We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Pathogenesis of choriocarcinoma: clinical, genetic and stem cell perspectives

    Annie NY Cheung

    † Author for correspondence

    Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China.

    ,
    Hui Juan Zhang

    Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China; and, Department of Pathology, International Peace Maternity and Child Health Hospital, the University of Jiao Tong, Shanghai, China.

    ,
    Wei Chen Xue

    Department of Pathology, Peking University School of Oncology, Beijing Cancer Hospital & Institute, China.

    and
    Michelle KY Siu

    Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China.

    Published Online:https://doi.org/10.2217/14796694.5.2.217

    Choriocarcinoma is a unique malignant neoplasm composed of mononuclear cytotrophoblasts and multinucleated syncytiotrophoblasts that produce human chorionic gonadotrophin. Choriocarcinoma can occur after a pregnancy, as a component of germ cell tumors, or in association with a poorly differentiated somatic carcinoma, each with distinct clinical features. Cytogenetic and molecular studies, predominantly on gestational choriocarcinoma, revealed the impact of oncogenes, tumor suppressor genes and imprinting genes on its pathogenesis. The role of stem cells in various types of choriocarcinoma has been studied recently. This review will discuss how such knowledge can enhance our understanding of the pathogenesis of choriocarcinoma, enable exploration of novel anti-choriocarcinoma targeted therapy and possibly improve our insight on embryological and placental development.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Nogales FF: Germ cell tumors of the ovary. In: Haines & Tailor Obstetrical and Gynecological Pathology. Fox H, Wells M (Eds). Churchill Livingstone, Edinburgh, UK, 771–820 (2003).
    • Pattillo RA: Gestational and non-gestational trophoblastic neoplasms: new developments in DNA analysis, metabolic function, diagnosis and treatment. Curr. Opin. Obstet. Gynecol.5,486–489 (1993).▪ Interesting early report that describes the molecular biological characteristics of gestational and nongestational trophoblastic neoplasm.
    • Talerman A: Germ cell tumors of the ovary. In: Blaustein’s Pathology of the Female Genital Tract. Kurman RJ (Ed.). Springer-Verlag, New York, NY, USA, 967–1033 (2002).
    • Chen F, Tatsumi A, Numoto S: Combined choriocarcinoma and adenocarcinoma of the lung occurring in a man: case report and review of the literature. Cancer91,123–129 (2001).
    • Ikura Y, Inoue T, Tsukuda H, Yamamoto T, Ueda M, Kobayashi Y: Primary choriocarcinoma and human chorionic gonadotrophin-producing giant cell carcinoma of the lung: are they independent entities? Histopathology36,17–25 (2000).
    • Verbeek W, Schulten HJ, Sperling M et al.: Rectal adenocarcinoma with choriocarcinomatous differentiation: clinical and genetic aspects. Hum. Pathol.35,1427–1430 (2004).
    • Arima T, Imamura T, Sakuragi N et al.: Malignant trophoblastic neoplasms with different modes of origin. Cancer Genet. Cytogenet.85,5–15 (1995).
    • Tsujioka H, Hamada H, Miyakawa T, Hachisuga T, Kawarabayashi T: A pure nongestational choriocarcinoma of the ovary diagnosed with DNA polymorphism analysis. Gynecol. Oncol.89,540–542 (2003).
    • Yamamoto E, Ino K, Yamamoto T et al.: A pure nongestational choriocarcinoma of the ovary diagnosed with short tandem repeat analysis: case report and review of the literature. Int. J. Gynecol. Cancer.17,254–258 (2007).
    • 10  Fisher RA, Savage PM, MacDermott C et al.: The impact of molecular genetic diagnosis on the management of women with hCG-producing malignancies. Gynecol. Oncol.107,413–419 (2007).▪▪ Highlights the clinical significance of analysis of the genetic origin of atypical hCG-producing tumors in women using the technique fluorescent microsatellite genotyping.
    • 11  Genest DR, Berkowitz RS, Fisher RA: Gestational Trophoblastic Disease. IARC, Lyon, France (2003).
    • 12  Shih Ie M: Gestational trophoblastic neoplasia – pathogenesis and potential therapeutic targets. Lancet Oncol.8,642–650 (2007).▪ Summarizes the recent advances in molecular etiology of gestational trophoblastic neoplasia and highlights those molecules that can be possible targets for therapy.
    • 13  Altieri A, Franceschi S, Ferlay J, Smith J, La Vecchia C: Epidemiology and aetiology of gestational trophoblastic diseases. Lancet Oncol.4,670–678 (2003).
    • 14  Seckl MJ, Fisher RA, Salerno G et al.: Choriocarcinoma and partial hydatidiform moles. Lancet356,36–39 (2000).
    • 15  Lok CA, Ansink AC, Grootfaam D, van der Velden J, Verheijen RH, ten Kate-Booij MJ: Treatment and prognosis of post term choriocarcinoma in The Netherlands. Gynecol. Oncol.103,698–702 (2006).
    • 16  Li HW, Tsao SW, Cheung AN: Current understandings of the molecular genetics of gestational trophoblastic diseases. Placenta23,20–31 (2002).
    • 17  Ahmed MN, Kim K, Haddad B, Berchuck A, Qumsiyeh MB: Comparative genomic hybridization studies in hydatidiform moles and choriocarcinoma: amplification of 7q21–q31 and loss of 8p12–p21 in choriocarcinoma. Cancer Genet. Cytogenet.116,10–15 (2000).
    • 18  Ishiwata I, Ishiwata C, Tsuiki A, Kiguchi K, Hashimoto H, Ishikawa H: Establishment and characterization of a human gestational choriocarcinoma cell line (HOCC). Hum. Cell17,33–41 (2004).
    • 19  Rodriguez E, Melamed J, Reuter V, Chaganti RS: Chromosomal abnormalities in choriocarcinomas of the female. Cancer Genet. Cytogenet.80,9–12 (1995).
    • 20  Surti U, Habibian R: Chromosomal rearrangement in choriocarcinoma cell lines. Cancer Genet. Cytogenet.38,229–240 (1989).
    • 21  Matsuda T, Sasaki M, Kato H et al.: Human chromosome 7 carries a putative tumor suppressor gene(s) involved in choriocarcinoma. Oncogene15,2773–2781 (1997).▪ Uses the microcell hybrids approach to test the effect of individual chromosome on tumorigenicity of choriocarcinoma cells. Significant effect was found with chromosome 7, but not a few other chromosomes, and the results suggest that chromosome 7 contains a putative tumor suppressor gene(s) for choriocarcinoma.
    • 22  Burke B, Sebire NJ, Moss J et al.: Evaluation of deletions in 7q11.2 and 8p12–p21 as prognostic indicators of tumor development following molar pregnancy. Gynecol. Oncol.103,642–648 (2006).
    • 23  Pils D, Horak P, Gleiss A et al.: Five genes from chromosomal band 8p22 are significantly down-regulated in ovarian carcinoma: N33 and EFA6R have a potential impact on overall survival. Cancer104,2417–2429 (2005).
    • 24  Cheung AN: Gestational trophoblastic disease. In: Pathology of the Female Reproductive Tract. Robboy S, Russel P, Mutter G (Eds). Churchill Livingstone. 881–907 (2008).
    • 25  Arima T, Matsuda T, Takagi N, Wake N: Association of IGF2 and H19 imprinting with choriocarcinoma development. Cancer Genet. Cytogenet.93,39–47 (1997).
    • 26  Cheung AN, Shen DH, Khoo US, Wong LC, Ngan HY: p21WAF1/CIP1 expression in gestational trophoblastic disease: correlation with clinicopathological parameters, and Ki67 and p53 gene expression. J. Clin. Pathol.51,159–162 (1998).
    • 27  Fulop V, Mok SC, Genest DR, Gati I, Doszpod J, Berkowitz RS: p53, p21, Rb and mdm2 oncoproteins. Expression in normal placenta, partial and complete mole, and choriocarcinoma. J. Reprod. Med.43,119–127 (1998).
    • 28  Fulop V, Colitti CV, Genest D et al.: DOC-2/hDab2, a candidate tumor suppressor gene involved in the development of gestational trophoblastic diseases. Oncogene17,419–424 (1998).
    • 29  Li HW, Leung SW, Cheung AN, Yu MM, Chan LK, Wong YF: Expression of maspin in gestational trophoblastic disease. Gynecol. Oncol.101,76–81 (2006).
    • 30  Asanoma K, Kato H, Inoue T, Matsuda T, Wake N: Analysis of a candidate gene associated with growth suppression of choriocarcinoma and differentiation of trophoblasts. J. Reprod. Med.49,617–626 (2004).
    • 31  Fong PY, Xue WC, Ngan HY et al.: Caspase activity is downregulated in choriocarcinoma: a cDNA array differential expression study. J. Clin. Pathol.59,179–183 (2006).
    • 32  Feng HC, Tsao SW, Ngan HY et al.: Differential gene expression identified in complete hydatidiform mole by combining suppression subtractive hybridization and cDNA microarray. Placenta27,521–526 (2006).
    • 33  Feng H, Cheung AN, Xue WC et al.: Down-regulation and promoter methylation of tissue inhibitor of metalloproteinase 3 in choriocarcinoma. Gynecol. Oncol.94,375–382 (2004).
    • 34  Xue WC, Chan KY, Feng HC et al.: Promoter hypermethylation of multiple genes in hydatidiform mole and choriocarcinoma. J. Mol. Diagn.6,326–334 (2004).▪ Reports the frequent hypermethylation of a panel of tumor suppressor genes in choriocarcinoma and hydatidiform moles that develop gestational trophoblastic neoplasia.
    • 35  Chiu RW, Chim SS, Wong IH et al.: Hypermethylation of RASSF1A in human and rhesus placentas. Am. J. Pathol.170,941–950 (2007).
    • 36  Shih IM, Kurman RJ: Expression of melanoma cell adhesion molecule in intermediate trophoblast. Lab. Invest.75,377–388 (1996).
    • 37  Singer G, Kurman RJ, McMaster MT, Shih Ie M: HLA-G immunoreactivity is specific for intermediate trophoblast in gestational trophoblastic disease and can serve as a useful marker in differential diagnosis. Am. J. Surg. Pathol.26,914–920 (2002).
    • 38  Shih Ie M, Kuo KT: Power of the eternal youth: nanog expression in the gestational choriocarcinoma. Am. J. Pathol.173,911–914 (2008).
    • 39  Asanoma K, Matsuda T, Kondo H et al.: NECC1, a candidate choriocarcinoma suppressor gene that encodes a homeodomain consensus motif. Genomics81,15–25 (2003).
    • 40  Asanoma K, Kato H, Yamaguchi S et al.: HOP/NECC1, a novel regulator of mouse trophoblast differentiation. J. Biol. Chem.282,24065–24074 (2007).
    • 41  Fulop V, Mok SC, Genest DR, Szigetvari I, Cseh I, Berkowitz RS: c-myc, c-erbB-2, c-fms and bcl-2 oncoproteins. Expression in normal placenta, partial and complete mole, and choriocarcinoma. J. Reprod. Med.43,101–110 (1998).
    • 42  Tuncer ZS, Vegh GL, Fulop V, Genest DR, Mok SC, Berkowitz RS: Expression of epidermal growth factor receptor-related family products in gestational trophoblastic diseases and normal placenta and its relationship with development of postmolar tumor. Gynecol. Oncol.77,389–393 (2000).
    • 43  Coan PM, Burton GJ, Ferguson-Smith AC: Imprinted genes in the placenta – a review. Placenta26(Suppl. A),S10–S20 (2005).
    • 44  Wilkins JF, Haig D: What good is genomic imprinting: the function of parent-specific gene expression. Nat. Rev. Genet.4,359–368 (2003).▪▪ Provides a comprehensive appraisal on the hypotheses that attempt to explain the advantage of genomic imprinting. The balance between expression of maternal and paternal alleles is also discussed.
    • 45  Fisher RA, Hodges MD: Genomic imprinting in gestational trophoblastic disease-– a review. Placenta24(Suppl. A),S111–S118 (2003).▪ Good review of studies on the involvement of imprinting genes in gestational trophoblastic disease (GTD), which is applied for understanding of the function of genomic imprinting in early development.
    • 46  Tycko B: Imprinted genes in placental growth and obstetric disorders. Cytogenet. Genome. Res.113,271–278 (2006).
    • 47  Chilosi M, Piazzola E, Lestani M et al.: Differential expression of p57kip2, a maternally imprinted cdk inhibitor, in normal human placenta and gestational trophoblastic disease. Lab. Invest.78,269–276 (1998).
    • 48  Chan HY, Siu MK, Zhang HJ et al.: Activated Stat3 expression in gestational trophoblastic disease: correlation with clinicopathological parameters and apoptotic indices. Histopathology53,139–146 (2008).
    • 49  Li AS, Siu MK, Zhang H et al.: Hypermethylation of SOX2 gene in hydatidiform mole and choriocarcinoma. Reprod. Sci.15,735–744 (2008).
    • 50  Siu MK, Wong ES, Chan HY, Ngan HY, Chan KY, Cheung AN: Overexpression of NANOG in gestational trophoblastic diseases: effect on apoptosis, cell invasion, and clinical outcome. Am. J. Pathol.173,1165–1172 (2008).▪▪ Interesting study on the role of NANOG, an important stem cell transcription factor in GTD. It is found that NANOG is involved in the pathogenesis and clinical progress of GTD and affects apoptosis, cell migration and invasion.
    • 51  Zhang HJ, Siu MK, Wong ES et al.: Oct4 is epigenetically regulated by methylation in normal placenta and gestational trophoblastic disease. Placenta29,549–554 (2008).
    • 52  Mao TL, Kurman RJ, Huang CC, Lin MC, Shih Ie M: Immunohistochemistry of choriocarcinoma: an aid in differential diagnosis and in elucidating pathogenesis. Am. J. Surg. Pathol.31,1726–1732 (2007).
    • 53  Zhang HJ, Xue WC, Siu MK, Liao XY, Ngan HY, Cheung AN: P63 expression in gestational trophoblastic disease: correlation with proliferation and apoptotic dynamics. Int. J. Gynecol. Pathol. (2008) (in press).
    • 54  Shih IM, Kurman RJ: p63 expression is useful in the distinction of epithelioid trophoblastic and placental site trophoblastic tumors by profiling trophoblastic subpopulations. Am. J. Surg. Pathol.28,1177–1183 (2004).
    • 55  Li HW, Cheung AN, Tsao SW, Cheung AL, O WS: Expression of e-cadherin and beta-catenin in trophoblastic tissue in normal and pathological pregnancies. Int. J. Gynecol. Pathol.22,63–70 (2003).
    • 56  Roth LM, Talerman A: Recent advances in the pathology and classification of ovarian germ cell tumors. Int. J. Gynecol. Pathol.25,305–320 (2006).
    • 57  Ulbright TM: Germ cell tumors of the gonads: a selective review emphasizing problems in differential diagnosis, newly appreciated, and controversial issues. Mod. Pathol.18(Suppl. 2),S61–S79 (2005).
    • 58  Ulbright TM, Amin MB, Young RH (Eds): Tumors of the testis, adnexa, spermatic cord and csrotum. In: Atlas of Tumor Pathology. Volume 3, Armed Forces Institute of pathology, Washington DC, USA (1999).
    • 59  Chaganti RS, Rodriguez E, Mathew S: Origin of adult male mediastinal germ-cell tumors. Lancet343,1130–1132 (1994).
    • 60  Moran CA, Suster S: Primary mediastinal choriocarcinomas: a clinicopathologic and immunohistochemical study of eight cases. Am. J. Surg. Pathol.21,1007–1012 (1997).
    • 61  Lind GE, Skotheim RI, Lothe RA: The epigenome of testicular germ cell tumors. Apmis.115,1147–1160 (2007).▪▪ Discusses the change in DNA methylation status of germ cells during embryological development as compared with degree of differentiation in different types of germ cell tumors.
    • 62  Manton KJ, Douglas ML, Netzel-Arnett S et al.: Hypermethylation of the 5´ CpG island of the gene encoding the serine protease Testisin promotes its loss in testicular tumorigenesis. Br. J. Cancer92,760–769 (2005).
    • 63  Honorio S, Agathanggelou A, Wernert N, Rothe M, Maher ER, Latif F: Frequent epigenetic inactivation of the RASSF1A tumor suppressor gene in testicular tumors and distinct methylation profiles of seminoma and nonseminoma testicular germ cell tumors. Oncogene22,461–466 (2003).
    • 64  Korkola JE, Houldsworth J, Chadalavada RS et al.: Down-regulation of stem cell genes, including those in a 200-kb gene cluster at 12p13.31, is associated with in vivo differentiation of human male germ cell tumors. Cancer Res.66,820–827 (2006).
    • 65  Skotheim RI, Lind GE, Monni O et al.: Differentiation of human embryonal carcinomas in vitro and in vivo reveals expression profiles relevant to normal development. Cancer Res.65,5588–5598 (2005).
    • 66  Korkola JE, Houldsworth J, Dobrzynski D et al.: Gene expression-based classification of nonseminomatous male germ cell tumors. Oncogene24,5101–5107 (2005).
    • 67  Santagata S, Ligon KL, Hornick JL: Embryonic stem cell transcription factor signatures in the diagnosis of primary and metastatic germ cell tumors. Am. J. Surg. Pathol.31,836–845 (2007).▪ Reports the expression profile of the stem cell transcription factors in the different types of testicular germ cell tumors.
    • 68  Hoei-Hansen CE: Application of stem cell markers in search for neoplastic germ cells in dysgenetic gonads, extragonadal tumors, and in semen of infertile men. Cancer Treat. Rev.34,348–367 (2008).
    • 69  Clark AT: The stem cell identity of testicular cancer. Stem Cell Rev.3,49–59 (2007).▪ Discusses the possible relationship between normal germ cell, cancer stem cell and germ cell tumorigenesis.
    • 70  Samaniego F, Rodriguez E, Houldsworth J et al.: Cytogenetic and molecular analysis of human male germ cell tumors: chromosome 12 abnormalities and gene amplification. Genes Chromosomes Cancer1,289–300 (1990).
    • 71  Ben-Porath I, Thomson MW, Carey VJ et al.: An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat. Genet.40,499–507 (2008).
    • 72  Stoop H, Honecker F, van de Geijn GJ et al.: Stem cell factor as a novel diagnostic marker for early malignant germ cells. J. Pathol.216,43–54 (2008).
    • 73  Yakeishi Y, Mori M, Enjoji M: Distribution of β-human chorionic gonadotropin-positive cells in noncancerous gastric mucosa and in malignant gastric tumors. Cancer66,695–701 (1990).
    • 74  Campo E, Palacin A, Benasco C, Quesada E, Cardesa A: Human chorionic gonadotropin in colorectal carcinoma. An immunohistochemical study. Cancer59,1611–1616 (1987).
    • 75  Liu AY, Chan WY, Ng EK et al.: Gastric choriocarcinoma shows characteristics of adenocarcinoma and gestational choriocarcinoma: a comparative genomic hybridization and fluorescence in situ hybridization study. Diagn. Mol. Pathol.10,161–165 (2001).
    • 76  Bradley CS, Benjamin I, Wheeler JE, Rubin SC: Endometrial adenocarcinoma with trophoblastic differentiation. Gynecol. Oncol.69,74–77 (1998).
    • 77  Horn LC, Hanel C, Bartholdt E, Dietel J: Mixed serous carcinoma of the endometrium with trophoblastic differentiation: analysis of the p53 tumor suppressor gene suggests stem cell origin. Ann. Diagn. Pathol.12,1–3 (2008).▪ Demonstrates genetic evidence supportive of multidirectional development of adenocarcinoma and choriocarcinoma from common stem cells in the endometrium.
    • 78  Wicha MS, Liu S, Dontu G: Cancer stem cells: an old idea – a paradigm shift. Cancer Res.66,1883–1890; discussion 1895–1896 (2006).
    • 79  Cheung AN, Srivastava G, Chung LP et al.: Expression of the p53 gene in trophoblastic cells in hydatidiform moles and normal human placentas. J. Reprod. Med.39,223–227 (1994).
    • 80  Qiao S, Nagasaka T, Harada T, Nakashima N: p53, Bax and Bcl-2 expression, and apoptosis in gestational trophoblast of complete hydatidiform mole. Placenta19,361–369 (1998).
    • 81  Cameron B, Gown AM, Tamimi HK: Expression of c-erb B-2 oncogene product in persistent gestational trophoblastic disease. Am. J. Obstet. Gynecol.170,1616–1621; discussion 1621–1622 (1994).
    • 82  Yazaki-Sun S, Daher S, de Souza Ishigai MM, Alves MT, Mantovani TM, Mattar R: Correlation of c-erbB-2 oncogene and p53 tumor suppressor gene with malignant transformation of hydatidiform mole. J. Obstet. Gynaecol. Res.32,265–272 (2006).
    • 83  Kim YT, Cho NH, Ko JH et al.: Expression of cyclin E in placentas with hydropic change and gestational trophoblastic diseases: implications for the malignant transformation of trophoblasts. Cancer89,673–679 (2000).
    • 84  Olvera M, Harris S, Amezcua CA et al.: Immunohistochemical expression of cell cycle proteins E2F-1, Cdk-2, Cyclin E, p27(kip1), and Ki-67 in normal placenta and gestational trophoblastic disease. Mod. Pathol.14,1036–1042 (2001).
    • 85  Amezcua CA, Bahador A, Naidu YM, Felix JC: Expression of human telomerase reverse transcriptase, the catalytic subunit of telomerase, is associated with the development of persistent disease in complete hydatidiform moles. Am. J. Obstet. Gynecol.184,1441–1446 (2001).
    • 86  Cheung AN, Zhang DK, Liu Y, Ngan HY, Shen DH, Tsao SW: Telomerase activity in gestational trophoblastic disease. J. Clin. Pathol.52,588–592 (1999).▪ One of the first few reports on clinical significance of high telomerase activity in hydatidiform mole. High telomerase activity in choriocarcinoma is also reported.
    • 87  Chiu PM, Ngan YS, Khoo US, Cheung AN: Apoptotic activity in gestational trophoblastic disease correlates with clinical outcome: assessment by the caspase-related M30 CytoDeath antibody. Histopathology38,243–249 (2001).
    • 88  Wong SY, Ngan HY, Chan CC, Cheung AN: Apoptosis in gestational trophoblastic disease is correlated with clinical outcome and Bcl-2 expression but not Bax expression. Mod. Pathol.12,1025–1033 (1999).▪ One of the first few reports on clinical significance of apoptotic activity in hydatidiform mole.
    • 89  Shih IM, Kurman RJ: Ki-67 labeling index in the differential diagnosis of exaggerated placental site, placental site trophoblastic tumor, and choriocarcinoma: a double immunohistochemical staining technique using Ki-67 and Mel-CAM antibodies. Hum. Pathol.29,27–33 (1998).
    • 90  Xue WC, Khoo US, Ngan HY et al.: Minichromosome maintenance protein 7 expression in gestational trophoblastic disease: correlation with Ki67, PCNA and clinicopathological parameters. Histopathology43,485–490 (2003).
    • 91  Xue WC, Feng HC, Chan KY et al.: Id helix-loop-helix proteins are differentially expressed in gestational trophoblastic disease. Histopathology47,303–309 (2005).
    • 92  Petignat P, Laurini R, Goffin F, Bruchim I, Bischof P: Expression of matrix metalloproteinase-2 and mutant p53 is increased in hydatidiform mole as compared with normal placenta. Int. J. Gynecol. Cancer16,1679–1684 (2006).
    • 93  Vegh GL, Selcuk Tuncer Z, Fulop V, Genest DR, Mok SC, Berkowitz RS: Matrix metalloproteinases and their inhibitors in gestational trophoblastic diseases and normal placenta. Gynecol. Oncol.75,248–253 (1999).