We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/14796694.5.2.169

Resistance including multidrug resistance to chemotherapy is a common clinical problem in patients suffering from cancer. Multidrug resistance is often mediated by overexpression of transmembrane xenobiotic transport molecules belonging to the superfamily of ATP-binding cassette (ABC) -transporters. Inhibition of ABCtransporters by low-molecular weight compounds in cancer patients has been extensively investigated in clinical trials, but the results have been disappointing. Thus, alternative experimental therapeutic strategies for overcoming multidrug resistance are under investigation. These include the application of RNA interference (RNAi) technology. Various RNAi strategies were applied to reverse multidrug resistance in different tumor models in vitro and in vivo. Results and conclusions of these RNAi studies as well as their potential impact for the development of potential RNAi therapeutics will be discussed.

Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

Bibliography

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature391,806–811 (1998).▪▪ Landmark study describing the discovery of RNA interference (RNAi).
  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T: Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature411,494–498 (2001).▪▪ Landmark study reporting the first application of RNAi in mammalian cell cultures.
  • Pai SI, Lin YY, Macaes B, Meneshian A, Hung CF, Wu TC: Prospects of RNA interference therapy for cancer. Gene Ther.13,464–477 (2006).
  • Hannon GJ: RNA interference. Nature418,244–251 (2002).
  • Dorsett Y, Tuschl T: siRNAs: applications in functional genomics and potential as therapeutics. Nat. Rev. Drug Discov.3,318–329 (2004).
  • Martin SE, Caplen NJ: Application of RNA interference in mammalian systems. Annu. Rev. Genomics Hum. Genet.8,81–108 (2007).
  • Lage H: Potential applications of RNA interference technology in the treatment of cancer. Fut. Oncol.1,103–113 (2005).
  • Rana TM: Illuminating the silence: understanding the structure and function of small RNAs. Nat. Rev. Mol. Cell Biol.8,23–36 (2007).
  • Nykanen A, Haley B, Zamore PD: ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell107,309–321 (2001).
  • 10  Fuchs U, Borkhardt A: The application of siRNA technology to cancer biology discovery. Adv. Cancer Res.X,75–102 (2007).
  • 11  Vanhecke D, Janitz M: Functional genomics using high-throughput RNA interference. Drug Discov. Today10,205–212 (2005).
  • 12  Altieri DC: Validating survivin as a cancer therapeutic target. Nat. Rev. Cancer3,46–54 (2003).
  • 13  Uchida H, Tanaka T, Sasaki K et al.: Adenovirus-mediated transfer of siRNA against survivin induced apoptosis and attenuated tumor cell growth in vitro and in vivo. Mol. Ther.10,162–171 (2004).
  • 14  Kappler M, Bache M, Bartel F et al.: Knockdown of survivin expression by small interfering RNA reduces the clonogenic survival of human sarcoma cell lines independently of p53. Cancer Gene Ther.11,186–193 (2004).
  • 15  Wang Y, Zhu H, Quan L et al.: Downregulation of surviving by RNAi inhibits the growth of esophageal carcinoma cells. Cancer Biol. Ther.4,974–978 (2005).
  • 16  Li QX, Zhao J, Liu JY et al.: Survivin stable knockdown by siRNA inhibits tumor cell growth and angiogenesis in breast and cervical cancers. Cancer Biol. Ther.5,860–866 (2006).
  • 17  Rosa J, Canovas P, Islam A, Altieri DC, Doxsey SJ: Survivin modulates microtubule dynamics and nucleation throughout the cell cycle. Mol. Biol. Cell17,1483–1493 (2006).
  • 18  Rahman KW, Li Y, Wang Z, Sarkar SH, Sarkar FH: Gene expression profiling revealed survivin as a target of 3,3´-diindolylmethane-induced cell growth inhibition and apoptosis in breast cancer cells. Cancer Res.66,4952–4960 (2006).
  • 19  Biedler JL, Riehm H: Cellular resistance to actinomycin D in chinese hamster cells in vitro: cross-resistance, radioautographic, and cytogenetic studies. Cancer Res.30,1174–1184 (1970).
  • 20  Lage H: An overview of cancer multidrug resistance: a still unsolved problem. Cell. Mol. Life Sci.65,3145–3167 (2008).
  • 21  Stein U, Walther W: Reversal of ABC transporter-dependent multidrug resistance in cancer, a realistic option? Am. J. Cancer5,285–297 (2006).
  • 22  Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM: Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov.5,219–234 (2006).
  • 23  Thomas H, Coley HM: Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control10,159–165 (2003).
  • 24  Greenberg PL, Lee SJ, Advani R et al.: Mitoxantrone, etoposide, and cytarabine with or without valspodar in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome: a Phase III trial (E2995). J. Clin. Oncol.22,1078–1086 (2004).
  • 25  van der Holt B, Löwenberg B, Burnett AK et al.: The value of the MDR1 reversal agent PSC-833 in addition to daunorubicin and cytarabine in the treatment of elderly patients with previously untreated acute myeloid leukemia (AML), in relation to MDR1 status at diagnosis. Blood106,2646–2654 (2005).
  • 26  Friedenberg WR, Rue M, Blood EA et al.: Phase III study of PSC-833 (valspodar) in combination with vincristine, doxorubicin, and dexamethasone (valspodar/VAD) versus VAD alone in patients with recurring or refractory multiple myeloma (E1A95): a trial of the Eastern Cooperative Oncology Group. Cancer106,830–838 (2006).
  • 27  Fracasso PM, Goldstein LJ, de Alwis DP et al.: Phase I study of docetaxel in combination with the P-glycoprotein inhibitor, zosuquidar, in resistant malignancies. Clin. Cancer Res.10,7220–7228 (2004).
  • 28  Sandler A, Gordon M, De Alwis DP et al.: A Phase I trial of a potent P-glycoprotein inhibitor, zosuquidar trihydrochloride (LY335979), administered intravenously in combination with doxorubicin in patients with advanced malignancy. Clin. Cancer Res.10,3265–3272 (2004).
  • 29  Morschhauser F, Zinzani PL, Burgess M, Sloots L, Bouafia F, Dumontet C: Phase I/II trial of a P-glycoprotein inhibitor, Zosuquidar.3HCl trihydrochloride (LY335979), given orally in combination with the CHOP regimen in patients with non-Hodgkin’s lymphoma. Leuk. Lymphoma48,708–715 (2007).
  • 30  Lage H: MDR1/P-glycoprotein (ABCB1) as target for RNA interference-mediated reversal of multidrug resistance. Curr. Drug Targets7,813–821 (2006).
  • 31  Sims-Mourtada J, Izzo JG, Ajani J, Chao KS: Sonic Hedgehog promotes multiple drug resistance by regulation of drug transport. Oncogene26,5674–5679 (2007).
  • 32  Corich L, Aranda A, Carrassa L, Bellarosa C, Ostrow JD, Tiribelli C: The cytotoxic effect of unconjugated bilirubin in human neuroblastoma SH-SY5Y cells is modulated by the expression level of MRP1 but not MDR1. Biochem. J.417(1),305–312 (2008).
  • 33  Nieth C, Priebsch A, Stege A, Lage H: Modulation of the classical multidrug resistance (MDR) phenotype by RNA interference (RNAi). FEBS Lett.545,144–150 (2003).▪ First reports of RNAi-mediated reversal of MDR1/P-glycoprotein (P-gp)-dependent multidrug resistance (MDR; simultaneously published with [34]).
  • 34  Wu H, Hait WN, Yang JM: Small interfering RNA-induced suppression of MDR1 (P-glycoprotein) restores sensitivity to multidrug-resistant cancer cells. Cancer Res.63,1515–1519 (2003).▪ First reports of RNAi-mediated reversal of MDR1/P-gp-dependent MDR (simultaneously published with [33]).
  • 35  Kowalski P, Surowiak P, Lage H: Reversal of different drug-resistant phenotypes by an autocatalytic multitarget multiribozyme directed against the transcripts of the ABC transporters MDR1/P-gp, MRP2, and BCRP. Mol. Ther.11,508–522 (2005).
  • 36  Priebsch A, Rompe F, Tönnies H et al.: Complete reversal of ABCG2-depending atypical multidrug resistance (MDR) by RNA interference in human carcinoma cells. Oligonucleotides16,263–274 (2006).
  • 37  Materna V, Stege A, Surowiak P, Priebsch A, Lage H: RNA interference-triggered reversal of ABCC2-dependent cisplatin resistance in human cancer cells. Biochem. Biophys. Res. Commun.348,153–157 (2006).
  • 38  Luo KQ, Chang DC: The gene-silencing efficiency of siRNA is strongly dependent on the local structure of mRNA at the targeted region. Biochem. Biophys. Res. Commun.318,303–310 (2004).
  • 39  Yoshinari K, Miyagishi M, Taira K: Effects on RNAi of the tight structure, sequence and position of the targeted region. Nucleic Acids Res.32,691–699 (2004).
  • 40  Kurreck J: siRNA Efficiency: structure or sequence – that is the question. J. Biomed. Biotechnol.2006(4),83757 (2006).
  • 41  Duan Z, Brakora KA, Seiden MV: Inhibition of ABCB1 (MDR1) and ABCB4 (MDR3) expression by small interfering RNA and reversal of paclitaxel resistance in human ovarian cancer cells. Mol. Cancer Ther.3,833–838 (2004).
  • 42  Xu D, Kang H, Fisher M, Juliano RL: Strategies for inhibition of MDR1 gene expression. Mol. Pharmacol.66,268–275 (2004).
  • 43  Liscovitch M, Ravid D: A case study in misidentification of cancer cell lines: MCF-7/AdrR cells (re-designated NCI/ADR-RES) are derived from OVCAR-8 human ovarian carcinoma cells. Cancer Lett.245,350–352 (2007).
  • 44  Stege A, Priebsch A, Nieth C, Lage H: Stable and complete overcoming of MDR1/P-glycoprotein-mediated multidrug resistance in human gastric carcinoma cells by RNA interference. Cancer Gene Ther.11,699–706 (2004).
  • 45  Yagüe E, Higgins CF, Raguz S: Complete reversal of multidrug resistance by stable expression of small interfering RNAs targeting MDR1. Gene Ther.11,1170–1174 (2004).
  • 46  Li CB, Zhang F, Shi YR, Wei XY, Yang Y, Niu RF: [Reversing multidrug resistance in breast cancer cell line MCF-7/ADR by small interfering RNA.] Ai Zheng23,1605–1610 (2004).
  • 47  Xu D, McCarty D, Fernandes A, Fisher M, Samulski RJ, Juliano RL: Delivery of MDR1 small interfering RNA by self-complementary recombinant adeno-associated virus vector. Mol. Ther.11,523–530 (2005).
  • 48  Lacroix M: Persistent use of ‘false’ cell lines. Int. J. Cancer122,1–4 (2008).
  • 49  Kaszubiak A, Holm PS, Lage H: Overcoming the classical multidrug resistance phenotype by adenoviral delivery of anti-MDR1 short hairpin RNAs and ribozymes. Int. J. Oncol.31,419–430 (2007).
  • 50  Shi Z, Liang YJ, Chen ZS et al.: Reversal of MDR1/P-glycoprotein-mediated multidrug resistance by vector-based RNA interference in vitro and in vivo. Cancer Biol. Ther.5,39–47 (2006).
  • 51  Pichler A, Zelcer N, Prior JL, Kuil AJ, Piwnica-Worms D: In vivo RNA interference-mediated ablation of MDR1 P-glycoprotein. Clin. Cancer Res.11,4487–4494 (2005).
  • 52  Matsui Y, Kobayashi N, Nishikawa M, Takakura Y: Sequence-specific suppression of mdr1a/1b expression in mice via RNA interference. Pharm. Res.22,2091–2098 (2005).
  • 53  Xiao H, Wu Z, Shen H et al.: In vivo reversal of P-glycoprotein-mediated multidrug resistance by efficient delivery of stealth RNAi. Basic Clin. Pharmacol. Toxicol.103,342–348 (2008).
  • 54  Stein U, Walther W, Stege A, Kaszubiak A, Fichtner I, Lage H: Complete in vivo reversal of the multidrug resistance phenotype by jet-injection of anti-MDR1 short hairpin RNA-encoding plasmid DNA. Mol. Ther.16,178–186 (2008).▪ First report of RNAi-mediated reversal of MDR1/P-gp-dependent MDR in vivo using a technology, jet-injection, with potential clinical impact.
  • 55  Walther W, Siegel R, Kobelt D et al.: Novel jet-injection technology for nonviral intratumoral gene transfer in patients with melanoma and breast cancer. Clin. Cancer Res.14,7545–7553 (2008).
  • 56  Walther W, Stein U, Fichtner I, Schlag PM: Low-volume jet injection for efficient nonviral in vivo gene transfer. Mol. Biotechnol.28,121–128 (2004).
  • 57  Walther W, Stein U, Fichtner I et al.: Nonviral jet-injection gene transfer for efficient in vivo cytosine deaminase suicide gene therapy of colon carcinoma. Mol. Ther.12,1176–1184 (2005).
  • 58  Scotto KW: Transcriptional regulation of ABC drug transporters. Oncogene22,7496–7511 (2003).
  • 59  Wu J, Stratford AL, Astanehe A, Dunn SE: YB-1 is a transcription/translation factor that orchestrates the oncogenome by hardwiring signal transduction to gene expression. Translational Oncogenomics2,49–65 (2007).
  • 60  Bargou RC, Jürchott K, Wagener C et al.: Nuclear localization and increased levels of transcription factor YB-1 in primary human breast cancers are associated with intrinsic MDR1 gene expression. Nat. Med.3,447–450 (1997).
  • 61  Kaszubiak A, Kupstat A, Müller U, Hausmann R, Holm PS, Lage H: Regulation of MDR1 gene expression in multidrug-resistant cancer cells is independent from YB-1. Biochem. Biophys. Res. Commun.357,295–301 (2007).
  • 62  Honma K, Iwao-Koizumi K, Takeshita F et al.: RPN2 gene confers docetaxel resistance in breast cancer. Nat. Med.14,939–948 (2008).
  • 63  Voinnet O: Induction and suppression of RNA silencing: insights from viral infections. Nat. Rev. Genet.6,206–220 (2005).▪ First paper describing the phenomenon of resistance against RNAi.
  • 64  Zheng ZM, Tang S, Tao M: Development of resistance to RNAi in mammalian cells. Ann. NY Acad. Sci.1058,105–118 (2005).
  • 65  Yang W, Wang Q, Howell KL et al.: ADAR1 RNA deaminase limits short interfering RNA efficacy in mammalian cells. J. Biol. Chem.280,3946–3953 (2005).
  • 66  Lu S, Cullen BR: Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and MicroRNA biogenesis. J. Virol.78,12868–12876 (2004).
  • 67  Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR: Activation of the interferon system by short-interfering RNAs. Nat. Cell Biol.5,834–839 (2003).
  • 68  Persengiev SP, Zhu X, Green MR: Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA10,12–18 (2004).
  • 69  Williams BR: Role of the double-stranded RNA-activated protein kinase (PKR) in cell regulation. Biochem. Soc. Trans.25,509–513 (1997).
  • 70  Jagus R, Joshi B, Barber GN: PKR, apoptosis and cancer. Int. J. Biochem. Cell Biol.31,123–138 (1999).
  • 71  Justesen J, Hartmann R, Kjeldgaard NO: Gene structure and function of the 2´-5´-oligoadenylate synthetase family. Cell. Mol. Life Sci.57,1593–1612 (2000).
  • 72  Dong B, Silverman RH: 2–5A-dependent RNase molecules dimerize during activation by 2–5A. J. Biol. Chem.270,4133–4137 (1995).
  • 73  Castelli JC, Hassel BA, Maran A et al.: The role of 2´-5´ oligoadenylate-activated ribonuclease L in apoptosis. Cell Death Differ.5,313–320 (1998).
  • 74  Hornung V, Guenthner-Biller M, Bourquin C et al.: Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat. Med.11,263–270 (2005).
  • 75  Judge AD, Sood V, Shaw JR, Fang D, McClintock K, MacLachlan I: Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat. Biotechnol.23,457–462 (2005).
  • 76  Sioud M: Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J. Mol. Biol.348,1079–1090 (2005).
  • 77  Grimm D, Streetz KL, Jopling CL et al.: Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature441,537–541 (2006).
  • 78  Ohrt T, Merkle D, Birkenfeld K, Echeverri CJ, Schwille P: In situ fluorescence analysis demonstrates active siRNA exclusion from the nucleus by Exportin 5. Nucleic Acids Res.34,1369–1380 (2006).
  • 79  Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell120,15–20 (2005).
  • 80  Birmingham A, Anderson EM, Reynolds A et al.: 3´ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat. Methods3,199–204 (2006).
  • 81  Jackson AL, Bartz SR, Schelter J et al.: Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol.21,635–637 (2003).
  • 82  Semizarov D, Frost L, Sarthy A, Kroeger P, Halbert DN, Fesik SW: Specificity of short interfering RNA determined through gene expression signatures. Proc. Natl Acad. Sci. USA100,6347–6352 (2003).
  • 83  Scacheri PC, Rozenblatt-Rosen O, Caplen NJ et al.: Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc. Natl. Acad. Sci. USA101,1892–1897 (2004).
  • 84  Fedorov Y, Anderson EM, Birmingham A et al.: Off-target effects by siRNA can induce toxic phenotype. RNA12,1188–1196 (2006).
  • 85  Sanguino A, Lopez-Berestein G, Sood AK: Strategies for in vivo siRNA delivery in cancer. Mini Rev. Med. Chem.8,248–255 (2008).
  • 86  Soutschek J, Akinc A, Bramlage B et al.: Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature432,173–178 (2004).▪ First paper describing successful application of chemically modified small-interfering RNAs (siRNAs) as therapeutics.
  • 87  Zimmermann TS, Lee AC, Akinc A et al.: RNAi-mediated gene silencing in non-human primates. Nature441,111–114 (2006).
  • 88  Song E, Zhu P, Lee SK et al.: Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat. Biotechnol.23,709–717 (2005).
  • 89  Hu-Lieskovan S, Heidel JD, Bartlett DW, Davis ME, Triche TJ: Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res.65,8984–8992 (2005).
  • 90  Kumar P, Ban HS, Kim SS et al.: T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell134,577–586 (2008).
  • 91  Kumar P, Wu H, McBride JL et al.: Transvascular delivery of small interfering RNA to the central nervous system. Nature448,39–43 (2007).
  • 92  Peer D, Park EJ, Morishita Y, Carman CV, Shimaoka M: Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science319,627–630 (2008).
  • 93  McNamara JO 2nd, Andrechek ER, Wang Y et al.: Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat. Biotechnol.24,1005–1015 (2006).
  • 94  de Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J: Interfering with disease: a progress report on siRNA-based therapeutics. Nat. Rev. Drug Discov.6,443–453 (2007).
  • 95  Kleinman ME, Yamada K, Takeda A et al.: Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature452,591–597 (2008).▪ Paper exposing the effects of therapeutic siRNAs as sequence- and target-independent by immunoresponse.
  • 96  Scherr M, Battmer K, Winkler T, Heidenreich O, Ganser A, Eder M: Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood101,1566–1569 (2003).
  • 97  Wohlbold L, van der Kuip H, Miething C et al.: Inhibition of bcr-abl gene expression by small interfering RNA sensitizes for imatinib mesylate (STI571). Blood102,2236–2239 (2003).
  • 98  Sumimoto H, Miyagishi M, Miyoshi H et al.: Inhibition of growth and invasive ability of melanoma by inactivation of mutated BRAF with lentivirus-mediated RNA interference. Oncogene23,6031–6039 (2004).
  • 99  Brummelkamp TR, Bernards R, Agami R: Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell2,243–247 (2002).
  • 100  Ada-Nguema AS, Xenias H, Hofman JM, Wiggins CH, Sheetz MP, Keely PJ: The small GTPase R-Ras regulates organization of actin and drives membrane protrusions through the activity of PLC epsilon. J. Cell Sci.119,1307–1319 (2006).
  • 101  Eskandarpour M, Kiaii S, Zhu C, Castro J, Sakko AJ, Hansson J: Suppression of oncogenic NRAS by RNA interference induces apoptosis of human melanoma cells. Int. J. Cancer115,65–73 (2005).
  • 102  Yang G, Thompson JA, Fang B, Liu J: Silencing of H-ras gene expression by retrovirus-mediated siRNA decreases transformation efficiency and tumorgrowth in a model of human ovarian cancer. Oncogene22,5694–5701 (2003).
  • 103  Holle L, Hicks L, Song W, Holle E, Wagner T, Yu X: Bcl-2 targeting siRNA expressed by a T7 vector system inhibits human tumor cell growth in vitro. Int. J. Oncol.24,615–621 (2004).
  • 104  Lima RT, Martins LM, Guimarães JE, Sambade C, Vasconcelos MH: Specific downregulation of bcl-2 and xIAP by RNAi enhances the effects of chemotherapeutic agents in MCF-7 human breast cancer cells. Cancer Gene Ther.11,309–316 (2004).
  • 105  Sonoke S, Ueda T, Fujiwara K et al.: Tumor regression in mice by delivery of Bcl-2 small interfering RNA with pegylated cationic liposomes. Cancer Res.68,8843–8851 (2008).
  • 106  Zhu H, Guo W, Zhang L et al.: Bcl-XL small interfering RNA suppresses the proliferation of 5-fluorouracil-resistant human colon cancer cells. Mol. Cancer Ther.4,451–456 (2005).
  • 107  Chen SM, Wang Y, Xiao BK, Tao ZZ: Effect of blocking VEGF, hTERT and Bcl-xl by multiple shRNA expression vectors on the human laryngeal squamous carcinoma xenograft in nude mice. Cancer Biol. Ther.7,734–739 (2008).
  • 108  Zhen HN, Li LW, Zhang W et al.: Short hairpin RNA targeting survivin inhibits growth and angiogenesis of glioma U251 cells. Int. J. Oncol.31,1111–1117 (2007).
  • 109  McManus DC, Lefebvre CA, Cherton-Horvat G et al.: Loss of XIAP protein expression by RNAi and antisense approaches sensitizes cancer cells to functionally diverse chemotherapeutics. Oncogene23,8105–8117 (2004).
  • 110  Zhang S, Ding F, Luo A et al.: XIAP is highly expressed in esophageal cancer and its downregulation by RNAi sensitizes esophageal carcinoma cell lines to chemotherapeutics. Cancer Biol. Ther.6,973–980 (2007).
  • 111  Yuan J, Krämer A, Matthess Y et al.: Stable gene silencing of cyclin B1 in tumor cells increases susceptibility to taxol and leads to growth arrest in vivo. Oncogene25,1753–1762 (2006).
  • 112  Purow BW, Haque RM, Noel MW et al.: Expression of Notch-1 and its ligands, δ-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res.65,2353–2363 (2005).
  • 113  DuPree EL, Mazumder S, Almasan A: Genotoxic stress induces expression of E2F4, leading to its association with p130 in prostate carcinoma cells. Cancer Res.64,4390–4393 (2004).
  • 114  Yamato K, Fen J, Kobuchi H et al.: Induction of cell death in human papillomavirus 18-positive cervical cancer cells by E6 siRNA. Cancer Gene Ther.13,234–241 (2006).
  • 115  Yamato K, Yamada T, Kizaki M et al.: New highly potent and specific E6 and E7 siRNAs for treatment of HPV16 positive cervical cancer. Cancer Gene Ther.15,140–153 (2008).
  • 116  Li S, Crothers J, Haqq CM, Blackburn EH: Cellular and gene expression responses involved in the rapid growth inhibition of human cancer cells by RNA interference-mediated depletion of telomerase RNA. J. Biol. Chem.280,23709–23717 (2005).
  • 117  Zou L, Zhang P, Luo C, Tu Z: shRNA-targeted hTERT suppress cell proliferation of bladder cancer by inhibiting telomerase activity. Cancer Chemother. Pharmacol.57,328–334 (2006).
  • 118  Edovitsky E, Elkin M, Zcharia E, Peretz T, Vlodavsky I: Heparanase gene silencing, tumor invasiveness, angiogenesis, and metastasis. J. Natl Cancer Inst.96,1219–1230 (2004).
  • 119  Zhang Y, Li L, Wang Y et al.: Downregulating the expression of heparanase inhibits the invasion, angiogenesis and metastasis of human hepatocellular carcinoma. Biochem. Biophys. Res. Commun.358,124–129 (2007).
  • 120  Wyatt CA, Geoghegan JC, Brinckerhoff CE: Short hairpin RNA-mediated inhibition of matrix metalloproteinase-1 in MDA-231 cells: effects on matrix destruction and tumor growth. Cancer Res.65,11101–11108 (2005).
  • 121  Chetty C, Bhoopathi P, Joseph P, Chittivelu S, Rao JS, Lakka S: Adenovirus-mediated small interfering RNA against matrix metalloproteinase-2 suppresses tumor growth and lung metastasis in mice. Mol. Cancer Ther.5,2289–2299 (2006).
  • 122  Gondi CS, Lakka SS, Dinh DH, Olivero WC, Gujrati M, Rao JS: Intraperitoneal injection of a hairpin RNA-expressing plasmid targeting urokinase-type plasminogen activator (uPA) receptor and uPA retards angiogenesis and inhibits intracranial tumor growth in nude mice. Clin. Cancer Res.13,4051–4060 (2007).
  • 123  Zhang L, Yang N, Mohamed-Hadley A, Rubin SC, Coukos G: Vector-based RNAi, a novel tool for isoform-specific knock-down of VEGF and anti-angiogenesis gene therapy of cancer. Biochem. Biophys. Res. Commun.303,1169–1178 (2003).
  • 124  Guan H, Zhou Z, Wang H, Jia SF, Liu W, Kleinerman ES: A small interfering RNA targeting vascular endothelial growth factor inhibits Ewing’s sarcoma growth in a xenograft mouse model. Clin. Cancer Res.11,2662–2669 (2005).
  • 125  Shao SL, Sun YY, Li XY et al.: The reversion effect of the RNAi-silencing MDR1 gene on multidrug resistance of the leukemia cell HT9. Cell Biol. Int.32,893–898 (2008).
  • 126  Arora S, Yang JM, Utsumi R, Okamoto T, Kitayama T, Hait WN: P-glycoprotein mediates resistance to histidine kinase inhibitors. Mol. Pharmacol.66,460–467 (2004).
  • 127  Stierlé V, Laigle A, Jollès B: The reduction of P-glycoprotein expression by small interfering RNAs is improved in exponentially growing cells. Oligonucleotides14,191–198 (2004).
  • 128  Stierlé V, Laigle A, Jollès B: Modulation of MDR1 gene expression in multidrug resistant MCF7 cells by low concentrations of small interfering RNAs. Biochem. Pharmacol.70,1424–1430 (2005).
  • 129  Li L, Xu J, Min T, Huang W: Reversal of MDR1 gene-dependent multidrug resistance using low concentration of endonuclease-prepared small interference RNA. Eur. J. Pharmacol.536,93–97 (2006).
  • 130  Stierlé V, Laigle A, Jollès B: Modulation of the efficiency of a siRNA directed against MDR1 expression in MCF7-R cells when combined with a second siRNA. Biochimie89,1033–1036 (2007).
  • 131  Logashenko EB, Vladimirova AV, Repkova MN, Venyaminova AG, Chernolovskaya EL, Vlassov VV: Silencing of MDR1 gene in cancer cells by siRNA. Nucleosides Nucleotides Nucleic Acids23,861–866 (2004).
  • 132  Peng Z, Xiao Z, Wang Y et al.: Reversal of P-glycoprotein-mediated multidrug resistance with small interference RNA (siRNA) in leukemia cells. Cancer Gene Ther.11,707–712 (2004).
  • 133  Gu JW, Zhang T, Chen BB, Lu Y, Lin GW: [Functional study of mdr1 and GSTpi expression reversed by hairpin siRNA in K562/A02 cell line.] Zhonghua Xue Ye Xue Za Zhi27,17–20 (2006).
  • 134  Xiao XB, Xie ZX, Qin Q: [Reversal of multidrug resistance by MDR1 shRNA expression vector in human leukemia K562/A02 cells.] Zhonghua Zhong Liu Za Zhi28,422–425 (2006).
  • 135  Lim MN, Lau NS, Chang KM, Leong CF, Zakaria Z: Modulating multidrug resistance gene in leukaemia cells by short interfering RNA. Singapore Med. J.48,932–938 (2007).
  • 136  Wei HL, Gao LP, Jing T, Zhao HS, Yi J, Sun J, Han J: [siRNA silences MDR1 gene expression and reverses apoptosis resistance of K562/ADM cells line]. Zhonghua Xue Ye Xue Za Zhi28,388–390 (2007).
  • 137  Widmer N, Rumpold H, Untergasser G, Fayet A, Buclin T, Decosterd LA: Resistance reversal by RNAi silencing of MDR1 in CML cells associated with increase in imatinib intracellular levels. Leukemia21,1561–1562 (2007).
  • 138  Celius T, Garberg P, Lundgren B: Stable suppression of MDR1 gene expression and function by RNAi in Caco-2 cells. Biochem. Biophys. Res. Commun.324,365–371 (2004).
  • 139  Watanabe T, Onuki R, Yamashita S, Taira K, Sugiyama Y: Construction of a functional transporter analysis system using MDR1 knockdown Caco-2 cells. Pharm. Res.22,1287–1293 (2005).
  • 140  Park SY, Lee W, Lee J, Kim IS: Combination gene therapy using multidrug resistance (MDR1) gene shRNA and herpes simplex virus-thymidine kinase. Cancer Lett.261,205–214 (2008).
  • 141  Gao FL, Wang F, Wu JL, Le XP, Zhang QX: [Screening effective sequences of small interfering RNAs targeting MDR1 gene in human gastric cancer SGC7901/VCR cells.] Zhonghua Zhong Liu Za Zhi28,178–182 (2006).
  • 142  Zhao P, Zhang Y, Sun M, He Y: Reversion of multidrug resistance in human glioma by RNA interference. Neurol. Res.30,562–566 (2008).
  • 143  Ren YY: [Suppression of MDR1 expression and restoration of sensitivity to chemotherapy in multidrug-resistant hepatocellular carcinoma cell line Bel7402/5-Fu by RNA interference.] Zhong Nan Da Xue Xue Bao Yi Xue Ban31,872–876 (2006).
  • 144  Chen XP, Wang Q, Guan J, Huang ZY, Zhang WG, Zhang BX: Reversing multidrug resistance by RNA interference through the suppression of MDR1 gene in human hepatoma cells. World J. Gastroenterol.12,3332–3337 (2006).
  • 145  Gan HZ, Zhang GZ, Zhao JS et al.: Reversal of MDR1 gene-dependent multidrug resistance using short hairpin RNA expression vectors. Chin. Med. J. (Engl).118,893–902 (2005).
  • 146  Lou JY, Peng ZL, Zheng Y, Wang H, He B, Wang HJ: [Reversal of multi-drug resistance in ovarian cancer cell by RNA interference.] Zhonghua Fu Chan Ke Za Zhi41,413–416 (2006).
  • 147  Song ZY, Hu HY, Deng L, Wu BY, Guo KY, Zhang MX: [Effect of small interfering RNA targeting multidrug resistance-related protein and bcl-2 on drug resistance and apoptosis of K562 and K562/ADM cells.] Nan Fang Yi Ke Da Xue Xue Bao28,1306–1308 (2008).
  • 148  Ma JJ, Chen BL, Xin XY: Inhibition of multi-drug resistance of ovarian carcinoma by small interfering RNA targeting to MRP2 gene. Arch. Gynecol. Obstet.279(2),149–157 (2009).
  • 149  Lv H, He Z, Liu X, Yuan J, Yu Y, Chen Z: Reversal of BCRP-mediated multidrug resistance by stable expression of small interfering RNAs. J. Cell. Biochem.102,75–81 (2007).
  • 150  Li WT, Zhou GY, Song XR, Chi WL, Ren RM, Wang XW: Modulation of BCRP mediated atypical multidrug resistance phenotype by RNA interference. Neoplasma52,219–224 (2005).
  • 151  Ee PL, He X, Ross DD, Beck WT: Modulation of breast cancer resistance protein (BCRP/ABCG2) gene expression using RNA interference. Mol. Cancer Ther.3,1577–1583 (2004).