We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies

    Ahmed A Heikal

    Department of Chemistry & Biochemistry and Department of Pharmacy Practice & Pharmaceutical Sciences, The University of Minnesota Duluth, 1039 University Drive, Duluth, MN 55812-2496, USA.

    Published Online:https://doi.org/10.2217/bmm.10.1

    Mitochondria play a pivotal role in energy metabolism, programmed cell death and oxidative stress. Mutated mitochondrial DNA in diseased cells compromises the structure of key enzyme complexes and, therefore, mitochondrial function, which leads to a myriad of health-related conditions such as cancer, neurodegenerative diseases, diabetes and aging. Early detection of mitochondrial and metabolic anomalies is an essential step towards effective diagnoses and therapeutic intervention. Reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) play important roles in a wide range of cellular oxidation–reduction reactions. Importantly, NADH and FAD are naturally fluorescent, which allows noninvasive imaging of metabolic activities of living cells and tissues. Furthermore, NADH and FAD autofluorescence, which can be excited using distinct wavelengths for complementary imaging methods and is sensitive to protein binding and local environment. This article highlights recent developments concerning intracellular NADH and FAD as potential biomarkers for metabolic and mitochondrial activities.

    Papers of special note have been highlighted as: ▪▪ of considerable interest

    Bibliography

    • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P: Molecular Biology of the Cell (4th Edition). Garland Science, NY, USA (2002).
    • Christen Y: Oxidative stress and Alzheimer disease. Am. J. Clin. Nutr.71(2),621S–629S (2000).
    • Jacquard C, Trioulier Y, Cosker F et al.: Brain mitochondrial defects amplify intracellular [Ca2+] rise and neurodegeneration but not Ca2+ entry during NMDA receptor activation. FASEB J.20(7),1021–1023 (2006).
    • Duchen MR: Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol. Aspects Med.25(4),365–451 (2004).▪▪ Insightful perspective on mitochondria in health, diseases and basic biology.
    • Duchen MR: Roles of mitochondria in health and disease. Diabetes53(Suppl. 1),S96–S102 (2004).
    • Armstrong JS: Mitochondria: a target for cancer therapy. Br. J. Phamcol.147,239–248 (2006).
    • Flescher E: Jasmonates in cancer therapy. Cancer Lett.245,1–10 (2007).
    • Neuzil J, Dong LF, Ramnathapuram L et al.: Vitamin E analogues as a novel group of mitocans: anti-cancer agents that act by targeting mitochondria. Mol. Asp. Med.28,607–645 (2007).
    • Kagan VE, Bayir A, Bayir H et al.: Mitochondria-targeted disruptors and inhibitors of cytochrome C/cardiolipin peroxidase complexes: a new strategy in anti-apoptotic drug discovery. Mol. Nutr. Food. Res.53(1),104–114 (2009).
    • 10  Howell N, Taylor SW, Fahy E, Murphy A, Ghosh SS: Restoring energy in a power crisis: mitochondrial targets for drug development. Drug Discov. Today Targets2(5),208–216 (2003).
    • 11  Szeto HH: Mitochondria-targeted peptide antioxidants: novel neuroprotective agents. AAPS J.8(3),E521–E531 (2006).
    • 12  Harper JA, Dickinson K, Brand MD: Mitochondrial uncoupling as a target for drug development for the treatment of obesity. Obesity Rev.2(4),255–265 (2001).
    • 13  Chance B: Pyridine nucleotide as an indicator of the oxygen requirements for energy-linked functions of Mitochondria. Circ. Res.5(Suppl. 1),131I–138I (1976).
    • 14  Chance B, Cohen P, Jobsis F, Schoener B: Intracellular oxidation–reduction states in vivo.Science137,499–508 (1962).
    • 15  Chance B, Jamieson D, Coles H: Energy-linked pyridine nucleotide reduction: inhibitory effects of hyperbaric oxygen in vitro and in vivo.Nature206(981),257–263 (1965).
    • 16  Chance B, Legallais V, Schoener B: Metabolically linked changes in fluorescence emission spectra of cortex of rat brain, kidney and adrenal gland. Nature195,1073–1075 (1962).
    • 17  Chance B, Williams GR: Respiratory enzymes in oxidative phosphorylation. II. Difference spectra. J. Biol. Chem.217(1),395–407 (1955).
    • 18  Chance B, Williams GR: Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J. Biol. Chem.217(1),383–393 (1955).
    • 19  Chance B, Williams GR: Respiratory enzymes in oxidative phosphorylation. III. The steady state. J. Biol. Chem.217(1),409–427 (1955).
    • 20  Chance B, Williams GR: Respiratory enzymes in oxidative phosphorylation. IV. The respiratory chain. J. Biol. Chem.217(1),429–438 (1955).
    • 21  Chance B, Williams GR, Holmes WF, Higgins J: Respiratory enzymes in oxidative phosphorylation. V. A mechanism for oxidative phosphorylation. J. Biol. Chem.217(1),439–451 (1955).
    • 22  Jones JB, Song JJ, Hempen PM, Parmigiani G, Hruban RH, Kern SE: Detection of mitochondrial DNA mutations in pancreatic cancer offers a “mass”-ive advantage over detection of nuclear DNA mutations. Cancer Res.61(4),1299–1304 (2001).
    • 23  Stryer L: Biochemistry (4th Edition). WH Freeman and Co., NY, USA (1999).
    • 24  Ying W: NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid. Redox Signal.10(2),179–206 (2008).
    • 25  Klaidman LK, Leung AC, Adams JD Jr: High-performance liquid chromatography analysis of oxidized and reduced pyridine dinucleotides in specific brain regions. Anal. Biochem.228(2),312–317 (1995).
    • 26  Glassman WS, Steinberg M, Alfano RR: Time resolved and steady state fluorescence spectroscopy from normal and malignant cultured human breast cell lines. Lasers Life Sci.6(2),91–98 (1994).
    • 27  Palmer GM, Keely PJ, Breslin TM, Ramanujam N: Autofluorescence spectroscopy of normal and malignant human breast cell lines. Photochem. Photobiol.78(5),462–469 (2003).
    • 28  Kunz WS, Kunz W: Contribution of different enzymes to flavoprotein fluorescence of isolated rat liver mitochondria. Biochim. Biophys. Acta841(3),237–246 (1985).
    • 29  Huang S, Heikal AA, Webb WW: Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys. J.82,2811–2825 (2002).
    • 30  Koke JR, Wylie W, Wills M: Sensitivity of flavoprotein fluorescence to oxidative state in single isolated heart cells. Cytobios32(127–128),139–145 (1981).
    • 31  Scholz R, Thurman RG, Williamson JR, Chance B, Bucher T: Flavin and pyridine nucleotide oxidation–reduction changes in perfused rat liver. I. Anoxia and subcellular localization of fluorescent flavoproteins. J. Biol. Chem.244(9),2317–2324 (1969).
    • 32  Modica-Napolitano JS, Singh KK: Mitochondrial dysfunction in cancer. Mitochondrion4,755–762 (2004).
    • 33  Scheffler IE: Mitochondria. Wiley-Liss, NY, USA (1999).
    • 34  Benson RC, Meyer RA, Zaruba ME, McKhann GM: Cellular autofluorescence – is it due to flavins? J. Histochem. Cytochem.27(1),44–48 (1979).
    • 35  Müller F: Chemistry and Biochemistry of Flavoenzymes. CRC Press, FL, USA (1991).
    • 36  Berg M, Tymoczko JL, Stryer L: Biochemistry. Freeman, NY, USA (1995).
    • 37  Warburg O: On the origin of cancer cells. Science123(3191),309–314 (1956).
    • 38  Eto K, Tsubamoto Y, Terauchi Y et al.: Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion. Science283(5404),981–985 (1999).
    • 39  Uppal A, Gupta PK: Measurements of NADH concentration in normal and malignant human tissues from breast and oral cavity. Biotechnol. Appl. Biochem.37,45–50 (2003).
    • 40  Liu Z-H, Cai R-X, Wang J: Current Development in the Determination of Intracellular NADH Level. Springer, NY, USA (2006).
    • 41  Wang W: NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid. Redox Signal10(2),179–206 (2008).
    • 42  Vishwasrao HD, Heikal AA, Kasischke KA, Webb WW: Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy. J. Biol. Chem.280,25119–25126 (2005).▪▪ Original paper that revealed an associated anisotropy behavior of intracellular reduced nicotinamide adenine dinucleotide in brain slices as a direct measure of free and protein-bound coenzyme in response to hypoxia.
    • 43  Bird DK, Yan L, Vrotsos KM et al.: Metabolic mapping of MCF 10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH. Cancer Res.65,8766–8773 (2005).
    • 44  Tilton RG, Baier LD, Harlow JE, Smith SR, Ostrow E, Williamson JR: Diabetes-induced glomerular dysfunction: links to a more reduced cytosolic ratio of NADH/NAD+. Kidney Int.41,778–788 (1992).
    • 45  Dukes ID, McIntyre MS, Mertz RJ et al.: Dependence on NADH produced during glycolysis for β-cell glucose signaling. J. Biol. Chem.269(15),10979–10982 (1994).
    • 46  Ido Y, Kilo C, Williamson JR: Cytosolic NADH/NAD+, free radicals, and vascular dysfunction in early diabetes mellitus. Diabetologia40,S115–S117 (1997).
    • 47  Rocheleau JV, Head WS, Piston DW: Quantitative NAD(P)H/flavoprotein autofluorescence imaging reveals metabolic mechanisms of pancreatic islet pyruvate response. J. Biol. Chem.279,31780–31787 (2004).
    • 48  Rocheleau J, Head WS, Piston D: Two-photon NAD(P)H and one-photon flavoprotein autofluorescence imaging to examine the metabolic mechanisms of pancreatic islet β-cell function. Microsc. Microanal.9,218–219 (2003).
    • 49  Alberts B, Bray D, Johnson A et al.: Essential Cell Biology. Garland Publishing Inc., NY, USA (2003).
    • 50  Scheffler IE: Mitochondria (2nd Edition). Wiley-Liss, NY, USA (2007).
    • 51  Hajnoczky G, Csordas G, Das S et al.: Mitochondrial calcium signaling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium40(5–6),553–560 (2006).
    • 52  Walsh C, Barrow S, Voronina S, Chvanov M, Petersen OH, Tepikin A: Modulation of calcium signalling by mitochondria. Biochim. Biophys. Acta1787(11),1374–1382 (2009).
    • 53  Yu Q, Heikal AA: Two-photon autofluorescence dynamics imaging reveals sensitivity of intracellular NADH concentration and conformation to cell physiology at the single-cell level. J. Photochem. Photobiol. B95(1),46–57 (2009).
    • 54  Chorvat D Jr, Kirchnerova J, Cagalinec M, Smolka J, Mateasik A, Chorvatova A: Spectral unmixing of flavin autofluorescence components in cardiac myocytes. Biophys. J.89(6),L55–L57 (2005).
    • 55  Romashko DN, Marban E, O’Rourke B: Subcellular metabolic transients and mitochondrial redox waves in heart cells. Proc. Natl Acad. Sci. USA95(4),1618–1623 (1998).
    • 56  Skovronsky DM, Lee VM-Y, Trojanowski JQ: Neurodegenerative diseases: new concepts of pathogenesis and their therapeutic implications. Annu. Rev. Pathol. Mech. Dis.1,151–170 (2006).
    • 57  Smith MA, Rottkamp CA, Nunomura A, Raina AK, Perry G: Oxidative stress in Alzheimer’s disease. Biochim. Biophys. Acta1502,139–144 (2000).
    • 58  Ischiropoulos H, Beckman JS: Oxidative stress and nitration in neurodegeneration: cause, effect, or association? J. Clin. Invest.111,163–169 (2003).
    • 59  Sherer TB, Betarbet R, Greenamyre JT: Environment, mitochondria, and Parkinson’s disease. Neuroscientist8,192–197 (2002).
    • 60  Furukawa S, Fujita T, Shimabukuro M et al.: Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest.114(12),1752–1761 (2004).
    • 61  Le SB, Hailer MK, Buhrow S et al.: Inhibition of mitochondrial respiration as a source of adaphostin-induced reactive oxygen species and cytotoxicity. J. Biol. Chem.282(12),8860–8872 (2007).
    • 62  Koch OR, Pani G, Borrello S et al.: Oxidative stress and antioxidant defenses in ethanol-induced cell injury. Mol. Aspects Med.25(1–2),191–198 (2004).
    • 63  Bailey SM, Cunningham CC: Contribution of mitochondria to oxidative stress associated with alcoholic liver disease. Free Radic. Biol. Med.32(1),11–16 (2002).
    • 64  Zhou Z, Wang L, Song Z, Lambert JC, McClain CJ, Kang YJ: A critical involvement of oxidative stress in acute alcohol-induced hepatic TNF-α production. Am. J. Pathol.163,1137–1146 (2003).
    • 65  Adachi M, Ishii H: Role of mitochondria in alcoholic liver injury. Free Radic. Biol. Med.32(6),487–491 (2002).
    • 66  Liang J, Wu W-L, Liu Z-H, Meib Y-J, Cai R-X, Shen P: Study the oxidative injury of yeast cells by NADH autofluorescence. Spectrochim. Acta A Mol. Biomol. Spectrosc.67(2),355–359 (2007).
    • 67  Yang MS, Li D, Lin T, Zheng JJ, Zheng W, Qu JY: Increase in intracellular free/bound NAD(P)H as a cause of Cd-induced oxidative stress in the Hep G2 cells. Toxicology247(1),6–10 (2008).
    • 68  Elmore S: Apoptosis: a review of programmed cell death. Toxicol. Pathol.35(4),495–516 (2007).
    • 69  Lockshin RA, Zakeri Z: Programmed cell death and apoptosis: origins of the theory. Nat. Rev. Mol. Biol.2,545–550 (2001).
    • 70  Crow MT, Mani K, Nam Y-J, Kitsis RN: The mitochondrial death pathway and cardiac myocyte apoptosis. Circulation Res.95,957–970 (2004).
    • 71  Chen LB: Mitochondrial membrane potential in living cells. Annu. Rev. Cell Biol.4,155–181 (1988).
    • 72  Vermeulen K, Van Bockstaele DR, Berneman ZN: Apoptosis: mechanisms and relevance in cancer. Ann. Hematol.84,627–639 (2005).
    • 73  Brewer MA, Utzinger U, Li Y et al.: Fluorescence spectroscopy as a biomarker in a cell culture and in a nonhuman primate model for ovarian cancer chemopreventive agents. J. Biomed. Optics7(1),20–26 (2002).
    • 74  Kirkpatrick ND, Zou C, Brewer MA, Brands WR, Drezek RA, Utzinger U: Endogenous fluorescence spectroscopy of cell suspensions for chemopreventive drug monitoring. Photochem. Photobiol.81(1),125–134 (2005).
    • 75  Nieminen AL, Byrne AM, Herman B, Lemasters JJ: Mitochondrial permeability transition induced by t-buOOH:NAD(P)H and reactive oxygen species. Am. J. Physiol. Cell Physiol.272,C1286–C1294 (1997).
    • 76  Shinho A, Matsuda M, Handa J, Chance B: Poor recovery of mitochondrial redox state in CA1 after transient forebrain ischemia in gerbils. Stroke29,2421–2424 (1998).
    • 77  Petit PX, Gendron M-C, Schrantz N et al.: Oxidation of pyridine nucleotides during Fas- and ceramide-induced apoptosis in Jurkat cells: correlation with changes in mitochondria, glutathione depletion, intracellular acidification and caspase 3 activation. Biochem. J.353,357–367 (2001).
    • 78  Rouhanizadeh M, Hwang J, Clempus RE et al.: Oxidized-1-palmitoyl-2-arachidonoyl-sn -glycero-3-phosphorylcholine induces vascular endothelial superoxide production: implication of NADPH oxidase. Free Radic. Biol. Med.39(11),1512–1522 (2005).
    • 79  Galindo MF, Jordán J, González-García C, Cena V: Reactive oxygen species induce swelling and cytochrome C release but not transmembrane depolarization in isolated rat brain mitochondria. Br. J. Pharmacol.139,797–804 (2003).
    • 80  Levitt JM, Baldwin A, Papadakis A et al.: Intrinsic fluorescence and redox changes associated with apoptosis of primary human epithelial cells. J. Biomed. Opt.11(6),064012 (2006).
    • 81  Wang H-W, Gukassyan V, Chen C-T et al.: Differentiation of apoptosis from necrosis by dynamic changes of reduced nicotinamide adenine dinucleotide fluorescence lifetime in live cells. J. Biomed. Opt.13,054011 (2008).
    • 82  Zhang Q, Piston DW, Goodman RH: Regulation of corepressor function by nuclear NADH. Science295(8),1895–1897 (2002).▪▪ Original paper describing the role of nuclear NADH in regulating corepressor function.
    • 83  Chen S, Whetstine JR, Ghosh S et al.: The conserved NAD(H)-dependent corepressor CTBP-1 regulates Caenorhabditis elegans life span. Proc. Natl Acad. Sci. USA106,1496–1501 (2009).
    • 84  Lin S-J, Guarente L: Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr. Opin. Cell Biol.15(2),241–246 (2003).
    • 85  Buck SW, Gallo CM, Smith JS: Diversity in the Sir2 family of protein deacetylases. J. Leukoc. Biol.75,939–950 (2004).
    • 86  Yang T, Sauve AA: NAD metabolism and sirtuins: metabolic regulation of protein deacetylation in stress and toxicity. AAPS J.8(4),E632–E643 (2006).
    • 87  Singh KK: Mitochondrial dysfunction is a common phenotype in aging and cancer. Ann. NY Acad. Sci.1019,260–264 (2004).
    • 88  Modica-Napolitano JS, Singh KK: Mitochondria as targets for detection and treatment of cancer. Expert Rev. Mol. Med.4(9),1–19 (2002).
    • 89  Modica-Napolitano JS, Kulawiec M, Singh KK: Mitochondria and human cancer. Curr. Mol. Med.7(1),121–131 (2007).
    • 90  Lu B: Mitochondrial dynamics and neurodegeneration. Curr. Neurol. Neurosci. Rep.9(3),212–219 (2009).
    • 91  Hanahan D, Weinberg RA: The hallmarks of cancer. Cell100,57–70 (2000).
    • 92  Mayevsky A: Mitochondrial function and energy metabolism in cancer cells: past overview and future perspectives. Mitochondrion9,165–179 (2009).
    • 93  Pederson PL: Tumor mitochondria and the bioenergetics of cancer cells. Prog. Exp. Tumor Res.22,198–274 (1978).
    • 94  Chang LO, Schnaitman CA, Morris HP: Comparison of the mitochondrial membrane proteins in rat liver and hepatomas. Cancer Res.31(2),108–113 (1971).
    • 95  Ishii T, Yasuda K, Akatsuka A, Hino O, Hartman PS, Ishii N: A mutation in the SDHC gene of complex II increases oxidative stress, resulting in apoptosis and tumorigenesis. Cancer Res.65(1),203–209 (2005).
    • 96  Villette S, Pigaglio-Deshayes S, Vever-Bizet C, Validire P, Bourg-Heckly G: Ultraviolet-induced autofluorescence characterization of normal and tumoral esophageal epithelium cells with quantitation of NAD(P)H. Photochem. Photobiol. Sci.5,483–492 (2006).
    • 97  Skala MC, Riching KM, Gendron-Fitzpatrick A et al.: In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc. Natl Acad. Sci. USA104(49),19494–19499 (2007).
    • 98  Skala MC, Riching KM, Bird DK et al.: In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia. J. Biomed. Opt.12(2),024014 (2007).
    • 99  Lin MT, Beal MF: Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature443,787–795 (2006).
    • 100  Krishnan KJ, Reeve AK, Turnbull DM: Do mitochondrial DNA mutations have a role in neurodegenerative disease? Biochem. Soc. Trans.35,1232–1235 (2007).
    • 101  Kwan AC, Duff K, Gouras GK, Webb WW: Optical visualization of Alzheimer’s pathology via multiphoton-excited intrinsic fluorescence and second harmonic generation. Optics Express17(5),3679–3689 (2009).
    • 102  Brownlee M: Biochemistry and molecular cell biology of diabetic complications. Nature414,813–820 (2001).
    • 103  Wiederkehr A, Wollheim CB: Impact of mitochondrial calcium on the coupling of metabolism to insulin secretion in the pancreatic β-cell. Cell Calcium44(1),64–76 (2008).
    • 104  Wollheim CB, Maechler P: β-cell mitochondria and insulin secretion: messenger role of nucleotides and metabolites. Diabetes51(1),S37–S42 (2002).
    • 105  Noda M, Yamashita S, Takahashi N et al.: Switch to anaerobic glucose metabolism with NADH accumulation in the β-cell model of mitochondrial diabetes: characteristics of β-HC9 cells deficient in mitochondrial DNA transcription. J. Biol. Chem.277(44),41817–41826 (2002).
    • 106  Gore M, Ibbott F, McIlwain H: The cozymase of mammalian brain. Biochem. J.47(1),121–127 (1950).
    • 107  Sporty JL, Kabir MM, Turteltaub KW, Ognibene T, Lin SJ, Bench G: Single sample extraction protocol for the quantification of NAD and NADH redox states in Saccharomyces cerevisiae.J. Sep. Sci.31(18),3202–3211 (2008).
    • 108  Britz-McKibbin P, Markuszewski MJ, Iyanagi T, Matsuda K, Nishioka T, Terabe S: Picomolar analysis of flavins in biological samples by dynamic pH junction-sweeping capillary electrophoresis with laser-induced fluorescence detection. Anal. Biochem.313(1),89–96 (2003).
    • 109  Giblin FJ, Reddy VN: Pyridine nucleotides in ocular tissues as determined by the cycling assay. Exp. Eye Res.31(5),601–609 (1980).
    • 110  Matsumura H, Miyachi S: Cycling assay for nicotinamide adenine dinucleotides. Methods Enzymol.69,465–470 (1980).
    • 111  Klaidman LK, Leung AC, Adams JD Jr: High-performance liquid chromatography analysis of oxidized and reduced pyridine dinucleotides in specific brain regions. Anal. Biochem.228(2),312–317 (1995).
    • 112  Umemura K, Kimura H: Determination of oxidized and reduced nicotinamide adenine dinucleotide in cell monolayers using a single extraction procedure and a spectrophotometric assay. Anal. Biochem.338(1),131–135 (2005).
    • 113  Xie W, Xu A, Yeung ES: Determination of NAD+ and NADH in a single cell under hydrogen peroxide stress by capillary electrophoresis. Anal. Chem.81(3),1280–1284 (2009).
    • 114  Stanley PE: Determination of subpicomole levels of NADH and FMN using bacterial luciferase and the liquid scintillation spectrometer. Anal. Biochem.39(2),441–453 (1971).
    • 115  Winstead JA, Moss SA: γ-irradiated flavin adenine dinucleotide: a D-amino acid oxidase inhibitor. Radiat. Res.52(3),520–527 (1972).
    • 116  Chance B: Spectrophotometry of intracellular respiratory pigments. Science120(3124),767–775 (1954).
    • 117  Chorvat D Jr, Chorvatova A: Spectrally resolved time-correlated single photon counting: a novel approach for characterization of endogenous fluorescence in isolated cardiac myocytes. Eur. Biophys. J.36,73–83 (2006).
    • 118  Duysens LN, Amesz J: Fluorescence spectrophotometry of reduced phosphopyridine nucleotide in intact cells in the near-ultraviolet and visible region. Biochim. Biophys. Acta24(1),19–26 (1957).
    • 119  Uppal A, Ghosh N, Datta A, Gupta PK: Fluorimetric estimation of the concentration of NADH from human blood samples. Biotechnol. Appl. Biochem.41(Pt 1),43–47 (2005).
    • 120  Papadopoulos AJ, Zhadin NN, Steinberg ML, Alfano RR: Fluorescence spectroscopy of normal, SV40-transformed human keratinocytes, and carcinoma cells. Cancer Biochem. Biophys.17,13–23 (1999).
    • 121  Benson RC, Meyer RA, Zaruba ME, McKhann GM: Cellular autofluorescence – is it due to flavins? J. Histochem. Cytochem.27(1),44–48 (1979).
    • 122  Croce AC, Ferrigno A, Vairetti M, Bertone R, Freitasa I, Bottirolia G: Autofluorescence properties of isolated rat hepatocytes under different metabolic conditions. Photochem. Photobiol. Sci.3(10),920–926 (2004).
    • 123  Ranji M, Kanemoto S, Matsubara M et al.: Fluorescence spectroscopy and imaging of myocardial apoptosis. J. Biomed. Opt.11(6),064036 (2006).
    • 124  Pogue BW, Pitts JD, Mycek MA et al.: In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy. Photochem. Photobiol.74(6),817–824 (2001).
    • 125  Mayevsky A, Chance B: Oxidation–reduction states of NADH in vivo : from animals to clinical use. Mitochondrion7(5),330–339 (2007).
    • 126  Hogan MC, Stary CM, Balaban RS, Combs CA: NAD(P)H fluorescence imaging of mitochondrial metabolism in contracting Xenopus skeletal muscle fibers: effect of oxygen availability. J. Appl. Physiol.98(4),1420–1426 (2005).
    • 127  Shuttleworth CW, Brennan AM, Connor JA: NAD(P)H fluorescence imaging of postsynaptic neuronal activation in murine hippocampal slices. J. Neurosci.23(8),3196–3208 (2003).
    • 128  Reinert KC, Dunbar RL, Gao W, Chen G, Ebner TJ: Flavoprotein autofluorescence imaging of neuronal activation in the cerebellar cortex in vivo.J. Neurophysiol.92,199–211 (2004).
    • 129  Reinert KC, Gao W, Chen G, Ebner TJ: Flavoprotein autofluorescence imaging in the cerebellar cortex in vivo.J. Neurosci. Res.85(15),3221–3232 (2007).
    • 130  Williams RM, Piston DW, Webb WW: Two-photon molecular excitation provides intrinsic 3-dimensional resolution for laser-based microscopy and microphotochemistry. FASEB J.8,804–813 (1994).
    • 131  Gniadecki R, Thorn T, Vicanova J, Petersen A, Wulf HC: Role of mitochondria in ultraviolet-induced oxidative stress. J. Cell Biochem.80,216–222 (2000).
    • 132  Lisby S, Gniadecki R, Wulf HC: UV-induced DNA damage in human keratinocytes: quantitation and correlation with long-term survival. Exp. Dermatol.14,349–355 (2005).
    • 133  Bhawalkar JD, Shih A, Pan SJ et al.: Two-photon laser scanning fluorescence microscopy – from a fluorophore and specimen perspective. Bioimaging4,168–178 (1996).
    • 134  Centonze VE, White JG: Multiphoton excitation provides optical sections from deeper within scattering specimens that confocal imaging. Biophys. J.75,2015–2024 (1998).
    • 135  Denk W, Strickler JH, Webb WW: Two-photon laser scanning fluorescence microscopy. Science245,73–76 (1990).
    • 136  Masters BR, So PTC: Antecedents of two-photon excitation laser scanning microscopy. Microsc. Res. Tech.63,3–11 (2004).
    • 137  Zipfel WR, Williams RM, Webb WW: Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol.21(11),1369–1377 (2003).
    • 138  Xu C, Webb WW: Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J. Opt. Soc. Am. B13(3),481–491 (1996).
    • 139  Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW: Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science305(5680),99–103 (2004).
    • 140  Zipfel WR, Williams RM, Christie R, Nikitin AY, Hyman BT, Webb WW: Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc. Natl Acad. Sci. USA100(12),7075–7080 (2003).
    • 141  Nichols MG, Barth EE, Nichols JA: Reduction in DNA synthesis during two-photon microscopy of intrinsic reduced nicotinamide adenine dinucleotide fluorescence. Photochem. Photobiol.81(2),259–269 (2005).
    • 142  Perriott LM, Kono T, Whitesell RR et al.: Gluocose uptake and metabolism by cultured human skeletal muscle cells: rate-limiting steps. Am. J. Physiol. Endocrinol. Metab.281,E72–E80 (2001).
    • 143  Kable EPW, Kiemer AK: Non-invasive live-cell measurement of changes in macrophage NAD(P)H by two-photon microscopy. Immunol. Lett.96,33–38 (2005).
    • 144  Bennett BD, Jetton TL, Ying G, Magnuson MA, Piston DW: Quantitative subcellular imaging of glucose metabolism within intact pancreatic islets. J. Biol. Chem.271,3647–3651 (1996).
    • 145  Tiede LM, Rocha-Sanchez SM, Hallworth R, Nichols MG, Beisel K: Determination of hair cell metabolic state in isolated cochlear preparations by two-photon microscopy. J. Biomed. Opt.12(2),021004 (2007).
    • 146  Rothstein EC, Carroll S, Combs CA, Jobsis PD, Balaban RS: Skeletal muscle NAD(P)H two-photon fluorescence microscopy in vivo : topology and optical inner filters. Biophys. J.88,2165–2176 (2005).
    • 147  Christie RH, Bacskai BJ, Zipfel WR et al.: Growth arrest of individual senile plaques in a model of Alzheimer’s disease observed by in vivo multiphoton microscopy. J. Neurosci.21,858–864 (2001).
    • 148  Weber G: Fluorescence of riboflavin and flavin-adenine dinucleotide. Biochem. J.47(1),114–121 (1950).
    • 149  Visser AJ: Kinetics of stacking interactions in flavin adenine dinucleotide from time-resolved flavin fluorescence. Photochem. Photobiol.40(6),703–706 (1984).
    • 150  de Kok A, Visser AJ: Flavin binding site differences between lipoamide dehydrogenase and glutathione reductase as revealed by static and time-resolved flavin fluorescence. FEBS Lett.218(1),135–138 (1987).
    • 151  Digris AV, Shakoun VV, Novikov EG, van Hoek A, Claiborne A, Visser AJ: Thermal stability of a flavoprotein assessed from associative analysis of polarized time-resolved fluorescence spectroscopy. Eur. Biophys. J.28,526–531 (1999).
    • 152  Brolin SE, Agren A: Assay of flavin nucleotides in pancreatic islets by a differential fluorimetric technique. Biochem. J.163(1),159–162 (1977).
    • 153  Lakowicz JR: Principles of Fluorescence Spectroscopy (3rd Edition). Springer, NY, USA (2006).
    • 154  O’Connor DV, Phillips D: Time-Correlated Single-Photon Counting. Academic Press, London, UK (1984).
    • 155  Becker W: Advanced Time-Correlated Single-Photon Counting Techniques. Springer, NY, USA (2005).
    • 156  Niesner R, Peker B, Schlüsche P, Gericke K-H: Noniterative biexponential fluorescence lifetime imaging in the investigation of cellular metabolism by means of NAD(P)H autofluorescence. Chem. Phys. Chem.5,1141–1149 (2004).
    • 157  Yu Q, Proia M, Heikal AA: Integrated biophotonics approach for noninvasive and multiscale studies of biomolecular and cellular biophysics. J. Biomed. Opt.13(4),041315 (2008).
    • 158  Fink C, Morgan F, Loew LM: Intracellular fluorescent probe concentrations by confocal microscopy. Biophys. J.75(4),1648–1658 (1998).
    • 159  Huang M, Camara AK, Stowe DF, Qi F, Beard DA: Mitochondrial inner membrane electrophysiology assessed by rhodamine-123 transport and fluorescence. Ann. Biomed. Eng.35(7),1276–1285 (2007).
    • 160  Johnson LV, Walsh ML, Chen LB: Localization of mitochondria in living cells with rhodamine 123. Proc. Natl Acad. Sci. USA77(2),990–994 (1980).
    • 161  Scaduto RC Jr, Grotyohann LW: Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys. J.76(Pt 1),469–477 (1999).
    • 162  Kubin RF, Fletcher AN: Fluoresecence quantum yields of some rhodamine dyes. J. Lumin.27,455–462 (1982).
    • 163  Sureau F, Moreau F, Millot JM et al.: Microspectrofluorometry of the protonation state of ellipticine, an antitumor alkaloid, in single cells. Biophys. J.65(5),1767–1774 (1993).
    • 164  Duchen MR, McGuinness O, Brown LA, Crompton M: On the involvement of a cyclosporine A sensitive mitochondrial pore in myocardial reperfusion injury. Cardiovasc. Res.27(10),1790–1794 (1993).
    • 165  Ankarcrona M, Dypbukt JM, Bonfoco E et al.: Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. 15(4),961–973 (1995).
    • 166  Cossarizza A, Kalashnikova G, Grassilli E et al.: Mitochondrial modifications during rat thymocyte apoptosis: a study at the single cell level. Exp. Cell Res.214(1),323–330 (1994).
    • 167  Verburg J, Hollenbeck PJ: Mitochondrial membrane potential in axons increases with local nerve growth factor or semaphorin signaling. J. Neurosci.38(33),8306–8315 (2008).
    • 168  Tsien RY: The green fluorescent protein. Ann. Rev. Biochem.67,509–544 (1998).
    • 169  Misteli T, Spector DL: Applications of the green fluorescent protein in cell biology and biotechnology. Nat. Biotechnol.15,961–964 (1997).
    • 170  Zimmer M: Green fluorescent protein (GFP): applications, structure, and related photophysical behavior. Chem. Rev.102(3),759–782 (2002).
    • 171  Billinton N, Knight AW: Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence. Anal. Biochem.291(2),175–197 (2001).
    • 172  Heikal AA, Hess ST, Baird GS, Tsien RY, Webb WW: Molecular spectroscopy and dynamics of intrinsically fluorescent proteins: coral red (dsRed) and yellow (citrine). Proc. Natl Acad. Sci. USA97(22),11996–12001 (2000).
    • 173  Hess ST, Heikal AA, Webb WW: Fluorescence photoconversion kinetics in novel green fluorescent protein pH sensors (pHluorins). J. Phys. Chem. B108,10138–10148 (2004).
    • 174  Mahajan NP, Linder K, Berry G, Gordon GW, Heim R, Herman B: Bcl-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer. Nat. Biotechnol.16,547–552 (1998).
    • 175  Llopis J, McCaffery JM, Miyawaki A, Farquhar MG, Tsien RY: Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc. Natl Acad. Sci. USA95(12),6803–6808 (1998).
    • 176  Partikian A, Ölveczky B, Swaminathan R, Li Y, Verkman AS: Rapid diffusion of green fluorescent protein in the mitochondrial matrix. J. Cell Biol.140(4),821–829 (1998).
    • 177  Vaquero EC, Edderkaoui M, Pandol SJ, Gukovsky I, Gukovskaya AS: Reactive oxygen species produced by NAD(P)H oxidase inhibit apoptosis in pancreatic cancer cells. J. Biol. Chem.279,34643–34654 (2004).
    • 178  Mayevsky A, Rogatsky GG: Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies. Am. J. Physiol. Cell. Physiol.292,C615–C640 (2007).▪▪ Detailed review of NADH use to monitor in vivo mitochondrial function from animal models to human.
    • 179  Mayevsky A, Barbiro-Michaely E: Use of NADH fluorescence to determine mitochondrial function in vivo.Int. J. Biochem. Cell Biol.41(10),1977–1988 (2009).
    • 180  Masters BR, So PTC: Confocal microscopy and multi-photon excitation microscopy of human skin in vivo.Opt. Express8(1),1–10 (2001).
    • 181  Brecht M, Fee MS, Garaschuk O et al.: Novel approaches to monitor and manipulate single neurons in vivo.J. Neurosci.24(42),9223–9227 (2004).
    • 182  Helmchen F, Denk W: Deep tissue two-photon microscopy. Nat. Methods2,932–940 (2005).
    • 183  Jung JC, Mehta AD, Aksay E, Stepnoski R, Schnitzer MJ: In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy. J. Neurophysiol.92,3121–3133 (2004).
    • 184  Lin SX, Maxfield FR: Fluorescence imaging in living animals. Focus on uptake and trafficking of fluorescent conjugates of folic acid in intact kidney determined using intravital two-photon microscopy. Am. J. Physiol. Cell Physiol.287(2),C257–C259 (2004).
    • 185  Atkinson RJ, Shorthouse AJ, Hurlstone DP: Novel colorectal endoscopic in vivo imaging and resection practice: a short practice guide for interventional endoscopists. Tech. Coloproctol.11(1),7–16 (2007).
    • 186  Kasimova MR, Grigiene J, Krab K et al.: The free NADH concentration is kept constant in plant mitochondria under different metabolic conditions. Plant Cell18,688–698 (2006).
    • 187  Sandoval FJ, Zhang Y, Roje S: Flavin nucleotide metabolism in plants: monofunctional enzymes synthesize FAD plastids. J. Biol. Chem.283(45),30890–30900 (2008).