatrie, Hospices Civils de Lyon, Université Lyon 1 – CNRS UMR5292 – INSERM - U1028, Lyon, France and Société Française de Biologie Clinique (SFBC), France

    ,
    Javier Sáez-Valero

    Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d’Alacant, Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain

    ,
    Esen Saka

    Hacettepe University Hospitals, Department of Neurology, Ankara, Turkey

    ,
    Andrea Urbani

    IRCCS-Santa Lucia Foundation, Rome, Italy and Department of Internal Medicine, University “Tor Vergata”, Rome, Italy

    , ,
    Marcel Verbeek

    Departments of Neurology, Radboud University Medical Centre, Nijmegen, The Netherlands and Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands and Radboud Alzheimer Centre, Radboud University Medical Centre, Nijmegen, The Netherlands

    ,
    Pieter Jelle Visser

    Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands and Department of Psychiatry and Neuropsychology, Institute of Brain and Behavior, University of Maastricht, Maastricht, The Netherlands

    &
    Charlotte Teunissen

    Neurological Laboratory, Clinical Chemistry Department, VU University Medical Center, Amsterdam, The Netherlands

    Published Online:https://doi.org/10.2217/bmm.12.46

    Early diagnosis of neurodegenerative disorders such as Alzheimer’s (AD) or Parkinson’s disease (PD) is needed to slow down or halt the disease at the earliest stage. Cerebrospinal fluid (CSF) biomarkers can be a good tool for early diagnosis. However, their use in clinical practice is challenging due to the high variability found between centers in the concentrations of both AD CSF biomarkers (Aβ42, total tau and phosphorylated tau) and PD CSF biomarker (α-synuclein). Such a variability has been partially attributed to different preanalytical procedures between laboratories, thus highlighting the need to establish standardized operating procedures. Here, we merge two previous consensus guidelines for preanalytical confounding factors in order to achieve one exhaustive guideline updated with new evidence for Aβ42, total tau and phosphorylated tau, and α-synuclein. The proposed standardized operating procedures are applicable not only to novel CSF biomarkers in AD and PD, but also to biomarkers for other neurodegenerative disorders.

    References

    • Ho L, Fivecoat H, Wang J, Pasinetti GM. Alzheimer’s disease biomarker discovery in symptomatic and asymptomatic patients: experimental approaches and future clinical applications. Exp. Gerontol.45,15–22 (2010).
    • Fortea J, Sala-Llonch R, Bartrés-Faz D et al. Cognitively preserved subjects with transitional cerebrospinal fluid β-amyloid 1–42 values have thicker cortex in Alzheimer’s disease vulnerable areas. Biol. Psychiatry70,183–190 (2011).
    • Rami L, Sala-Llonch R, Solé-Padullés C et al. Distinct functional activity of the precuneus and posterior cingulate cortex during encoding in the preclinical stage of Alzheimer’s disease. J. Alzheimers Dis.30,1–10 (2012).
    • Jack CR, Knopman DS, Jagust WJ et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet9,1–20 (2010).
    • Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F. Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J. Neurol. Sci.20,415–455 (1973).
    • Reiber H, Peter JB. Cerebrospinal fluid analysis: disease-related data patterns and evaluation programs. J. Neurol. Sci.184,101–122 (2001).
    • Teunissen C. Biochemical markers related to Alzheimer’s dementia in serum and cerebrospinal fluid. Neurobiol. Aging23,485–508 (2002).
    • Blennow K, Hampel H, Weiner M, Zetterberg H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat. Rev. Neurol.6,131–144 (2010).
    • Mulder C, Verwey NA, van der Flier WM et al. Amyloid-beta(1–42), total tau, and phosphorylated tau as cerebrospinal fluid biomarkers for the diagnosis of Alzheimer disease. Clin. Chem.56,248–253 (2010).
    • 10  Jack CR, Albert MS, Knopman DS et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement.7,257–262 (2011).
    • 11  Ibáñez P, Bonnet A-M, Débarges B et al. Causal relation between alpha-synuclein gene duplication and familial Parkinson’s disease. Lancet364,1169–1171 (2004).
    • 12  Mollenhauer B, Locascio JJ, Schulz-Schaeffer W, Sixel-Döring F, Trenkwalder C, Schlossmacher MG. α-Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: a cohort study. Lancet Neurol.10,230–240 (2011).
    • 13  Hong Z, Shi M, Chung KA et al. DJ-1 and alpha-synuclein in human cerebrospinal fluid as biomarkers of Parkinson’s disease. Brain133,713–726 (2010).
    • 14  Parnetti L, Chiasserini D, Bellomo G et al. Cerebrospinal fluid tau/α-synuclein ratio in Parkinson’s disease and degenerative dementias. Mov. Disord.26,1428–1435 (2011).
    • 15  Tateno F, Sakakibara R, Kawai T, Kishi M, Murano T. Alpha-synuclein in the cerebrospinal fluid differentiates synucleinopathies (Parkinson disease, dementia with lewy bodies, multiple system atrophy) from Alzheimer disease. Alzheimer Dis. Assoc. Disord. doi:10.1097/WAD.0b013e31823899cc (2011) (Epub ahead of print).
    • 16  Mattsson N, Andreasson U, Persson S et al. The Alzheimer’s Association external quality control program for cerebrospinal fluid biomarkers. Alzheimers Dement.7,386–395 e6 (2011).
    • 17  Sunderland T, Linker G, Mirza N et al. Decreased beta-amyloid1–42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease. JAMA289,2094–2103 (2003).
    • 18  Mollenhauer B, El-Agnaf O, Marcus K, Trenkwalder C, Schlossmacher M. Quantification of α-synuclein in cerebrospinal fluid as a biomarker candidate: review of the literature and considerations for future studies. Biomark. Med.4,683–699 (2010).
    • 19  Verwey NA, van der Flier WM, Blennow K et al. A worldwide multicentre comparison of assays for cerebrospinal fluid biomarkers in Alzheimer’s disease. Ann. Clin. Biochem.46,235–240 (2009).
    • 20  Lewczuk P, Beck G, Ganslandt O et al. International quality control survey of neurochemical dementia diagnostics. Neurosci. Lett.409,1–4 (2006).
    • 21  Mattsson N, Zetterberg H, Blennow K. Lessons from multicenter studies on CSF biomarkers for Alzheimer’s disease. Int. J. Alzheimers. Dis.2010,1–5 (2010).
    • 22  Sperling RA, Aisen PS, Beckett LA et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement.7,280–292 (2011).
    • 23  Bjerke M, Portelius E, Minthon L et al. Confounding factors influencing amyloid Beta concentration in cerebrospinal fluid. Int. J. Alzheimers. Dis.2010,1–11 (2010).
    • 24  Teunissen CE, Verwey NA, Kester MI, van Uffelen K, Blankenstein MA. Standardization of assay procedures for analysis of the CSF biomarkers amyloid β((1–42)), tau, and phosphorylated tau in Alzheimer’s disease: report of an international workshop. Int. J. Alzheimers. Dis.2010,pii: 635053 (2010).
    • 25  Plebani M. Errors in clinical laboratories or errors in laboratory medicine? Clin. Chem. Lab. Med.44,750–759 (2006).
    • 26  Perret-Liaudet A, Pelpel M, Tholance Y et al. Risk of Alzheimer’s disease biological misdiagnosis linked to cerebrospinal collection tubes. J. Alzheimers Dis.30,1–8 (2012).
    • 27  Schoonenboom NSM, Mulder C, Vanderstichele H et al. Effects of processing and storage conditions on amyloid beta (1–42) and tau concentrations in cerebrospinal fluid: implications for use in clinical practice. Clin. Chem.51,189–195 (2005).
    • 28  Vanderstichele H, Bibl M, Engelborghs S et al. Standardization of preanalytical aspects of cerebrospinal fluid biomarker testing for Alzheimer’s disease diagnosis: a consensus paper from the Alzheimer’s Biomarkers Standardization Initiative. Alzheimers Dement.8,65–73 (2012).
    • 29  Teunissen C, Petzold A, Bennett J et al. A consensus protocol for the standardization of cerebrospinal fluid collection and biobanking. Neurology73,1914–1922 (2009).
    • 30  Murillo-Rodriguez E, Désarnaud F, Prospéro-García O. Diurnal variation of arachidonoylethanolamine, palmitoylethanolamide and oleoylethanolamide in the brain of the rat. Life Sci.79,30–37 (2006).
    • 31  Bateman RJ, Wen G, Morris JC, Holtzman DM. Fluctuations of CSF amyloid-beta levels: implications for a diagnostic and therapeutic biomarker. Neurology68,666–669 (2007).
    • 32  Moghekar A, Goh J, Li M, Albert M, O’Brien RJ. Cerebrospinal fluid aβ and tau level fluctuation in an older clinical cohort. Arch. Neurol.69,246–250 (2012).
    • 33  Slats D, Claassen JAHR, Spies PE et al. Hourly variability of cerebrospinal fluid biomarkers in Alzheimer’s disease subjects and healthy older volunteers. Neurobiol. Aging33,831.e1–9 (2012).
    • 34  Frasier M, Chowdhury S, Sherer T et al. The Parkinson’s progression markers initiative: a prospective biomarker study. Mov. Disord.95(4),629–635 (2010).
    • 35  Spies PE, Slats D, Rikkert MGO, Tseng J, Claassen JA, Verbeek MM. CSF α-synuclein concentrations do not fluctuate over hours and are not correlated to amyloid β in humans. Neurosci. Lett.504,336–338 (2011).
    • 36  Reiber H. Dynamics of brain-derived proteins in cerebrospinal fluid. Clinica Chimica Acta310,173–186 (2001).
    • 37  Simonsen AH, Bech S, Laursen I et al. Proteomic investigations of the ventriculo-lumbar gradient in human CSF. J. Neurosci. Methods191,244–248 (2010).
    • 38  Blennow K, Fredman P, Wallin A, Gottfries CG, Långström G, Svennerholm L. Protein analyses in cerebrospinal fluid. I. Influence of concentration gradients for proteins on cerebrospinal fluid/serum albumin ratio. Eur. Neurol.33,126–128 (1993).
    • 39  Blennow K, Wallin A, Gottfries CG, Månsson JE, Svennerholm L. Concentration gradients for monoamine metabolites in lumbar cerebrospinal fluid. J. Neural. Transm. Park. Dis. Dement. Sect.5,5–15 (1993).
    • 40  Mollenhauer B, Trautmann E, Otte B et al. α-synuclein in human cerebrospinal fluid is principally derived from neurons of the central nervous system. J. Neural. Transm. doi:10.1007/s00702–012–0784–0780 (2012) (Epub ahead of print).
    • 41  Kuntz KM, Kokmen E, Stevens JC, Miller P, Offord KP, Ho MM. Post-lumbar puncture headaches: experience in 501 consecutive procedures. Neurology42,1884–1887 (1992).
    • 42  Netto CBO, Conte S, Leite MC et al. Serum S100B protein is increased in fasting rats. Arch. Med. Res.37,683–686 (2006).
    • 43  Lehmann S, Roche S, Allory Y et al. [Preanalytical guidelines for clinical proteomics investigation of biological fluids]. Ann. Biol. Clin. (Paris)67,629–639 (2009).
    • 44  Fehlbaum-Beurdeley P, Jarrige-Le Prado AC, Pallares D et al. Toward an Alzheimer’s disease diagnosis via high-resolution blood gene expression. Alzheimers Dement.6,25–38 (2010).
    • 45  Rye PD, Booij BB, Grave G et al. A novel blood test for the early detection of Alzheimer’s disease. J. Alzheimers Dis.23,121–129 (2011).
    • 46  Lewczuk P, Beck G, Esselmann H et al. Effect of sample collection tubes on cerebrospinal fluid concentrations of tau proteins and amyloid beta peptides. Clin. Chem.52,332–334 (2006).
    • 47  Pica-Mendez AM, Tanen M, Dallob A, Tanaka W, Laterza OF. Nonspecific binding of Aβ42 to polypropylene tubes and the effect of Tween-20. Clin. Chim. Acta411,1833 (2010).
    • 48  Petzold A, Sharpe LT, Keir G. Spectrophotometry for cerebrospinal fluid pigment analysis. Neurocrit. Care4,153–162 (2006).
    • 49  You J-S, Gelfanova V, Knierman MD, Witzmann FA, Wang M, Hale JE. The impact of blood contamination on the proteome of cerebrospinal fluid. Proteomics5,290–296 (2005).
    • 50  Berven FS, Kroksveen AC, Berle M et al. Preanalytical influence on the low molecular weight cerebrospinal fluid proteome. Proteomics Clin. Appl.1,699–711 (2007).
    • 51  Jimenez CR, Koel-Simmelink M, Pham TV, van der Voort L, Teunissen CE. Endogeneous peptide profiling of cerebrospinal fluid by MALDI-TOF mass spectrometry: optimization of magnetic bead-based peptide capture and analysis of preanalytical variables. Proteomics Clin. Appl.1,1385–1392 (2007).
    • 52  West-Nielsen M, Høgdall EV, Marchiori E, Høgdall CK, Schou C, Heegaard NHH. Sample handling for mass spectrometric proteomic investigations of human sera. Anal. Chem.77,5114–5123 (2005).
    • 53  Rosenling T, Slim CL, Christin C et al. The effect of preanalytical factors on stability of the proteome and selected metabolites in cerebrospinal fluid (CSF). J. Proteome Res.8,5511–5522 (2009).
    • 54  Kaiser E, Schönknecht P, Thomann P, Hunt A, Schröder J. Influence of delayed CSF storage on concentrations of phospho-tau protein (181), total tau protein and beta-amyloid (1–42). Neurosci. Lett.417,193–195 (2007).
    • 55  Zimmermann R, Lelental N, Ganslandt O, Maler JM, Kornhuber J, Lewczuk P. Preanalytical sample handling and sample stability testing for the neurochemical dementia diagnostics. J. Alzheimers Dis.25,739–745 (2011).
    • 56  Kruse N, Schulz-Schaeffer WJ, Schlossmacher MG, Mollenhauer B. Development of electrochemiluminescence-based singleplex and multiplex assays for the quantification of α-synuclein and other proteins in cerebrospinal fluid. Methods (San Diego, Calif)56(4),514–518 (2012).
    • 57  Bhatnagar BS, Bogner RH, Pikal MJ. Protein stability during freezing: separation of stresses and mechanisms of protein stabilization. Pharm. Dev. Technol.12,505–523 (2007).
    • 58  Chaigneau C, Cabioch T, Beaumont K, Betsou F. Serum biobank certification and the establishment of quality controls for biological fluids: examples of serum biomarker stability after temperature variation. Clin. Chem. Lab. Med.45,1390–1395 (2007).
    • 59  Nishino S, Ripley B, Overeem S et al. Low cerebrospinal fluid hypocretin (orexin) and altered energy homeostasis in human narcolepsy. Ann. Neurol.50,381–388 (2001).
    • 60  Botella-López A, Burgaya F, Gavín R et al. Reelin expression and glycosylation patterns are altered in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA103,5573–5578 (2006).
    • 61  Sjögren M, Vanderstichele H, Agren H et al. Tau and Abeta42 in cerebrospinal fluid from healthy adults 21–93 years of age: establishment of reference values. Clin. Chem.47,1776–1781 (2001).
    • 62  Bibl M, Esselmann H, Otto M et al. Cerebrospinal fluid amyloid beta peptide patterns in Alzheimer’s disease patients and nondemented controls depend on sample pretreatment: indication of carrier-mediated epitope masking of amyloid beta peptides. Electrophoresis25,2912–2918 (2004).
    • 63  Carrette O, Burkhard PR, Hughes S, Hochstrasser DF, Sanchez J-C. Truncated cystatin C in cerebrospiral fluid: technical [corrected] artefact or biological process? Proteomics5,3060–3065 (2005).
    • 64  Schipke CG, Jessen F, Teipel S et al. Long-term stability of Alzheimer’s disease biomarker proteins in cerebrospinal fluid. J. Alzheimers Dis.26,255–262 (2011).