We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Cell entry of dengue virus

    Eliana G Acosta

    Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Piso 4, 1428 Buenos Aires, Argentina.

    ,
    Laura B Talarico

    Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Piso 4, 1428 Buenos Aires, Argentina.

    &
    Elsa B Damonte

    † Author for correspondence

    Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Piso 4, 1428 Buenos Aires, Argentina.

    Published Online:https://doi.org/10.2217/17460794.3.5.471

    Dengue virus is an expanding public health problem in tropical and subtropical regions of the world, mainly owing to failure in the maintenance of control programs for the mosquito vector Aedes aegypti and increasing and unplanned urbanization. It has been estimated that over 50 million dengue virus infections of varying severity occur globally each year, making this virus the most significant mosquito-borne human pathogen. However, there is no specific antiviral therapy or vaccine for treatment or prevention. This review focuses on recent data describing the putative molecules and mechanisms involved in the complex process of dengue virus binding and entry into mosquito and mammalian cells in primary infections. Furthermore, the perspectives of these early events in the virus life cycle as a target for antidengue therapeutic strategies are also considered.

    Papers of special note have been highlighted as either of interest (•) or of considerable interest (••) to readers.

    Bibliography

    • Gubler DJ: Dengue and dengue hemorrhagic fever. Clin. Microbiol. Rev.11,480–496 (1998).
    • Kliks SC, Nisalak A, Brandt WE, Wahl L, Burke DS: Antibody-dependent enhancement of dengue virus growth in human monocytes as a risk factor for dengue hemorrhagic fever. Am. J. Trop. Med. Hyg.40,444–451 (1989).
    • Rothman AL: Dengue: defining protective versus pathologic immunity. J. Clin. Inv.113,946–951 (2004).
    • Gubler DJ: Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol.10,100–103 (2002).
    • Salas-Benito JS, del Angel RM: Identification of two surface proteins from C6/36 cells that bind dengue type 4 virus. J. Virol.71,7246–7252 (1997).
    • Salas-Benito J, Reyes-Del Valle J, Salas-Benito M, Ceballos-Olvera I, Mosso C, del Angel RM: Evidence that the 45-kD glycoprotein, part of a putative dengue virus receptor complex in the mosquito cell line C6/36, is a heat-shock related protein. Am. J. Trop. Med. Hyg.77,283–290 (2007).
    • Muñoz ML, Cisneros A, Cruz J, Das P, Tovar R, Ortega A: Putative dengue virus receptors from mosquito cells. FEMS Microbiol. Lett.168,251–258 (1998).
    • Chee H-Y, AbuBakar S: Identification of a 48 kDa tubulin or tubulin-like C6/36 mosquito cells protein that binds dengue virus 2 using mass spectrometry. Biochem. Biophys. Res. Commun.320,11–17 (2004).
    • Sakoonwatanyoo P, Boonsanay V, Smith DR: Growth and production of the dengue virus in C6/36 cells and identification of a laminin-binding protein as a candidate serotype 3 and 4 receptor protein. InterVirology49,161–172 (2006).
    • 10  Reyes-Del Valle J, Chavez-Salinas S, Medina F, Del Angel RM: Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J. Virol.79,4557–4567 (2005).
    • 11  Jindadamrongwech S, Thepparit C, Smith DR: Identification of GRP 78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2. Arch. Virol.149,915–927 (2004).
    • 12  Thepparit C, Smith DR: Serotype-specific entry of dengue virus into liver cells: identification of the 37-kilodalton/67-kilodalton high-affinity laminin receptor as a dengue virus serotype 1 receptor. J. Virol.78,12647–12656 (2004).
    • 13  Miller JL, Dewet BJ, Martinez-Pomares L et al.: The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog.4,e17(2008).
    • 14  Chen Y, Maguire T, Marks RM: Demonstration of binding of dengue virus envelope protein to target cells. J. Virol.70,8765–8772 (1996).
    • 15  Chen YC, Wang SY, King CC: Bacterial lipopolysaccharide inhibits dengue virus infection of primary human monocytes/macrophages by blockade of virus entry via a CD14-dependent mechanism. J. Virol.73,2650–2657 (1999).
    • 16  Navarro-Sanchez E, Altmeyer R, Amara A et al.: Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. EMBO Rep.4,723–728 (2003).
    • 17  Tassaneetrithep B, Burgess TH, Granelli-Piperno A et al.: DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J. Exp. Med.197,823–829 (2003).
    • 18  Marianneau P, Mégret F, Olivier R, Morens DM, Deubel V: Dengue 1 virus binding to human hepatoma HepG2 and simian Vero cell surfaces differs. J. Gen. Virol.77,2547–2554 (1996).
    • 19  Rothwell SW, Putnak R, La Russa VF: Dengue-2 virus infection of human bone marrow: characterization of dengue-2 antigen-positive stromal cells. Am. J. Trop. Med. Hyg.54,503–510 (1996).
    • 20  Ramos-Castañeda J, Imbert JL, Barron BL, Ramos C: A 65-kDa trypsin sensible membrane cell protein as a posible receptor for dengue virus in cultured neuroblastoma cells. J. Neurovirol.3,435–440 (1997).
    • 21  Bielefeldt-Ohmann H: Analysis of antibody-independent binding of dengue viruses and dengue virus envelope protein to human myelomonocytic cells and B lymphocytes. Virus Res.57,63–79 (1998).
    • 22  Bielefeldt-Ohmann H, Meyer M, Fitzpatrick DR, Mackenzie JS: Dengue virus binding to human leukocyte cell lines: receptor usage differs between cell types and virus strains. Virus Res.73,81–89 (2001).
    • 23  Martínez-Barragán JJ, del Angel RM: Identification of a putative coreceptor on Vero cells that participates in dengue 4 virus infection. J. Virol.75,7818–7827 (2001).• An early study demonstrating two sequential receptors, heparan sulfate and a protein, for Dengue virus (DENV).
    • 24  Moreno-Altamirano MMB, Sánchez-García FJ, Muñoz ML: Non Fc receptor-mediated infection of human macrophages by dengue virus serotype 2. J. Gen. Virol.83,1123–1130 (2002).
    • 25  Wei HY, Jiang LF, Fang DY, Guo HY: Dengue virus type 2 infects human endothelial cells through binding of the viral envelope glycoprotein to cell surface polypeptides. J. Gen. Virol.84,3095–3098 (2003).
    • 26  Chen Y, Maguire T, Hileman RE et al.: Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat. Med.3,866–871 (1997).
    • 27  Hung SL, Lee PL, Chen HW, Chen LK, Kao CL, King CC: Analysis of the steps involved in dengue virus entry into host cells. Virology257,156–167 (1999).
    • 28  Hilgard P, Stockert R: Heparan sulfate proteoglycans initiate dengue virus infection of hepatocytes. Hepatology32,1069–1077 (2000).
    • 29  Germi R, Crance JM, Garin D et al.: Heparan sulfate-mediated binding of infectious dengue virus type 2 and yellow fever virus. Virology292,162–168 (2002).
    • 30  Spillmann D: Heparan sulfate: anchor for viral intruders. Biochimie83,811–817 (2001).
    • 31  Lin YL, Lei HY, Lin YS, Yeh TM, Chen SH, Liu HS: Heparin inhibits dengue-2 virus infection of five human liver cell lines. Antiviral Res.56,93–96 (2002).
    • 32  Talarico LB, Pujol CA, Zibetti RGM et al.: The antiviral activity of sulfated polysaccharides against dengue virus is dependent on virus serotype and host cell. Antiviral Res.66,103–110 (2005).• Study suggesting the dependence of DENV entry on virus serotype and host cell.
    • 33  Lozach PY, Burleigh L, Staropoli I et al.: Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN)-mediated enhancement of dengue virus infection is independent of DC-SIGN internalization signals. J. Biol. Chem.280,23698–23708 (2005).
    • 34  Pelkmans L: Secrets of caveolae- and lipid raft-mediated endocytosis revealed by mammalian viruses. Biochim. Biophys. Acta1749,295–304 (2005).• Description of the new nonclathrin-mediated endocytic routes used by certain viruses.
    • 35  Kirkham M, Parton RG: Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers. Biochim. Biophys. Acta1745,273–286 (2005).
    • 36  Sieczkarski SB, Whittaker GR: Influenza virus can enter and infect cells in the absence of clathrin-mediated endocytosis. J. Virol.76,10455–10464 (2005).
    • 37  Marsh M, Helenius A: Virus entry: open sesame. Cell124,729–740 (2006).•• A comprehensive review of the entry pathways for virus entry.
    • 38  Hase T, Summers PL, Eckels KH: Flavivirus entry into cultured mosquito cells and human peripheral blood monocytes. Arch. Virol.104,129–143 (1989).
    • 39  Lim HY, Ng ML: A different mode of entry by dengue-2 neutralization escape mutant virus. Arch. Virol.144,989–995 (1999).
    • 40  Krishnan MN, Sukumaran B, Pal U et al.: Rab 5 is required for the cellular entry of dengue virus and West Nile viruses. J. Virol.81,4881–4885 (2007).
    • 41  Acosta EG, Castilla V, Damonte EB: Functional entry of dengue virus into Aedes albopictus mosquito cells is dependent on clathrin-mediated endocytosis. J. Gen. Virol.89,474–484 (2008).
    • 42  Hu H-P, Hsieh SC, King C-C, Wang W-K: Characterization of retrovirus-based reporter viruses pseudotyped with the precursor membrane and envelope glycoproteins of four serotypes of dengue viruses. Virology368,376–387 (2007).
    • 43  Randolph VB, Stollar V: Low pH-induced cell fusion in flavivirus-infected Aedes albopictus cell cultures. J. Gen. Virol.71,1845–1850 (1990).
    • 44  van der Schaar HM, Rust MJ, Waarts B-L et al.: Characterization of the early events in dengue virus cell entry by biochemical assays and single-virus tracking. J. Virol.81,12019–12028 (2007).
    • 45  Modis Y, Ogata S, Clements D, Harrison SC: Structure of the dengue virus envelope protein after membrane fusion. Nature427,313–319 (2004).•• Demonstrates the conformational changes in E glycoprotein after fusion.
    • 46  Zhang Y, Zhang W, Ogata S et al.: Conformational changes of the flavivirus E glycoprotein. Structure12,1607–1618 (2004).
    • 47  Mukhopadhyay S, Kuhn RJ, Rossmann MG: A structural perspective of the flavivirus life cycle. Nat. Rev. Microbiol.3,13–22 (2005).
    • 48  Stiasny K, Heinz FX: Flavivirus membrane fusion. J. Gen. Virol.87,2755–2766 (2006).
    • 49  Lee C-J, Lin H-R, Liao C-L, Lin Y-L: Cholesterol effectively blocks entry of flavivirus infection. J. Virol.82,6470–6480 (2008).
    • 50  Altmeyer R: Virus attachment and entry offer numerous targets for antiviral therapy. Curr. Pharm. Des.10,3701–3712 (2004).
    • 51  Thaisomboonsuk BK, Clayson ET, Pantuwatana S, Vaughn DW, Endy TP: Characterization of dengue-2 virus binding to surfaces of mammalian and insect cells. Am. J. Trop. Med. Hyg.72,375–383 (2005).
    • 52  Marks RM, Lu H, Sundaresan R et al.: Probing the interaction of dengue virus envelope protein with heparin: assessment of glycosaminoglycan-derived inhibitors. J. Med. Chem.44,2178–2187 (2001).
    • 53  Lee E, Pavy M, Young N, Freeman C, Lobigs M: Antiviral effect of the heparan sulfate mimetic, PI-88, against dengue and encephalitic flaviviruses. Antiviral Res.69,31–38 (2006).
    • 54  Pujol CA, Estévez JM, Carlucci MJ, Ciancia M, Cerezo AS, Damonte EB: Novel DL-galactan hybrids from the red seaweed Gymnogongrus torulosus are potent inhibitors of herpes simplex virus and dengue virus. Antivir. Chem. Chemother.13,83–89 (2002).
    • 55  Talarico LB, Duarte MER, Zibetti RGM, Noseda MD, Damonte EB: An algal derived DL-galactan hybrid is an efficient preventing agent for in vitro dengue virus infection. Planta Med.73,1464–1468 (2007).
    • 56  Qiu H, Tang W, Tong X, Ding K, Zuo J: Structure elucidation and sulfated derivatives preparation of two α-D-glucans from Gastrodia elata B1 and their anti-dengue virus bioactivities. Carbohydr. Res.342,2230–2236 (2007).
    • 57  Rodríguez MC, Merino ER, Pujol CA, Damonte EB, Cerezo AS, Matulewicz MC: Galactans from cystocarpic plants of the red seaweed Callophyllis variegata (Kallymeniaceae, Gigartinales). Carbohydr. Res.340,2742–2751 (2005).
    • 58  Tischer PCSF, Talarico LB, Noseda MD, Guimaraes SMPB, Damonte EB, Duarte MER: Chemical structure and antiviral activity of carrageenans from Meristiella gelidium against herpes simplex and dengue virus. Carbohydr. Polym.63,459–465 (2006).
    • 59  Talarico LB, Damonte EB: Interference in dengue virus adsorption and uncoating by carrageenans. Virology363,473–485 (2007).
    • 60  Ono L, Wollinger W, Rocco IM, Coimbra TLM, Gorin PAJ, Sierakowski MR: In vitro and in vivo antiviral properties of sulfated galactomannans against yellow fever virus (BeH111 strain) and dengue 1 virus (Hawaii strain). Antiviral Res.60,201–208 (2003).
    • 61  Shigeta S, Mori S, Kodama E, Kodama J, Takahashi K, Yamase T: Broad-spectrum anti-RNA virus activities of titanium and vanadium substituted polyoxotungstates. Antiviral Res.58,265–271 (2003).
    • 62  Damonte EB, Pujol CA, Coto CE: Prospects for the therapy and prevention of dengue virus infections. Adv.Virus Res.63,239–285 (2004).
    • 63  Koff WC, Elm JL Jr, Halstead SB: Inhibition of dengue virus replication by amantadine hydrochloride. Antimicrob. Agents Chemother.18,125–129 (1980).
    • 64  Koff WC, Elm JL Jr, Halstead SB: Suppression of dengue virus replication in vitro by rimantadine hydrochloride. Am. J. Trop. Med. Hyg.30,184–189 (1981).
    • 65  Nawa M, Takasaki T, Yamada K, Kurane I, Akatsuka T: Interference in Japanese encephalitis virus infection of Vero cells by a cationic amphiphilic drug, chlorpromazine. J. Gen. Virol.84,1737–1741 (2003).
    • 66  Kuhn RJ, Zhang W, Rossmann MG et al.: Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell108,717–725 (2002).
    • 67  Modis Y, Ogata S, Clements D, Harrison SC: A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc. Natl Acad. Sci. USA100,6986–6991 (2003).
    • 68  Modis Y, Ogata S, Clements D, Harrison SC: Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. J. Virol.79,1223–1231 (2005).
    • 69  Volk DE, Lee Y-C, Li X et al.: Solution structure of the envelope protein domain III of dengue-4 virus. Virology364,147–154 (2007).
    • 70  Hrobowski YM, Garry RF, Michael SF: Peptide inhibitors of dengue virus and West Nile virus infectivity. Virol. J.2,49 (2005).
    • 71  Yang J-M, Chen Y-F, Tu Y-Y, Yen K-R, Yang Y-L: Combinatorial computational approaches to identity tetracycline derivatives as flavivirus inhibitors. PLoS One2,e428 (2007).