We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Regulation of virulence in Vibrio cholerae: the ToxR regulon

    Brandon M Childers

    Department of Microbiology & Immunology, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.

    &
    Karl E Klose

    † Author for correspondence

    University of Texas at San Antonio, South Texas Center for Emerging Infectious Diseases & Dept of Biology, One UTSA Circle, San Antonio, TX 78249, USA.

    Published Online:https://doi.org/10.2217/17460913.2.3.335

    Vibrio cholerae is a gram-negative bacterium that is the causative agent of cholera. This disease consists of enormous fluid loss through stools, which can be fatal. Cholera epidemics appear in explosive outbreaks that have occurred repeatedly throughout history. The virulence factors toxin coregulated pilus (TCP) and cholera toxin (CT) are essential for colonization of the host and enterotoxicity, respectively. These virulence factors are under the control of ToxT, an AraC/XylS family protein that activates transcription of the genes encoding TCP and CT. ToxT is under the control of a virulence regulatory cascade known as the ToxR regulon, which responds to environmental stimuli to ensure maximal virulence-factor induction within the human intestine. An understanding of this intricate signaling pathway is essential for the development of methods to treat and prevent this devastating disease.

    Bibliography

    • Chen LF, Woolley IJ, Visvanathan K, Korman TM: Hypovolemic shock and metabolic acidosis in a refugee secondary to O1 serotype Vibrio cholerae enteritis. Commun. Dis. Intell.30(2),233–235 (2006).
    • Wang F, Butler T, Rabbani GH, Jones PK: The acidosis of cholera. Contributions of hyperproteinemia, lactic acidemia, and hyperphosphatemia to an increased serum anion gap. N. Engl. J. Med.315(25),1591–1595 (1986).
    • Sanyal SC: Cholera in its present day scenario. J. Indian Med. Assoc.98(7),371–376 (2000).
    • Ries AA, Vugia DJ, Beingolea L et al.: Cholera in Piura, Peru: a modern urban epidemic. J. Infect. Dis.166(6),1429–1433 (1992).
    • Barua D, Greenough WB: Cholera. Plenum Medical Book Co. NY, USA (1992).
    • Rosenberg CE: The Cholera Years; the United States in 1832, 1849, and 1866. Univ. of Chicago Press, Chicago, USA (1962).
    • Ramamurthy T, Garg S, Sharma R et al.: Emergence of novel strain of Vibrio cholerae with epidemic potential in southern and eastern India. Lancet341,703–704 (1993).
    • Research ICfDD: Large epidemic of cholera-like disease in Bangladesh caused by Vibrio cholerae O139 synonym Bengal. Cholera Working Group, International Centre for Diarrhoeal Diseases Research, Bangladesh. Lancet342,387–390 (1993).
    • Redmond JW: The structure of the O-antigenic side chain of the lipopolysaccharide of Vibrio cholerae 569B (Inaba). Biochim. Biophys. Acta584(2),346–352 (1979).
    • 10  Kenne L, Lindberg B, Unger P, Gustafsson B, Holme T: Structural studies of the Vibrio cholerae O-antigen. Carbohydr. Res.100,341–349 (1982).
    • 11  Roy C, Mukerjee S: Variability in the haemolytic property of El Tor vibrios. Ann. Biochem. Exp. Med.22,295–296 (1962).
    • 12  Feeley JC: Classification of Vibrio cholerae (Vibrio comma), including el tor Vibrios, by infrasubspecific characteristics. J. Bacteriol.89,665–670 (1965).
    • 13  Barrett TJ, Blake PA: Epidemiological usefulness of changes in hemolytic activity of Vibrio cholerae biotype El Tor during the seventh pandemic. J. Clin. Microbiol.13(1),126–129 (1981).
    • 14  Dziejman M, Balon E, Boyd D, Fraser CM, Heidelberg JF, Mekalanos JJ: Comparative genomic analysis of Vibrio cholerae: genes that correlate with cholera endemic and pandemic disease. Proc. Natl Acad. Sci. USA99(3),1556–1561 (2002).
    • 15  Higa N, Honma Y, Albert MJ, Iwanaga M: Characterization of Vibrio cholerae O139 synonym Bengal isolated from patients with cholera-like disease in Bangladesh. Microbiol. Immunol.37(12),971–974 (1993).
    • 16  Prager R, Beer W, Voigt W et al.: Genomic and biochemical relatedness between Vibrio cholerae serovar O139 and serovar O1 eltor strains. Zentralbl Bakteriol283(1),14–28 (1995).
    • 17  Knirel YA, Paredes L, Jansson PE, Weintraub A, Widmalm G, Albert MJ: Structure of the capsular polysaccharide of Vibrio cholerae O139 synonym Bengal containing D-galactose4,6-cyclophosphate. Eur. J. Biochem.232(2),391–396 (1995).
    • 18  Knirel YA, Widmalm G, Senchenkova SN, Jansson PE, Weintraub A: Structural studies on the short-chain lipopolysaccharide of Vibrio cholerae O139 Bengal. Eur. J. Biochem.247(1),402–410 (1997).
    • 19  DePaola A: Vibrio cholerae in marine foods and environmental waters: a literature review. J. Food Sci.46,66–70 (1981).
    • 20  Hornick RB, Music SI, Wenzel R et al.: The Broad Street pump revisited: response of volunteers to ingested cholera vibrios. Bull. NY Acad. Med.47(10),1181–1191 (1971).
    • 21  Sack DA, Tacket CO, Cohen MB et al.: Validation of a volunteer model of cholera with frozen bacteria as the challenge. Infect. Immun.66(5),1968–1972 (1998).
    • 22  Holmgren J, Svennerholm AM: Mechanisms of disease and immunity in cholera: a review. J. Infect. Dis.136(Suppl.) S105–S112 (1977).
    • 23  Taylor RK, Miller VL, Furlong DB, Mekalanos JJ: Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc. Natl Acad. Sci. USA84(9),2833–2837 (1987).
    • 24  Koch R, Carter KC: Essays of Robert Koch. Greenwood Press, NY, USA (1987).
    • 25  De SN, Chatterje DN: An experimental study of the mechanism of action of Vibrioid cholerae on the intestinal mucous membrane. J. Pathol. Bacteriol.66,559–562 (1953).
    • 26  Dutta NK, Habbu MK: Experimental cholera in infant rabbits: a method for chemotherapeutic investifation. Br. J. Pharmacol.10,209–221 (1955).
    • 27  Finkelstein RA, LoSpalluto JJ: Pathogenesis of experimental cholera. Preparation and isolation of choleragen and choleragenoid. J. Exp. Med.130(1),185–202 (1969).
    • 28  King CA, Van Heyningen WE: Deactivation of cholera toxin by a sialidase-resistant monosialosylganglioside. J. Infect. Dis.127(6),639–47 (1973).
    • 29  Gill DM, King CA: The mechanism of action of cholera toxin in pigeon erythrocyte lysates. J. Biol. Chem.250(16),6424–6432 (1975).
    • 30  Simons K, Ikonen E: Functional rafts in cell membranes. Nature387(6633),569–572 (1997).
    • 31  London E, Brown DA: Insolubility of lipids in triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts). Biochim. Biophys. Acta1508(1–2),182–195 (2000).
    • 32  Gill DM, Rappaport RS: Origin of the enzymatically active A1 fragment of cholera toxin. J. Infect. Dis.139(6),674–680 (1979).
    • 33  Majoul I, Sohn K, Wieland FT et al.: KDEL receptor (Erd2p)-mediated retrograde transport of the cholera toxin A subunit from the Golgi involves COPI, p23, and the COOH terminus of Erd2p. J. Cell Biol.143(3),601–612 (1998).
    • 34  Majoul IV, Bastiaens PI, Soling HD: Transport of an external Lys-Asp-Glu-Leu (KDEL) protein from the plasma membrane to the endoplasmic reticulum: studies with cholera toxin in Vero cells. J. Cell Biol.133(4),777–789 (1996).
    • 35  Richards AA, Stang E, Pepperkok R, Parton RG: Inhibitors of COP-mediated transport and cholera toxin action inhibit simian virus 40 infection. Mol. Biol. Cell.13(5),1750–64 (2002).
    • 36  Teter K, Holmes RK: Inhibition of endoplasmic reticulum-associated degradation in CHO cells resistant to cholera toxin, Pseudomonas aeruginosa exotoxin A, and ricin. Infect. Immun.70(11),6172–6179 (2002).
    • 37  Dickinson BL, Lencer WI: Trancytosis of bacterial toxins across mucosal barriers. In: Bacterial Protein Toxins. Burns DL, Iglewski BH, Rappouli R (Eds). ASM Press, Washington DC, USA 173–186 (2003).
    • 38  Mekalanos JJ, Collier RJ, Romig WR: Enzymic activity of cholera toxin. I. New method of assay and the mechanism of ADP-ribosyl transfer. J. Biol. Chem.254(13),5849–5854 (1979).
    • 39  Field M: Mechanisms of action of cholera and Escherichia coli enterotoxins. Am. J. Clin. Nutr.32(1),189–196 (1979).
    • 40  Jodal M, Lungren O: Enterotoxin-induced fluid secretion and the enteric nervous system. In: Development of Vaccines and Drugs against Diarrhea. Holmgren JAL, Molby R (Eds). Student litteratur, Lund, Sweden 278 (1985).
    • 41  Field M, Fromm D, Wallace CK, Greenough WB: Stimulation of active chloride secretion in small intestine by cholera exotoxin. J. Clin. Invest.48,24a (1965).
    • 42  Waldor MK, Mekalanos JJ: Lysogenic conversion by a filamentous phage encoding cholera toxin. Science272(5270),1910–1914 (1996).
    • 43  Kaper JB, Moseley SL, Falkow S: Molecular characterization of environmental and nontoxigenic strains of Vibrio cholerae. Infect. Immun.32(2),661–667 (1981).
    • 44  Mukhopadhyay AK, Chakraborty S, Takeda Y, Nair GB, Berg DE: Characterization of VPI pathogenicity island and CTXφ prophage in environmental strains of Vibrio cholerae. J. Bacteriol.183(16),4737–4746 (2001).
    • 45  Davis BM, Kimsey HH, Chang W, Waldor MK: The Vibrio cholerae O139 Calcutta bacteriophage CTXφ is infectious and encodes a novel repressor. J. Bacteriol.181(21),6779–6787 (1999).
    • 46  Shaw CE, Taylor RK: Vibrio cholerae O395 tcpA pilin gene sequence and comparison of predicted protein structural features to those of type 4 pilins. Infect. Immun.58(9),3042–3049 (1990).
    • 47  Manning PA: The tcp gene cluster of Vibrio cholerae. Gene192(1),63–70 (1997).
    • 48  Karaolis DK, Johnson JA, Bailey CC, Boedeker EC, Kaper JB, Reeves PR: A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc. Natl Acad. Sci. USA95(6),3134–3139 (1998).
    • 49  Karaolis DK, Somara S, Maneval DR Jr, Johnson JA, Kaper JB: A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria. Nature399(6734),375–379 (1999).
    • 50  Faruque SM, Zhu J, Asadulghani, Kamruzzaman M, Mekalanos JJ: Examination of diverse toxin-coregulated pilus-positive Vibrio cholerae strains fails to demonstrate evidence for Vibrio pathogenicity island phage. Infect. Immun.71(6),2993–2999 (2003).
    • 51  Rajanna C, Wang J, Zhang D, Xu Z, Ali A, Hou YM et al.: The vibrio pathogenicity island of epidemic Vibrio cholerae forms precise extrachromosomal circular excision products. J. Bacteriol.185(23),6893–6901 (2003).
    • 52  Herrington DA, Hall RH, Losonsky G, Mekalanos JJ, Taylor RK, Levine MM: Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J. Exp. Med.168(4),1487–1492 (1988).
    • 53  Kirn TJ, Lafferty MJ, Sandoe CM, Taylor RK: Delineation of pilin domains required for bacterial association into microcolonies and intestinal colonization by Vibrio cholerae. Mol. Microbiol.35(4),896–910 (2000).
    • 54  Kirn TJ, Bose N, Taylor RK: Secretion of a soluble colonization factor by the TCP type 4 pilus biogenesis pathway in Vibrio cholerae. Mol. Microbiol.49(1),81–92 (2003).
    • 55  Peterson KM, Mekalanos JJ: Characterization of the Vibrio cholerae ToxR regulon: identification of novel genes involved in intestinal colonization. Infect. Immun.56(11),2822–2829 (1988).
    • 56  Everiss KD, Hughes KJ, Kovach ME, Peterson KM: The Vibrio cholerae ACFb colonization determinant encodes an inner membrane protein that is related to a family of signal-transducing proteins. Infect. Immun.62(8),3289–3298 (1994).
    • 57  Miller VL, Mekalanos JJ: Synthesis of cholera toxin is positively regulated at the transcriptional level by toxR. Proc. Natl Acad. Sci. USA81(11),3471–3475 (1984).
    • 58  Miller VL, Mekalanos JJ: Genetic analysis of the cholera toxin-positive regulatory gene toxR. J. Bacteriol.163(2),580–5 (1985).
    • 59  Higgins DE, Nazareno E, DiRita VJ: The virulence gene activator ToxT from Vibrio cholerae is a member of the AraC family of transcriptional activators. J. Bacteriol.174(21),6974–6980 (1992).
    • 60  DiRita VJ, Parsot C, Jander G, Mekalanos JJ: Regulatory cascade controls virulence in Vibrio cholerae. Proc. Natl Acad. Sci. USA88(12),5403–5407 (1991).
    • 61  Bina J, Zhu J, Dziejman M, Faruque S, Calderwood S, Mekalanos J: ToxR regulon of Vibrio cholerae and its expression in vibrios shed by cholera patients. Proc. Natl Acad. Sci. USA100(5),2801–2806 (2003).
    • 62  Yu RR, DiRita VJ: Analysis of an autoregulatory loop controlling ToxT, cholera toxin, and toxin-coregulated pilus production in Vibrio cholerae. J. Bacteriol.181(8),2584–2592 (1999).
    • 63  Champion GA, Neely MN, Brennan MA, DiRita VJ: A branch in the ToxR regulatory cascade of Vibrio cholerae revealed by characterization of toxT mutant strains. Mol. Microbiol.23(2),323–331 (1997).
    • 64  Withey JH, DiRita VJ: The toxbox: specific DNA sequence requirements for activation of Vibrio cholerae virulence genes by ToxT. Mol. Microbiol.59(6),1779–1789 (2006).
    • 65  Hsiao A, Liu Z, Joelsson A, Zhu J: Vibrio cholerae virulence regulator-coordinated evasion of host immunity. Proc. Natl Acad. Sci. USA103(39),14542–14547 (2006).
    • 66  Prouty MG, Osorio CR, Klose KE: Characterization of functional domains of the Vibrio cholerae virulence regulator ToxT. Mol. Microbiol.58(4),1143–1156 (2005).
    • 67  Childers BM, Weber GG, Prouty MG, Castaneda MM, Peng F, Klose KE: Identification of residues critical for the function of the Vibrio cholerae virulence regulator ToxT by scanning alanine mutagenesis. J. Mol. Biol.367(5),1413–1430 (2007).
    • 68  Hung DT, Shakhnovich EA, Pierson E, Mekalanos JJ: Small-molecule inhibitor of Vibrio cholerae virulence and intestinal colonization. Science310(5748),670–674 (2005).
    • 69  Shakhnovich EA, Hung DT, Pierson E, Lee K, Mekalanos JJ: Virstatin inhibits dimerization of the transcriptional activator ToxT. Proc. Natl Acad. Sci. USA104(7),2372–2377 (2007).
    • 70  Schuhmacher DA, Klose KE: Environmental signals modulate ToxT-dependent virulence factor expression in Vibrio cholerae. J. Bacteriol.181(5),1508–1514 (1999).
    • 71  Gupta S, Chowdhury R: Bile affects production of virulence factors and motility of Vibrio cholerae. Infect. Immun.65(3),1131–1134 (1997).
    • 72  Lee SH, Hava DL, Waldor MK, Camilli A: Regulation and temporal expression patterns of Vibrio cholerae virulence genes during infection. Cell99(6),625–634 (1999).
    • 73  Tischler AD, Camilli A: Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Mol. Microbiol.53(3),857–869 (2004).
    • 74  Tischler AD, Camilli A: Cyclic diguanylate regulates Vibrio cholerae virulence gene expression. Infect. Immun.73(9),5873–5882 (2005).
    • 75  Hase CC, Mekalanos JJ: TcpP protein is a positive regulator of virulence gene expression in Vibrio cholerae. Proc. Natl Acad. Sci. USA95(2),730–734 (1998).
    • 76  Krukonis ES, Yu RR, Dirita VJ: The Vibrio cholerae ToxR/TcpP/ToxT virulence cascade: distinct roles for two membrane-localized transcriptional activators on a single promoter. Mol. Microbiol.38(1),67–84 (2000).
    • 77  Miller VL, Taylor RK, Mekalanos JJ: Cholera toxin transcriptional activator toxR is a transmembrane DNA binding protein. Cell48(2),271–279 (1987).
    • 78  Martinez-Hackert E, Stock AM: Structural relationships in the OmpR family of winged-helix transcription factors. J. Mol. Biol.269(3),301–312 (1997).
    • 79  Murley YM, Carroll PA, Skorupski K, Taylor RK, Calderwood SB: Differential transcription of the tcpPH operon confers biotype-specific control of the Vibrio cholerae ToxR virulence regulon. Infect. Immun.67(10),5117–5123 (1999).
    • 80  Krukonis ES, DiRita VJ: DNA binding and ToxR responsiveness by the wing domain of TcpP, an activator of virulence gene expression in Vibrio cholerae. Mol. Cell12(1),157–165 (2003).
    • 81  Crawford JA, Krukonis ES, DiRita VJ: Membrane localization of the ToxR winged-helix domain is required for TcpP-mediated virulence gene activation in Vibrio cholerae. Mol. Microbiol.47(5),1459–1473 (2003).
    • 82  DiRita VJ, Mekalanos JJ: Periplasmic interaction between two membrane regulatory proteins, ToxR and ToxS, results in signal transduction and transcriptional activation. Cell64(1),29–37 (1991).
    • 83  Pfau JD, Taylor RK: Mutations in toxR and toxS that separate transcriptional activation from DNA binding at the cholera toxin gene promoter. J. Bacteriol.180(17),4724–4733 (1998).
    • 84  Beck NA, Krukonis ES, DiRita VJ: TcpH influences virulence gene expression in Vibrio cholerae by inhibiting degradation of the transcription activator TcpP. J. Bacteriol.186(24),8309–8316 (2004).
    • 85  Matson JS, DiRita VJ: Degradation of the membrane-localized virulence activator TcpP by the YaeL protease in Vibrio cholerae. Proc. Natl Acad. Sci. USA102(45),16403–16408 (2005).
    • 86  Carroll PA, Tashima KT, Rogers MB, DiRita VJ, Calderwood SB: Phase variation in tcpH modulates expression of the ToxR regulon in Vibrio cholerae. Mol. Microbiol.25(6),1099–1111 (1997).
    • 87  DiRita VJ: Co-ordinate expression of virulence genes by ToxR in Vibrio cholerae. Mol. Microbiol.6(4),451–458 (1992).
    • 88  Lin Z, Kumagai K, Baba K, Mekalanos JJ, Nishibuchi M: Vibrio parahaemolyticus has a homolog of the Vibrio cholerae toxRS operon that mediates environmentally induced regulation of the thermostable direct hemolysin gene. J. Bacteriol.175(12),3844–3855 (1993).
    • 89  Reich KA, Schoolnik GK: The light organ symbiont Vibrio fischeri possesses a homolog of the Vibrio cholerae transmembrane transcriptional activator ToxR. J. Bacteriol.176(10),3085–3088 (1994).
    • 90  Provenzano D, Lauriano CM, Klose KE: Characterization of the role of the ToxR-modulated outer membrane porins OmpU and OmpT in Vibrio cholerae virulence. J. Bacteriol.183(12),3652–3662 (2001).
    • 91  Provenzano D, Klose KE: Altered expression of the ToxR-regulated porins OmpU and OmpT diminishes Vibrio cholerae bile resistance, virulence factor expression, and intestinal colonization. Proc. Natl Acad. Sci. USA97(18),10220–10224 (2000).
    • 92  Miller VL, Mekalanos JJ: A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J. Bacteriol.170(6),2575–2583 (1988).
    • 93  Crawford JA, Kaper JB, DiRita VJ: Analysis of ToxR-dependent transcription activation of ompU, the gene encoding a major envelope protein in Vibrio cholerae. Mol. Microbiol.29(1),235–246 (1998).
    • 94  Li CC, Merrell DS, Camilli A, Kaper JB: ToxR interferes with CRP-dependent transcriptional activation of ompT in Vibrio cholerae. Mol. Microbiol.43(6),1577–1589 (2002).
    • 95  Simonet VC, Basle A, Klose KE, Delcour AH: The Vibrio cholerae porins OmpU and OmpT have distinct channel properties. J. Biol. Chem.278(19),17539–17545 (2003).
    • 96  Duret G, Delcour AH: Deoxycholic acid blocks Vibrio cholerae OmpT but not OmpU porin. J. Biol. Chem.281(29),19899–19905 (2006).
    • 97  Merrell DS, Bailey C, Kaper JB, Camilli A: The ToxR-mediated organic acid tolerance response of Vibrio cholerae requires OmpU. J. Bacteriol.183(9),2746–2754 (2001).
    • 98  Mathur J, Waldor MK: The Vibrio cholerae ToxR-regulated porin OmpU confers resistance to antimicrobial peptides. Infect. Immun.72(6),3577–3583 (2004).
    • 99  Mathur J, Davis BM, Waldor MK: Antimicrobial peptides activate the Vibrio choleraesigma regulon through an OmpU-dependent signalling pathway. Mol. Microbiol. (2007).
    • 100  Hung DT, Mekalanos JJ: Bile acids induce cholera toxin expression in Vibrio cholerae in a ToxT-independent manner. Proc.  Natl Acad. Sci. USA102(8),3028–3033 (2005).
    • 101  Skorupski K, Taylor RK: A new level in the Vibrio cholerae ToxR virulence cascade: AphA is required for transcriptional activation of the tcpPH operon. Mol. Microbiol.31(3),763–771 (1999).
    • 102  Kovacikova G, Skorupski K: A Vibrio cholerae LysR homolog, AphB, cooperates with AphA at the tcpPH promoter to activate expression of the ToxR virulence cascade. J. Bacteriol.181(14),4250–4256 (1999).
    • 103  De Silva RS, Kovacikova G, Lin W, Taylor RK, Skorupski K, Kull FJ: Crystal structure of the virulence gene activator AphA from Vibrio cholerae reveals it is a novel member of the winged helix transcription factor superfamily. J. Biol. Chem.280(14),13779–13783 (2005).
    • 104  Kovacikova G, Lin W, Skorupski K: Vibrio cholerae AphA uses a novel mechanism for virulence gene activation that involves interaction with the LysR-type regulator AphB at the tcpPH promoter. Mol. Microbiol.53(1),129–142 (2004).
    • 105  Kovacikova G, Skorupski K: Differential activation of the tcpPH promoter by AphB determines biotype specificity of virulence gene expression in Vibrio cholerae. J. Bacteriol.182(11),3228–3238 (2000).
    • 106  Kovacikova G, Skorupski K: Regulation of virulence gene expression in Vibrio cholerae by quorum sensing: HapR functions at the aphA promoter. Mol. Microbiol.46(4),1135–1147 (2002).
    • 107  Kovacikova G, Skorupski K: Overlapping binding sites for the virulence gene regulators AphA, AphB and cAMP-CRP at the Vibrio cholerae tcpPH promoter. Mol. Microbiol.41(2),393–407 (2001).
    • 108  Zhu J, Miller MB, Vance RE, Dziejman M, Bassler BL, Mekalanos JJ: Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc. Natl Acad. Sci. USA99(5),3129–3134 (2002).
    • 109  Miller MB, Skorupski K, Lenz DH, Taylor RK, Bassler BL: Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell110(3),303–314 (2002).
    • 110  Lilley BN, Bassler BL: Regulation of quorum sensing in Vibrio harveyi by LuxO and sigma-54. Mol. Microbiol.36(4),940–954 (2000).
    • 111  Lenz DH, Mok KC, Lilley BN, Kulkarni RV, Wingreen NS, Bassler BL: The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell118(1), 69–82 (2004).
    • 112  Lenz DH, Miller MB, Zhu J, Kulkarni RV, Bassler BL: CsrA and three redundant small RNAs regulate quorum sensing in Vibrio cholerae. Mol. Microbiol.58(4),1186–202 (2005).
    • 113  Kovacikova G, Lin W, Skorupski K: Dual regulation of genes involved in acetoin biosynthesis and motility/biofilm formation by the virulence activator AphA and the acetate-responsive LysR-type regulator AlsR in Vibrio cholerae. Mol. Microbiol.57(2),420–433 (2005).
    • 114  Kovacikova G, Lin W, Skorupski K: The virulence activator AphA links quorum sensing to pathogenesis and physiology in Vibrio cholerae by repressing the expression of a penicillin amidase gene on the small chromosome. J. Bacteriol.185(16),4825–4836 (2003).
    • 115  Skorupski K, Taylor RK: Cyclic AMP and its receptor protein negatively regulate the coordinate expression of cholera toxin and toxin-coregulated pilus in Vibrio cholerae. Proc. Natl Acad. Sci. USA94(1),265–270 (1997).