We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Molecular aspects of Dengue virus replication

    Ralf Bartenschlager

    Department of Molecular Virology, Im Neuenheimer Feld 345, University of Heidelberg, D-69120 Heidelberg, Germany.

    &
    Sven Miller

    † Author for correspondence

    3-V Biosciences, c/o Institute of Biochemistry, Schafmattstrasse 18, ETH Hoenggerberg HPME 17, CH-8093 Zurich, Switzerland.

    Published Online:https://doi.org/10.2217/17460913.3.2.155

    Dengue virus (DENV) – a mosquito transmitted pathogen – is the causative agent of Dengue fever, the most important arboviral disease of humans, which affects an estimated 50–100 million people annually. Despite the high morbidity and mortality associated with DENV infections, an effective DENV vaccine and antiviral therapies are still missing. An improved understanding of the molecular mechanisms underlying the different steps of the DENV replication cycle, for example, genome replication and virus maturation, could help to develop such substances. Over the past several years, many important findings have been published with respect to a better understanding of DENV replication. In this review we will highlight recent insights into the molecular mechanisms of the viral replication cycle.

    Papers of special note have been highlighted as either of interest (•) or of considerable interest (••) to readers.

    Bibliography

    • Gubler DJ: Epidemic Dengue/Dengue hemorrhagic fever as a public health, social and economic problem in the 21st Century. Trends Microbiol.10,100–103 (2002).
    • Mackenzie JS, Gubler DJ, Petersen LR: Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and Dengue viruses. Nat. Med.10,S98–S109 (2004).
    • Cleaves GR, Dubin DT: Methylation status of intracellular Dengue type 2 40 S RNA. Virology96,159–165 (1979).
    • Clyde K, Kyle JL, Harris E: Recent advances in deciphering viral and host determinants of Dengue virus replication and pathogenesis. J. Virol.80,11418–11431 (2006).
    • Halstead SB: Dengue. Lancet370,1644–1652 (2007).
    • Rico-Hesse R: Microevolution and virulence of Dengue viruses. Adv. Virus Res.59,315–341 (2003).
    • Weaver SC, Barrett AD: Transmission cycles, host range, evolution and emergence of arboviral disease. Nat. Rev. Microbiol.2,789–801 (2004).
    • Whitehead SS, Blaney JE, Durbin AP, Murphy BR: Prospects for a Dengue virus vaccine. Nat. Rev. Microbiol.5,518–528 (2007).
    • Anderson R: Manipulation of cell surface macromolecules by flaviviruses. Adv. Virus Res.59,229–274 (2003).
    • 10  Chen YC, Wang SY, King CC: Bacterial lipopolysaccharide inhibits Dengue virus infection of primary human monocytes/macrophages by blockade of virus entry via a CD14-dependent mechanism. J. Virol.73,2650–2657 (1999).
    • 11  Jindadamrongwech S, Thepparit C, Smith DR: Identification of GRP 78 (BiP) as a liver cell expressed receptor element for Dengue virus serotype 2. Arch. Virol.149,915–927 (2004).
    • 12  Lozach PY, Burleigh L, Staropoli I et al.: Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN)-mediated enhancement of Dengue virus infection is independent of DC-SIGN internalization signals. J. Biol. Chem.280,23698–23708 (2005).
    • 13  Navarro-Sanchez E, Altmeyer R, Amara A et al.: Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived Dengue viruses. EMBO Rep.4,723–728 (2003).•• Data show that dendritic cell-specific ICAM3-grabbing nonintegrin functions as a Dengue virus-binding lectin by interacting with the Dengue virus envelope.
    • 14  Reyes-Del Valle J, Chavez-Salinas S, Medina F, Del Angel RM: Heat shock protein 90 and heat shock protein 70 are components of Dengue virus receptor complex in human cells. J. Virol.79,4557–4567 (2005).
    • 15  Salas-Benito J, Valle JR, Salas-Benito M, Ceballos-Olvera I, Mosso C, Del Angel RM: Evidence that the 45-kD glycoprotein, part of a putative Dengue virus receptor complex in the mosquito cell line C6/36, is a heat-shock related protein. Am. J. Trop. Med. Hyg.77,283–290 (2007).
    • 16  Thepparit C, Smith DR: Serotype-specific entry of Dengue virus into liver cells: identification of the 37-kilodalton/67-kilodalton high-affinity laminin receptor as a Dengue virus serotype 1 receptor. J. Virol.78,12647–12656 (2004).
    • 17  Cahour A, Pletnev A, Vazielle-Falcoz M, Rosen L, Lai CJ: Growth-restricted Dengue virus mutants containing deletions in the 5´ noncoding region of the RNA genome. Virology207,68–76 (1995).
    • 18  Deas TS, Binduga-Gajewska I, Tilgner M et al.: Inhibition of flavivirus infections by antisense oligomers specifically suppressing viral translation and RNA replication. J. Virol.79,4599–4609 (2005).
    • 19  Kinney RM, Huang CY, Rose BC et al.: Inhibition of Dengue virus serotypes 1 to 4 in vero cell cultures with morpholino oligomers. J. Virol.79,5116–5128 (2005).
    • 20  Yu L, Markoff L: The topology of bulges in the long stem of the flavivirus 3´ stem-loop is a major determinant of RNA replication competence. J. Virol.79,2309–2324 (2005).
    • 21  Alvarez DE, Lodeiro MF, Luduena SJ, Pietrasanta LI, Gamarnik AV: Long-range RNA–RNA interactions circularize the Dengue virus genome. J. Virol.79,6631–6643 (2005).•• Visualization of cyclization of individual Dengue virus RNA molecules by atomic force microscopy.
    • 22  Khromykh AA, Meka H, Guyatt KJ, Westaway EG: Essential role of cyclization sequences in flavivirus RNA replication. J. Virol.75,6719–6728 (2001).
    • 23  Men R, Bray M, Clark D, Chanock RM, Lai CJ: Dengue type 4 virus mutants containing deletions in the 3´ noncoding region of the RNA genome: analysis of growth restriction in cell culture and altered viremia pattern and immunogenicity in rhesus monkeys. J. Virol.70,3930–3937 (1996).
    • 24  Tajima S, Nukui Y, Ito M, Takasaki T, Kurane I: Nineteen nucleotides in the variable region of 3´ non-translated region are dispensable for the replication of Dengue type 1 virus in vitro. Virus Res.116,38–44 (2006).
    • 25  Leitmeyer KC, Vaughn DW, Watts DM et al.: Dengue virus structural differences that correlate with pathogenesis. J. Virol.73,4738–4747 (1999).
    • 26  Amberg SM, Nestorowicz A, McCourt DW, Rice CM: NS2B-3 proteinase-mediated processing in the yellow fever virus structural region: in vitro and in vivo studies. J. Virol.68,3794–3802 (1994).
    • 27  Cahour A, Falgout B, Lai CJ: Cleavage of the Dengue virus polyprotein at the NS3/NS4A and NS4B/NS5 junctions is mediated by viral protease NS2B-NS3, whereas NS4A/NS4B may be processed by a cellular protease. J. Virol.66,1535–1542 (1992).
    • 28  Falgout B, Pethel M, Zhang YM, Lai CJ: Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of Dengue virus nonstructural proteins. J. Virol.65,2467–2475 (1991).
    • 29  Zhang L, Mohan PM, Padmanabhan R: Processing and localization of Dengue virus type 2 polyprotein precursor NS3-NS4A-NS4B-NS5. J. Virol.66,7549–7554 (1992).•• Describes processing of Dengue virus type 2 polyprotein precursor NS3-NS4A-NS4B-NS5.
    • 30  Egloff MP, Benarroch D, Selisko B, Romette JL, Canard B: An RNA cap (nucleoside-2´-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. Embo. J.21,2757–2768 (2002).•• Crystal structure of an N-terminal fragment of Dengue virus type 2 NS5 at 2.4 Å resolution.
    • 31  Egloff MP, Decroly E, Malet H et al.: Structural and functional analysis of methylation and 5´-RNA sequence requirements of short capped RNAs by the methyltransferase domain of Dengue virus NS5. J. Mol. Biol.372(3),723–736 (2007).
    • 32  Nomaguchi M, Ackermann M, Yon C, You S, Padmanabhan R: De novo synthesis of negative-strand RNA by Dengue virus RNA-dependent RNA polymerase in vitro: nucleotide, primer, and template parameters. J. Virol.77,8831–8842 (2003).
    • 33  Tan BH, Fu J, Sugrue RJ, Yap EH, Chan YC, Tan YH: Recombinant Dengue type 1 virus NS5 protein expressed in Escherichia coli exhibits RNA-dependent RNA polymerase activity. Virology216,317–325 (1996).
    • 34  Bartelma G, Padmanabhan R: Expression, purification, and characterization of the RNA 5´-triphosphatase activity of Dengue virus type 2 nonstructural protein 3. Virology299,122–132 (2002).
    • 35  Gorbalenya AE, Donchenko AP, Koonin EV, Blinov VM: N-terminal domains of putative helicases of flavi- and pestiviruses may be serine proteases. Nucleic Acids Res.17,3889–3897 (1989).
    • 36  Gorbalenya AE, Koonin EV, Donchenko AP, Blinov VM: Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res.17,4713–4730 (1989).
    • 37  Li H, Clum S, You S, Ebner KE, Padmanabhan R: The serine protease and RNA-stimulated nucleoside triphosphatase and RNA helicase functional domains of Dengue virus type 2 NS3 converge within a region of 20 amino acids. J. Virol.73,3108–3116 (1999).
    • 38  Warrener P, Tamura JK, Collett MS: RNA-stimulated NTPase activity associated with yellow fever virus NS3 protein expressed in bacteria. J. Virol.67,989–996 (1993).
    • 39  Wengler G: The NS 3 nonstructural protein of flaviviruses contains an RNA triphosphatase activity. Virology197,265–273 (1993).
    • 40  Lindenbach BD, Rice CM: Trans-complementation of yellow fever virus NS1 reveals a role in early RNA replication. J. Virol.71,9608–9617 (1997).
    • 41  Lindenbach BD, Rice CM: Genetic interaction of flavivirus nonstructural proteins NS1 and NS4A as a determinant of replicase function. J. Virol.73,4611–4621 (1999).
    • 42  Muylaert IR, Galler R, Rice CM: Genetic analysis of the yellow fever virus NS1 protein: identification of a temperature-sensitive mutation which blocks RNA accumulation. J. Virol.71,291–298 (1997).
    • 43  Falconar AK: The Dengue virus nonstructural-1 protein (NS1) generates antibodies to common epitopes on human blood clotting, integrin/adhesin proteins and binds to human endothelial cells: potential implications in haemorrhagic fever pathogenesis. Arch. Virol.142,897–916 (1997).
    • 44  Chambers TJ, McCourt DW, Rice CM: Yellow fever virus proteins NS2A, NS2B, and NS4B: identification and partial N-terminal amino acid sequence analysis. Virology169,100–109 (1989).
    • 45  Munoz-Jordan JL, Laurent-Rolle M, Ashour J et al.: Inhibition of α/β interferon signaling by the NS4B protein of flaviviruses. J. Virol.79,8004–8013 (2005).•• Demonstrates that several Dengue virus nonstructural proteins – particularly NS4B – have the ability to block the interferon response of infected host cells.
    • 46  Munoz-Jordan JL, Sanchez-Burgos GG, Laurent-Rolle M, Garcia-Sastre A: Inhibition of interferon signaling by Dengue virus. Proc. Natl Acad. Sci. USA100,14333–14338 (2003).•• Demonstrates that several Dengue virus nonstructural proteins – particularly NS4B – have the ability to block the interferon response of infected host cells.
    • 47  Miller S, Kastner S, Krijnse-Locker J, Buhler S, Bartenschlager R: The non-structural protein 4A of Dengue virus is an integral membrane protein inducing membrane alterations in a 2K-regulated manner. J. Biol. Chem.282,8873–8882 (2007).
    • 48  Roosendaal J, Westaway EG, Khromykh A, Mackenzie JM: Regulated cleavages at the West Nile virus NS4A-2K-NS4B junctions play a major role in rearranging cytoplasmic membranes and golgi trafficking of the NS4A protein. J. Virol.80,4623–4632 (2006).
    • 49  Miller S, Sparacio S, Bartenschlager R: Subcellular localization and membrane topology of the Dengue virus type 2 non-structural protein 4B. J. Biol. Chem.281(13),8854 (2006).
    • 50  Umareddy I, Chao A, Sampath A, Gu F, Vasudevan SG: Dengue virus NS4B interacts with NS3 and dissociates it from single-stranded RNA. J. Gen. Virol.87,2605–2614 (2006).
    • 51  Travanty EA, Adelman ZN, Franz AW et al.: Using RNA interference to develop Dengue virus resistance in genetically modified Aedes aegypti. Insect Biochem. Mol. Biol.34,607–613 (2004).
    • 52  Mackenzie J: Wrapping things up about virus RNA replication. Traffic6,967–977 (2005).•• Provides a concise summary of what is known regarding flavivirus-induced membrane rearrangements.
    • 53  Westaway EG, Mackenzie JM, Khromykh AA: Kunjin RNA replication and applications of Kunjin replicons. Adv. Virus Res.59,99–140 (2003).
    • 54  Mackenzie JM, Jones MK, Young PR: Improved membrane preservation of flavivirus-infected cells with cryosectioning. J. Virol. Methods56,67–75 (1996).
    • 55  Hahn CS, Hahn YS, Rice CM et al.: Conserved elements in the 3´ untranslated region of flavivirus RNAs and potential cyclization sequences. J. Mol. Biol.198,33–41 (1987).
    • 56  You S, Falgout B, Markoff L, Padmanabhan R: In vitro RNA synthesis from exogenous Dengue viral RNA templates requires long range interactions between 5´- and 3´-terminal regions that influence RNA structure. J. Biol. Chem.276,15581–15591 (2001).
    • 57  Filomatori CV, Lodeiro MF, Alvarez DE, Samsa MM, Pietrasanta L, Gamarnik AV: A 5´ RNA element promotes Dengue virus RNA synthesis on a circular genome. Genes Dev.20,2238–2249 (2006).•• Identification of the first promoter element for RNA synthesis described in a flavivirus.
    • 58  Blackwell JL, Brinton MA: Translation elongation factor-1 α interacts with the 3´ stem-loop region of West Nile virus genomic RNA. J. Virol.71,6433–6444 (1997).
    • 59  Chiou CT, Hu CC, Chen PH, Liao CL, Lin YL, Wang JJ: Association of Japanese encephalitis virus NS3 protein with microtubules and tumour susceptibility gene 101 (TSG101) protein. J. Gen. Virol.84,2795–2805 (2003).
    • 60  Yocupicio-Monroy M, Padmanabhan R, Medina F, Del Angel R: Mosquito La protein binds to the 3´ untranslated region of the positive and negative polarity Dengue virus RNAs and relocates to the cytoplasm of infected cells. Virology357,29–40 (2007).
    • 61  Chu JJ, Yang PL: c-Src protein kinase inhibitors block assembly and maturation of Dengue virus. Proc. Natl Acad. Sci. USA104,3520–3525 (2007).•• Describes an immunofluorescence image-based screening assay suitable for identification of small molecule inhibitors of Dengue virus infection and replication.
    • 62  Kapoor M, Zhang L, Ramachandra M, Kusukawa J, Ebner KE, Padmanabhan R: Association between NS3 and NS5 proteins of Dengue virus type 2 in the putative RNA replicase is linked to differential phosphorylation of NS5. J. Biol. Chem.270,19100–19106 (1995).
    • 63  Buckley A, Gaidamovich S, Turchinskaya A, Gould EA: Monoclonal antibodies identify the NS5 yellow fever virus non-structural protein in the nuclei of infected cells. J. Gen. Virol.73(Pt 5),1125–1130 (1992).
    • 64  Jans DA, Xiao CY, Lam MH: Nuclear targeting signal recognition: a key control point in nuclear transport? Bioessays22,532–544 (2000).
    • 65  Brooks AJ, Johansson M, John AV, Xu Y, Jans DA, Vasudevan SG: The interdomain region of Dengue NS5 protein that binds to the viral helicase NS3 contains independently functional importin β 1 and importin α/β-recognized nuclear localization signals. J. Biol. Chem.277,36399–36407 (2002).
    • 66  Pryor MJ, Rawlinson SM, Wright PJ, Jans DA: CRM1-dependent nuclear export of Dengue virus type 2 NS5. Novartis Found Symp.277,149–161; discussion 161–163, 251–253 (2006).
    • 67  Pryor MJ, Rawlinson SM, Butcher RE et al.: Nuclear localization of Dengue virus nonstructural protein 5 through its importin α/β-recognized nuclear localization sequences is integral to viral infection. Traffic8,795–807 (2007).•• Importance of the kinetics of NS5 nuclear localization to virus production is demonstrated for the first time and the responsible nuclear localization sequence is described.
    • 68  Bulich R, Aaskov JG: Nuclear localization of Dengue 2 virus core protein detected with monoclonal antibodies. J. Gen. Virol.73(Pt 11),2999–3003 (1992).
    • 69  Tadano M, Makino Y, Fukunaga T, Okuno Y, Fukai K: Detection of Dengue 4 virus core protein in the nucleus. I. A monoclonal antibody to Dengue 4 virus reacts with the antigen in the nucleus and cytoplasm. J. Gen. Virol.70(Pt 6),1409–1415 (1989).
    • 70  Tsuda Y, Mori Y, Abe T et al.: Nucleolar protein B23 interacts with Japanese encephalitis virus core protein and participates in viral replication. Microbiol. Immunol.50,225–234 (2006).
    • 71  Wang SH, Syu WJ, Huang KJ et al.: Intracellular localization and determination of a nuclear localization signal of the core protein of Dengue virus. J. Gen. Virol.83,3093–3102 (2002).
    • 72  Chang CJ, Luh HW, Wang SH, Lin HJ, Lee SC, Hu ST: The heterogeneous nuclear ribonucleoprotein K (hnRNP K) interacts with Dengue virus core protein. DNA Cell Biol.20,569–577 (2001).
    • 73  Uchil PD, Kumar AV, Satchidanandam V: Nuclear localization of flavivirus RNA synthesis in infected cells. J. Virol.80,5451–5464 (2006).
    • 101  World Health Organization. Dengue and dengue haemorrhagic fever. www.who.int/mediacentre/factsheets/fs117/en/