We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Pharmacogenetic significance of inosine triphosphatase

    Jörgen Bierau

    † Author for correspondence

    Maastricht University Hospital, Laboratory of Biochemical Genetics, Department of Clinical Genetics, PO Box 6202 AZ Maastricht, The Netherlands.

    ,
    Martijn Lindhout

    Maastricht University Hospital, Laboratory of Biochemical Genetics, Department of Clinical Genetics, PO Box 6202 AZ Maastricht, The Netherlands.

    &
    Jaap A Bakker

    Maastricht University Hospital, Laboratory of Biochemical Genetics, Department of Clinical Genetics, PO Box 6202 AZ Maastricht, The Netherlands.

    Published Online:https://doi.org/10.2217/14622416.8.9.1221

    Inosine triphosphatase (ITPase) is the enzyme that catalyzes the conversion of inosine triphosphate (ITP) and deoxy-inosine triphosphate (dITP) to inosine monophosphate and deoxy-inosine monophosphate, respectively, thereby maintaining low intracellular concentrations of ITP and dITP. Individuals deficient in ITPase activity were first recognized over 30 years ago. For decades, no clinical significance could be attributed to this inborn error of metabolism whatsoever. In recent years, evidence has started to accumulate that polymorphisms in the gene encoding ITPase are associated with potentially severe adverse drug reactions towards the thiopurine drugs azathioprine and 6-mercaptopurine. The pharmacogenetic significance is presently being debated in the literature. However, the present state of knowledge is still insufficient to definitively determine the pharmacogenetic significance of ITPase. This article aims to review the current knowledge on the role of ITPase in thiopurine metabolism.

    Papers of special note have been highlighted as either of interest (•) or of considerable interest (••) to readers.

    Bibliography

    • Duley JA, Florin TH: Thiopurine therapies: problems, complexities, and progress with monitoring thioguanine nucleotides. Ther. Drug Monit.27,647–654 (2005).• Critical review of the present state of knowledge of mercaptopurine metabolism.
    • Poppe D, Tiede I, Fritz G et al.: Azathioprine suppresses ezrin-radixin-moesin-dependent T cell-APC conjugation through inhibition of Vav guanosine exchange activity on Rac proteins. J. Immunol.176,640–651 (2006).
    • Tiede I, Fritz G, Strand S et al.: CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes. J. Clin. Invest.111,1133–1145 (2003).
    • Marinaki AM, Ansari A, Duley JA et al.: Adverse drug reactions to azathioprine therapy are associated with polymorphism in the gene encoding inosine triphosphate pyrophosphatase (ITPase). Pharmacogenetics14,181–187 (2004).•• Establishes the possible correlation between inosine triphosphatase (ITPase) deficiency and azathioprine-induced adverse drug reations.
    • Marinaki AM, Duley JA, Arenas M et al.: Mutation in the ITPA gene predicts intolerance to azathioprine. Nucleosides Nucleotides Nucleic Acids23,1393–1397 (2004).
    • Sumi S, Marinaki AM, Arenas M et al.: Genetic basis of inosine triphosphate pyrophosphohydrolase deficiency. Hum. Genet.111,360–367 (2002).
    • Weber J, Senior AE: Bi-site catalysis in F1-ATPase: does it exist? J. Biol. Chem.276,35422–35428 (2001).
    • Myrnes B, Guddal PH, Krokan H: Metabolism of dITP in HeLa cell extracts, incorporation into DNA by isolated nuclei and release of hypoxanthine from DNA by a hypoxanthine-DNA glycosylase activity. Nucleic Acids Res.10,3693–3701 (1982).
    • Spee JH, de Vos WM, Kuipers OP: Efficient random mutagenesis method with adjustable mutation frequency by use of PCR and dITP. Nucleic Acids Res.21,777–778 (1993).
    • 10  Vanderheiden BS: Genetic studies of human erythrocyte inosine triphosphatase. Biochem. Genet.3,289–297 (1969).
    • 11  Holmes SL, Turner BM, Hirschhorn K: Human inosine triphosphatase: catalytic properties and population studies. Clin. Chim. Acta97,143–153 (1979).
    • 12  Vanderheiden BS: Human erythrocyte ‘ITPase’: an ITP pyrophosphohydrolase. Biochim. Biophys. Acta215,555–558 (1970).
    • 13  Cao H, Hegele RA: DNA polymorphisms in ITPA including basis of inosine triphosphatase deficiency. J. Hum. Genet.47,620–622 (2002).
    • 14  Stenmark P, Kursula P, Flodin S et al.: Crystal structure of human inosine triphosphatase. Substrate binding and implication of the inosine triphosphatase deficiency mutation P32T. J. Biol. Chem.282,3182–3187 (2007).•• Presents the crystal structure of wild-type ITPase and the c.94C>A variant.
    • 15  Arenas M, Duley J, Sumi S, Sanderson J, Marinaki A: The ITPA c.94C>A and g.IVS2+21A>C sequence variants contribute to missplicing of the ITPA gene. Biochim. Biophys. Acta1772,96–102 (2007).• Explains the molecular mechanisms associated with ITPase defiency.
    • 16  Heller T, Oellerich M, Armstrong VW, von Ahsen N: Rapid detection of ITPA 94C>A and IVS2 + 21A>C gene mutations by real-time fluorescence PCR and in vitro demonstration of effect of ITPA IVS2 + 21A>C polymorphism on splicing efficiency. Clin. Chem.50,2182–2184 (2004).
    • 17  Fraser JH, Meyers H, Henderson JF, Brox LW, McCoy EE: Individual variation in inosine triphosphate accumulation in human erythrocytes. Clin. Biochem.8,353–364 (1975).
    • 18  Vanderheiden BS, Bora G: Erythrocyte ITP pyrophosphohydrolase in chronic paranoid and undifferentiated schizophrenics: a biological difference. Biochem. Med.23,76–86 (1980).
    • 19  Duley JA, Simmonds HA, Hopkinson DA, Levinsky RJ: Inosine triphosphate pyrophosphohydrolase deficiency in a kindred with adenosine deaminase deficiency. Clin. Chim. Acta188,243–252 (1990).
    • 20  Mohandas T, Sparkes RS, Passage MB et al.: Regional mapping of ADA and ITP on human chromosome 20: cytogenetic and somatic cell studies in an X/20 translocation. Cytogenet. Cell Genet.26,28–35 (1980).
    • 21  Marsh S, King CR, Ahluwalia R, McLeod HL: Distribution of ITPA P32T alleles in multiple world populations. J. Hum. Genet.49,579–581 (2004).• Reviews the allelic frequency of ITPA c.94C>A in multiple populations.
    • 22  Atanasova S, Shipkova M, Svinarov D et al.: Analysis of ITPA phenotype–genotype correlation in the Bulgarian population revealed a novel gene variant in exon 6. Ther. Drug Monit.29,6–10 (2007).
    • 23  Maeda T, Sumi S, Ueta A et al.: Genetic basis of inosine triphosphate pyrophosphohydrolase deficiency in the Japanese population. Mol. Genet. Metab.85,271–279 (2005).
    • 24  Derijks LJ, Hommes DW: Thiopurines in inflammatory bowel disease: new strategies for optimization of pharmacotherapy? Curr. Gastroenterol. Rep.8,89–92 (2006).
    • 25  Bakker JA, Drent M, Bierau J: Relevance of pharmacogenetic aspects of mercaptopurine metabolism in the treatment of interstitial lung disease. Curr. Opin. Pulm. Med.13,458–463 (2007).
    • 26  von Ahsen N, Armstrong VW, Behrens C et al.: Association of inosine triphosphatase 94C>A and thiopurine S-methyltransferase deficiency with adverse events and study drop-outs under azathioprine therapy in a prospective Crohn disease study. Clin. Chem.51,2282–2288 (2005).
    • 27  Zelinkova Z, Derijks LJ, Stokkers PC et al.: Inosine triphosphate pyrophosphatase and thiopurine s-methyltransferase genotypes relationship to azathioprine-induced myelosuppression. Clin. Gastroenterol. Hepatol.4,44–49 (2006).
    • 28  Gearry RB, Roberts RL, Barclay ML, Kennedy MA: Lack of association between the ITPA 94C>A polymorphism and adverse effects from azathioprine. Pharmacogenetics14,779–781 (2004).
    • 29  van Dieren JM, van Vuuren AJ, Kusters JG et al.:ITPA genotyping is not predictive for the development of side effects in AZA treated inflammatory bowel disease patients. Gut54,1664 (2005).
    • 30  Allorge D, Hamdan R, Broly F, Libersa C, Colombel JF: ITPA genotyping test does not improve detection of Crohn’s disease patients at risk of azathioprine/6-mercaptopurine induced myelosuppression. Gut54,565 (2005).
    • 31  de Ridder L, van Dieren JM, van Deventer HJ et al.: Pharmacogenetics of thiopurine therapy in paediatric IBD patients. Aliment. Pharmacol. Ther.23,1137–1141 (2006).
    • 32  Breen DP, Marinaki AM, Arenas M, Hayes PC: Pharmacogenetic association with adverse drug reactions to azathioprine immunosuppressive therapy following liver transplantation. Liver Transpl.11,826–833 (2005).
    • 33  Shipkova M, Lorenz K, Oellerich M, Wieland E, von Ahsen N: Measurement of erythrocyte inosine triphosphate pyrophosphohydrolase (ITPA) activity by HPLC and correlation of ITPA genotype–phenotype in a Caucasian population. Clin. Chem.52,240–247 (2006).•• Demonstrates the correlation between ITPA genotype and ITPase activity.
    • 34  Lin S, McLennan AG, Ying K et al.: Cloning, expression, and characterization of a human inosine triphosphate pyrophosphatase encoded by the ITPA gene. J. Biol. Chem.276,18695–18701 (2001).
    • 35  Kawahata RT, Chuang LF, Holmberg CA, Osburn BI, Chuang RY: Inhibition of human lymphoma DNA-dependent RNA polymerase activity by 6-mercaptopurine ribonucleoside triphosphate. Cancer Res.43,3655–3659 (1983).
    • 36  Zimmerman TP, Chu LC, Bugge CJ et al.: Identification of 6-methylmercaptopurine ribonucleoside 5´-diphosphate and 5´-triphosphate as metabolites of 6-mercaptopurine in man. Cancer Res.34,221–224 (1974).
    • 37  Nelson DJ, Bugge C, Krasny HC: Oxypurine and 6-thiopurine nucleoside triphosphate formation in human erythrocytes. Adv. Exp. Med. Biol.76A,121–128 (1977).
    • 38  Derijks LJ, Gilissen LP, Engels LG et al.: Pharmacokinetics of 6-mercaptopurine in patients with inflammatory bowel disease: implications for therapy. Ther. Drug Monit.26,311–318 (2004).
    • 39  Gilissen LP, Bierau J, Derijks LJ et al.: The pharmacokinetic effect of discontinuation of mesalazine on mercaptopurine metabolite levels in inflammatory bowel disease patients. Aliment. Pharmacol. Ther.22,605–611 (2005).
    • 40  Roberts RL, Gearry RB, Barclay ML, Kennedy MA: IMPDH1 promoter mutations in a patient exhibiting azathioprine resistance. Pharmacogenomics  J. (2006) (Epub ahead of print).
    • 41  Bierau J, Bakker JA, Lindhout M, van Gennip AH: Determination of ITPase activity in erythrocyte lysates obtained for determination of TPMT activity. Nucleosides Nucleotides Nucleic Acids25,1129–1132 (2006).